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Let nT be the number of individuals that have been infected within a
window of time T (a week or a longer period) and r be the mortality rate,
i.e. the probability that an infected person dies. We observe the number
N of deaths within a window of time W (say T plus two weeks), and we
assume that if an individual who has been infected in the window of time
T dies, the death is likely to occur within the observed period of time W
with a probability β ∈ (0, 1] close to 1. This leads us to model N as a
random variable drawn from a binomial distribution with parameters nT
and rβ; that is, N ∼ B(nT , rβ). Indeed, mathematically speaking everything
happens as if each affected individual tosses an unfair coin (showing head
with probability rβ), and dies if the coin falls on head.

Our goal is to estimate the value of nT from the observation of N and
the prior knowledge of r and β (actually we shall see later that the choice
β = 1 might be a reasonable one anyway). Since the expectation of the
binomial distribution with parameters nT and rβ is nT rβ, whenever N is
close enough to its mean, nT is of order N/(rβ) and the latter quantity
provides a natural estimation of the unknown parameter nT . However, N
fluctuates around its mean and we would like to take this into account to
build a confidence interval for nT rather than giving a rough estimation
of it. Since it is difficult to work directly with the binomial distribution,
we shall approximate it with the Gaussian and Poisson ones, each of these
approximations will lead to a confidence interval for nT . For values of r of
a few percent and nT larger than a thousand, both distributions provide a
very good approximation of the binomial and consequently both methods
can be used to solve the problem. Nevertheless, the special properties of the
family of Gaussian distributions (which is translation and scale invariant)
will enable us to provide a more accurate confidence interval.

1. The Gaussian approximation

It is classical to approximate the binomial distribution B(n, p) by the
Gaussian distribution N (np, np(1−p)) with the same mean np and the same
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variance np(1−p). In this section, we shall therefore assume that the distri-
bution of the number of deaths N follows the distributionN (nT rβ, nT rβ(1−
rβ)). Under such an assumption, the following result holds.

Proposition 1. Let α ∈ (0, 1), qα be the (1 − α)-quantile of a standard
Gaussian random variable and

ẑα =
(1− rβ)q2α

2N
.

Each of the inequalities below holds true with a probability 1− α,

nT ≤
N

rβ

[
1 +

√
ẑα(2 + ẑα) + ẑα

]
and nT ≥

N

rβ

[
1−

√
ẑα(2 + ẑα) + ẑα

]
In particular, both inequalities are satisfied simultaneously with a probability
1− 2α.

2. The Poisson approximation

When p is small, it is also classical to approximate the binomial distri-
bution B(n, p) by the Poisson distribution P(np). In this section we shall
therefore assume that the distribution of N is Poisson with parameter nT rβ.
The following result holds.

Proposition 2. Let c > 0 be some positive number. Each of the following
inequalities holds with a probability at least 1− e−c,

nT ≥
N

rβ

[
1−

√
2c

N

(
1 +

2c

9N

)
+

2c

3N

]
and

nT ≤
N

rβ

[
1 +

√
2c

N

(
1 +

c

2N

)
+

c

N

]
.

In particular, both inequalities are satisfied simultaneously with a probability
at least 1− 2e−c.

3. Example and discussion

If we take N = 75 (number of deaths from the beginning of the pandemic
until now), T the period of time from the beginning of the pandemic until
two weeks ago, β = 1 and r = 2%, we obtain that with a probability (at
least) 90%,

3109 ≤ nT ≤ 4524 (Gaussian approximation)

2786 ≤ nT ≤ 4970 (Poisson approximation).

Some remarks:
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• Note that the estimation bounds on nT are quite sensitive with re-
spect to the value of r (and also that of N since r is small). Underes-
timating or overestimating r may therefore have great consequences
on the bounds we get.

• As already observed, the “true” distribution of the random number
N is of course not Gaussian, nor Poisson, but rather binomial with
parameter rβnT . It is always possible to “go back” to the true distri-
bution of N by using some classical approximation results. Indeed,
one can combine Proposition 2 with well-known bounds by Le Cam,
Chen, Stein, Daley, Vere-Jones, .... implying that the distribution
of N is well approximated by a Poisson distribution with parameter
rβnT up to a uniform error (over generic sets) which is not bigger
than 0.71× rβ. So, even if we assume that N has the binomial dis-
tribution, the conclusion of Proposition 2 still holds with (1− 2e−c)
replaced by (1 − 2e−c) − 0.71 × rβ. With the parametrization of
the previous example, one has rβ = 2%, 0.71 × rβ ∼ 1.4% and
the estimate 2786 ≤ nT ≤ 4970 holds with a probability of at least
88, 6%. Similarly, it is known (“Berry-Esseen bound”) that the dis-
tribution of N can be approximated with a Gaussian distribution of
mean nT rβ and variance nT rβ(1 − rβ) with a uniform error (over
half-lines) which is not bigger than

E :=
0.5
√
nT

(
(1− rβ)3/2√

rβ
+

(rβ)3/2√
1− rβ

)
.

So, even if we assume that N has the binomial distribution, each
one of the two inequalities in the statement of Proposition 1 still
hold with probability 1− α/2 up to an error of maximal magnitude
E. With the parametrization of the previous example, one has that
rβ = 2% and, assuming nT ≥ 3500, E ≤ 0.06, and the probability
that nT ≤ 4524 is at least 89% (using the fact that the probability of
the one-tailed event nT ≤ 4524 under the assumptions of Proposition
1 is 95%).
• If we look at the number N of deaths in week W and want to esti-

mate the number of people who were newly infected two weeks ago
(say), the previous formulas apply provided that we can properly
estimate the probability β that an infected person will not die in
week W , meaning that his or her death will occur before or after the
week W . Nevertheless, the estimation of β may not be as crucial
for the following reason. On the one hand, N includes the number
of deaths of those who were not infected two weeks before week W ,
but on the other hand, it does not include the deaths of these people
who were infected two weeks ago and died outside the window of
time W . The two numbers of deaths can eventually compensate one



4 YANNICK BARAUD, IVAN NOURDIN, AND GIOVANNI PECCATI

another, meaning that the choice β = 1 could make sense even in
the unfavorable situation where the deaths of some people infected
two weeks ago were not observed during week W .

• Note that we could alternatively estimate nT from the observation
of the number of severe cases in hospitals. In this case r would cor-
respond to the probability of clinical severity and the same bounds
as those described in the proposition apply. It is then possible to
build another confidence interval I2 for nT . Intersecting I2 with the
one obtained previously, say I1, results in a new confidence interval
I1 ∩ I2 the length of which cannot be larger than those of I1 and I2.
Note that if I1 and I2 have a confidence level 1−2e−c, that of I1∩I2
is however 1− 4e−c.

4. Proofs

4.1. Proof of Proposition 1. Let X ∼ N (0, 1) be a standard Gaussian
random variables. Under our assumption, N has the same distribution as

nT rβ +
√
nT rβ(1− rβ)X.

Since with a probability 1 − α, X ≥ −qα, we obtain the first inequality by
solving the inequality

N ≥ nT rβ −
√
nT rβ(1− rβ)qα.

The second inequality is obtained by arguing similarly using that with a
probability 1− α, X ≤ qα.

4.2. Proof of Proposition 2. The proof of Proposition 2 relies on the
following lemma.

Lemma 1. Let X be a random variable with Poisson distribution with pa-
rameter θ > 0. For all c > 0

P
[
N − θ > c

3

[
1 +

√
1 + 18c−1θ

]]
≤ e−c and P

[
N − θ < −

√
2cθ
]
≤ e−c.

Proof. Let z > 0. The mapping

F : λ 7→
(
eλ − λ− 1

)
θ − λz on R+

is minimum for λ?(z) = log(1 + z/θ) and F (λ?(z)) = −θh (z/θ) where

h(u) = (1 + u) log(1 + u)− u ≥ u2

2(1 + u/3)
for all u > 0.

Hence

(1) F (λ?(z)) = −θh (z/θ) ≤ − z2

2(θ + z/3)
.
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The mapping

G : λ 7→
(
eλ − λ− 1

)
θ + λz on R−

is minimum for λ?(−z) and G(λ?(−z)) = −θg (z/θ) where

g(u) = (1− u) log(1− u) + u ≥ u2

2
for all u > 0.

Hence,

(2) G(λ?(−z)) = −θg (z/θ) ≤ −z
2

2θ
.

Using that

E
[
eλ(X−θ)

]
= exp

[
(eλ − λ− 1)θ

]
for all λ ∈ R,

we deduce that for all z > 0

P [N − θ ≥ z] ≤ exp [F (λ?(z))] ≤ exp

[
− z2

2(θ + z/3)

]
.

In particular, the right-hand side equals e−c if

c =
z2

2(θ + z/3)
⇐⇒ z =

c

3

[
1 +

√
1 +

18θ

c

]
.

Similarly,

P [X − θ ≤ −z] ≤ exp [G(λ?(−z))] ≤ exp

[
−z

2

2θ

]
and the right-hand side equals e−c for z =

√
2cθ. �

It follows from the lemma that with a probability at least 1− e−c,

X − θ ≤ c

3

[
1 +

√
1 + 18c−1θ

]
⇐⇒ θ ≥ X

[
1−

√
2c

X

(
1 +

2c

9X

)
+

2c

3X

]
.

In the other way, with a probability at least 1− e−c

X − θ ≥ −
√

2cθ ⇐⇒ θ ≤ X

[
1 +

√
2c

X

(
1 +

c

2X

)
+

c

X

]
.
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The results of the proposition follow by applying these bounds with X =
N and θ = nT rβ.
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