

Synthesis of nanoparticles: the role of chemical parameters toward functional materials

Alessandro Lauria

Laboratory for Multifunctional Materials Department of Materials - ETH Zürich <u>alessandro.lauria@mat.ethz.ch</u>

http://www.multimat.mat.ethz.ch

Scintillator materials

Inorganic (Single Crystals)

Organic (Plastic)

Liquid (Dye solution)

Scintillator materials

Alessandro Lauria ASCIM

ASCIMAT – September 13th 2016

Scintillator materials

(Single Crystals)

Organic (Plastic)

Liquid (Dye solution)

Transparent in the UV region **EXCITATION**

Phosphor nanoparticle

scintillator

Nanoparticles for optical applications

Unique optical properties depending on particle size: Band-gap modified emitters

T. Wang et al. J. Am. Chem. Soc. 2010, 132, 9250

Xu, X. Y. et al Cryst Eng Comm 2013, 15, 977

Beneficial role of sub-micrometric crystal size for better optical quality of sintered ceramics

Apetz R. and Van Bruggen M.P.B., J. Am. Ceram. Soc. **2003**, *86*, 480

Krell, A. et al. *J. Am. Ceram. Soc.* **2010**, 93, 2656

Alessandro Lauria ASCIMAT – September 13th 2016

ETH zürich

Nanoparticles for optical applications

Engineered luminescence related to defects due to the high interface area in nanosized polycrystals

Villa, I. et al. Chem. Mater. 2016, 28, 3245-3253

Beneficial role of sub-micrometric crystal size for better optical quality of sintered ceramics

Apetz R. and Van Bruggen M.P.B., *J. Am. Ceram. Soc.* **2003**, *86*, 480

Krell, A. et al. *J. Am. Ceram. Soc.* **2010**, 93, 2656

From nano to macro

ASCIMAT – September 13th 2016 Alessandro Lauria

From nano to macro

Nanoparticles as building blocks

in length scale!

nanoscale

Nanoparticles synthesis: aqueous sol-gel

In words: Conversion of a precursor solution into an inorganic solid (mainly metal oxides) by hydrolysis and condensation reactions.

Nanoparticles synthesis: aqueous sol-gel

Stöber synthesis of SiO₂ NPs

Sol

Nanoparticles synthesis: aqueous sol-gel

= H zürich

Hydrolysis and Condensation

Nanoparticles synthesis: aqueous sol gel

ETH zürich

The sol-gel process is extremely versatile!

mfm

Aqueous:

Inorganic Polymerization Reactions

Metal Oxide Network

"Molecular" Precursor

Inorganic salts Metal alkoxides

- 1) Hydrolysis
- 2) Condensation

The oxygen is supplied by water!

Nonaqueous:

"Molecular" Precursor + Organic Solvent ·

Metal halides Metal alkoxides Metal acetylacetonates Metal acetates Others (e.g. metal nitrates)

Alcohols (Benzyl Alcohol,...) Ketones (Acetophenone,...) Amines (Benzylamine,...) "Inert" Solvents (Toluene,...)

Metal Oxide Network

The oxygen is provided by the precursor or the organic solvent!

Nonaqueous:

"Molecular" Precursor + Organic Solvent

Metal halides Metal alkoxides Metal acetylacetonates Metal acetates Others (e.g. metal nitrates)

Alcohols (Benzyl Alcohol,...) Ketones (Acetophenone,...) Amines (Benzylamine,...) "Inert" Solvents (Toluene,...)

Metal Oxide Network

ETH zürich

The oxygen is provided by the precursor or the organic solvent!

Microwave vs. Conventional Thermal Heating

http://www.biotage.com/DynPage.aspx?id=22052

Aqueous vs Nonaqueous Sol-Gel Process

Literature

Books

M. Niederberger, N. Pinna Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly, and Application Engineering Materials and Processes Series Springer Verlag, London: **2009** R. Deshmukh, M. Niederberger Non-hydrolytic Sol-Gel Routes In: The Sol-Gel Handbook Edited by D. Levy and M. Zayat Wiley-VCH, Weinheim: **2015**

2009. XIII, 217 p. 65 illus. (Engineering Materials and Processes) Hardcover

Reviews

P.D. Debecker, P.H. Mutin Non-hydrolytic sol-gel routes to heterogeneous catalysts Chem. Soc. Rev. 2012, 41, 3624

P.H. Mutin, A. Vioux Nonhydrolytic Processing of Oxide-Based Materials: Simple Routes to Control Homogeneity, Morphology, and Nanostructure Chem. Mater. **2009**, 21, 582

N. Pinna, M. Niederberger Surfactant-Free Nonaqueous Synthesis of Metal Oxide Nanostructures Angew. Chem. Int. Ed. **2008**, 47, 5292

Angew. Chem. Int. Ed. 2008, 47, 5292

Doping HfO₂ via nonaqueous sol-gel

Heavy metal oxide with optical transparency and high density

Requirement for scintillation	Desired property	HfO ₂
Transparency	Wide bandgap	BG > 4.5 eV
Luminescence centers	Good host for RE	Trivalent Lanthanides: Eu ³⁺
Stability	Strong chemical bonds	T _f = 2758 °C, high inertness
High stopping power	High Z _{eff} High density	$Z_{Hf} = 72$ d _{Hf02} = 9.68 g cm ⁻³

Metal Alkoxides and Benzyl Alcohol:

<u>10 nm</u>

Good candidate for scintillator applications

Chem. Eur. J. 2006, 12, 7282

Luminescent HfO₂:Eu³⁺ nanoparticles

Doping

Doping

Lauria A. et al. ACS Nano 2013, 7[8], 7041

ETH zürich

Doping

Integrated emission stimulated by 280 nm UvV light

Increase of luminescence with increasing Eu concentration

Quenching of luminescence for Eu³⁺ concentration higher than 1 mol%

Doping

mfm

Alessandro Lauria ASCIMAT – September 13th 2016

ETH zürich

Multifunctional role of RE doping

Lu³⁺/Eu³⁺/Tb³⁺ co-doped HfO₂

optically inactive Lu³⁺ (full 4f shell) acting as a structure modifier

Indipendent control over structure and emission

Alessandro Lauria ASCIMAT – September 13th 2016

ETH zürich

MW assisted sol-gel chemistry of HfCl₄

Surface chemistry

J. Am. Chem. Soc. 2014, 136, 9650-9657

Autoclave sol-gel chemistry of Hf(t-BuO)₄

Surface chemistry

Goals:

- To get a bulk material with nanoscale properties arising from the building blocks
- To have more functions

Controlled destabilization of 3 nm trizma-functionalized anatase NPs dispersions

Trizma functionalized anatase NPs^[1] a) before b) after destabilization

Proposed mechanism for oriented attachment by Polleux et al. in 2005^[1]

Theoretical calculations by Grätzel et al. in 1998^[2]

Niederberger, M., et al., *Chem. Eur. J.*, **2005**, 11, 3541-3551.
Grätzel, M. et al. *Phys. Rev. Lett.*, **1998**, 81, 14, 2954.

TiO₂ synthesis

Heiligtag, F. J., et al., J. Mater. Chem., 2011, 21, 16893-16899.

ETH zürich

Oriented Attachment along [001] - why?

Oriented Attachment along [001] - why?

Niederberger, M., et al., *Adv. Mater.*, **2004**, 16, 436-439. Niederberger, M., et al., *Chem. Eur. J.*, **2005**, 11, 3541-3551.

Alessandro Lauria ASCIMAT – September 13th 2016

mfm

Oriented Attachment along [001] - why?

Niederberger, M., et al., *Adv. Mater.*, **2004**, 16, 436-439. Niederberger, M., et al., *Chem. Eur. J.*, **2005**, 11, 3541-3551.

Oriented Attachment for 3D assembly

Niederberger, M., et al., *Adv. Mater.*, **2004**, 16, 436-439. Niederberger, M., et al., *Chem. Eur. J.*, **2005**, 11, 3541-3551.

Alessandro Lauria ASCIMAT – Sept

mfm

ASCIMAT – September 13th 2016

ETH zürich

From Nanoparticles to Aerogel Monoliths

mfm

$TiO_2 + Fe_3O_4$

0 mol% 0.25 mol% 0.375 mol% 0.5 mol%

Nanoscale **2014**, *6*, 13213

Composites

Stabilization

Probability of collision is higher for smaller particles

NP like to agglomerate!

Alessandro Lauria ASCIMAT – September 13th 2016

ETH zürich

Role of surface chemistry on stabilization of HfO₂ NPs

Alessandro Lauria ASCIMAT – September 13th 2016

ETH zürich

Composites

(mfm

Summary

Chemical synthesis in organic solvents (nonhydrolytic sol-gel chemistry)

Control of composition, size, shape, and surface Different heating techniques: Oil bath, autoclaves, microwaves

Well-defined nanoparticles as building blocks

 $\begin{array}{l} \mbox{Magnetic Nanoparticles:} \\ \mbox{Fe}_3 O_4 \\ \mbox{MFe}_2 O_4 \ (\mbox{M} = \mbox{Ni}, \mbox{Co}, \mbox{Mn}) \end{array}$

articles: Conducting Nanoparticle SnO₂-doped In₂O₃ (ITO) Co, Mn) Sb-doped SnO₂ (ATO) Al-doped ZnO (AZO)

Different Sizes & Sha W₁₈O₄₉ Nanowires ZnO Nanorods

Collective/synergistic properties Assembly over several length scales

Macroscopic (multicomponent) materials

Alessandro Lauria

Laboratory for Multifunctional Materials Department of Materials - ETH Zürich <u>alessandro.lauria@mat.ethz.ch</u>

http://www.multimat.mat.ethz.ch

