The panorama of underlying electronic state in electron-doped cuprate
La, ,Ce, CuO,,;

and

Holographic Anti-Ferromagnetic state in Nickelate and Cobaltate, as BiCoPO. and
Quantum Phase Transition induced by magnetic field

FV. Kusmartsev , in collaboration with
IOP and ITP and Beijing University, CAS,

State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,
Chinese Academy of Sciences,Beijing 100190, China.

Department of Physics, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, United Kingdom



Joint Collaboration: UK, China, UAE

Heshan Yul2", Xu Zhang!2”", Runqiu Yang3, Ge Hel?, Ziquan
Lin%, Jinsong Zhang'?, Xinjian Wei'?, Wei Hu'?, Jie Yuan'%®,
Beiyi Zhul?, Liang Li%, Junfeng Wang*', Yi-feng Yang'%7, Tao
Xiangl27, Ronggen Cai%®, and Kui Jin1:267%

Chinese Academy of Sciences

Anna Kusmartseva®, F. V. Kusmartsev>'

!Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences,
Beijing 100190, China.

2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

3Quantum Universe Center, Korea Institute for Advanced Study, Seoul 130-722, Korea

“Wuhan National High Magnetic Field Center (WHMFC), Huazhong University of Science and Technology, Wuhan
430074, China

SDepartment of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom

6Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

’Collaborative Innovation Center of Quantum Matter, Beijing, 100190, China

8CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing
100190, China



La, Ce,CuO, s (x =0.10) thin films
with slightly manipulated oxygen content by o6

emergent electronic states as a function of magnetic field and assist in probing the nature of
electron-doped cuprate from the aspects of plausible topological order with SR-SDW and
the FM polarization.

First, guantum phase transition from the AF state to ferromagnetism (FM) polarization is
observed between 50 and 60 Tesla for different samples.

The phase boundary shows a universal behavior that can be well described by the holographic
model based on AdS/CFT.

Second, a characteristic field between 20 and 30 Tesla, far beyond the upper critical field (i.e.
H., ~ 10 T) be intimately related to the superconducting transition temperature

Crossover from positive magnetoresistance to negative magnetoresistance at the zero
temperature limits, linked to a plausible topological order with short-range spin density wave
(SR-SDW) and a canted AF state,



The normalized temperature-field
phase diagram of LCCO.
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magneto-electrical transport in three optimal-doped LCCO samples with different oxygen

content
The extensions of fitted curves (black dashed line) shows that the critical magnetic fields and

onset temperature at zero field are B.= 62 T, 552 T,52 Tand T}, = 32K, 27 K, 26 K,
respectively. After the normalizations by T}, = % and B, = %, fitted curves of three
k c



Hall resistivity of optimal-doped LCCO
at high magnetic field.
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(A) Temperature dependence of Hall coefficient in 15 Tesla for all the samples. The kink
behavior indicates Fermi-surface reconstruction at low temperature resulting from AFM
transition. T, of every sample are extracted from the apexes of curves.

(B) Temperature dependence of Hall coefficient in different fields up to 55 Tesla for S1. Hall
kinks shift to low temperature with increasing field.

(C) The relationship between AFM transition temperature T, and magnetic field B for three
different samples.
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(a, b) The field-dependent longitudinal resistivity displays non-monotonous b&ivior

below 30 K. The B,,,x marks the characteristic magnetic fields where the resistivity
reaches the maximum. Above 30 K, magnetoresistance shows linearity at high magnetic
fields.

(c, d) With decreasing temperature, there is a switching from linear to non-linear

behavior. The minimum in p,, curves corresponding to B, also disappears above 30 K.



Prx (U €M)

Magnetoresistivity of optimal-doped

Prx (HE2 €M)

LCCO

The p-MR at low temperatures seems unusually large compared to the
normal MR. We take a definition of 6p(B) =
magnitude of the anomalous p-MR.

dp(B)

dB

L to evaluate the
p(B)



Hall ‘kink” and resistivity ‘upturn’
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(a) Temperature dependence of the Ry and p,, at 15 T for sample S1. Ty (T,)
is extracted from the maximum (minimum) of Ry (pyx) curves.

* (b) Temperature dependence of the Hall coefficient (top panel) and
resistivity (bottom panel) at different fields up to 55 T for sample S1.

* (c) The magnetic field dependence of Ty. Inset: The magnetic field
dependence of T,,.



The Hall number and AF transition
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* (a) The Hall number ny as a function of magnetic field. The ny
deviates from -0.1 at B2 ... Inset: Temperature dependence of
the Hall coefficient at 15and 55 T.

* (b) The Hall number ny as a function of Ce doping (square from
Ref. [17] and diamond from Ref. [18]). The upper dashed line
marks ny = 1 — x; the lower dashed line marks ny = —x.



Topological order
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a Cu?*-O-0 triangular plaquette on the Cu-O plane, which has a pre-localized spin and
two neighboring oxygens. Clockwise and anticlockwise w-orbital currents or moments are
shown in pink and blue, respectively.
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Topological Order and Phase transition

« a Cu?*-0-0 triangular plaguette on the Cu-O plane, which has a pre-localized spin
and two neighboring oxygens. Clockwise and anticlockwise w-orbital currents or
moments are shown in pink and blue, respectively.

« The sequence tunneling of a doped electron. Such state is unstable and this
instability can lead to the formation of spontaneous local orbital current.

« Aschematic depiction of the dissociation of the vortex-antivortex pairs (or
clockwise and anticlockwise orbital currents) by magnetic field. The magnetic field
Is applied perpendicular to the plane of the quadruple moments.

 The field polarizes orbital currents of a particular chirality and thereby causes an
unbinding of the vortex-antivortex pairs when the limit is approached.

« This leads to a Beresinki-Kosterlitz-Thouless like phase transition.



Doping vs Magnetic Field

* ARPES experiments have revealed a large hole-
like pocket around (m, i) in overdoped Nd,_
ce,Cu0, (NCCO

* reconstructed to small electron pockets once AF
state enters at lower Ce doping levels [19, 20].

* The resemblance between ny(B) and ny(x)
suggests the recovery of a large hole pocket FS
when the AF order is suppressed.



Holographic Top Down and Bottom Up

What kind of Materials can be treated with
Holographic Methods?

What kind of States of Matter can be treated with
Holographic Methods?

Temperature as Hawking Temperature of black
hole

Quantum phase transitions!



We consider an Einstein-Maxwell theory in 3+1 dimensions with a negative

cosmological constant and two anti-symmetry tensor fields Ml(ul,) and MS,). The total

action reads

1
S = J‘d‘*x\/—g [R—ZA—ZFZ—AZ(L1+L2+V12)

with

1
L, = ﬁ(dM(“))z +V(M@)

a=1,2and

k
Vip = EMUMWJW{&R.

Here L, and L, are two bulk Lagrangians to describe the two different magnetic
moments in staggered magnetization.

The term V,, describes the interaction between these two magnetic moments.



AF Order and QPT

The AF order parameter is the staggered magnetic moment, which is dual to xy-

component Mg,) — M,ESZ,) in the interior. We fix the potential V(M(@)) to be the following

form

V(M®@) = MO M@ — (€,06M @M @P0)*,
In probe limit A = 0, the spacetime geometry in the interior is given by a dyonic AdS-

Reissner-Nordstrom black hole which can be written as

2

r2f(r)

ds? = —r?f(r)dt* + + r%(dx? + dy?),

* chemical potential in the boundary is given
1+ u?+B? u?+ B? by the constant p,
fr)=1- 73 + rt * B can be viewed as the external magnetic
field of the dual boundary field theory.




The compounds BIMNOs (M = Ni, Co, Ca, Cd, Pb, N=P, V, As)
Focus on Ni and Co: BiCoPO.

e structure->: mixed double chains of
* Two edge-sharing CoO, octahedra, alternating
* With two edge sharing BiO, octahedra

e These two mixed chains are connected via oxi-
phosphate PO, tetra-hedra

e Anti-ferro-magneticatlow T
* |Interaction increases with Co->Ni



The compounds BIMNOs (M = Ni, Co, Ca, Cd, Pb, N=P, V, As)
Focus on Ni and Co: BiCoPO.

e structure->: mixed double chains of
* Two edge-sharing MO, octahedra, alternating
* With two edge sharing BiO, octahedra
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Co, O,4-group

* The centre of inversion between Co atoms




BiCoPO.-structure




Co2* 3d’-orbitals
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Ni3+

3d’ orbitals S=3/2 High Spin
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Ni3* 3d’orbitals S=1/2 Low Spin
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Ni¢t 3d®orbitals S=1

i)
| e, 322-12, x?-y?
/
" tog Xy, XZ, Yz
| v
)
T | 3z2-r2
\ A
e - JT A
g T I X2_y2
T
Acr N | v Xy, Xz, yz
A / v . -> A
Lo T - |V
= 1]

|V

\Crystal field Tetragonal distortions Monoclinic distortions



BiCoPO.-magnetic structure

(a) 2

b x -
| i
* monoclinic,- magnetic group P 2,,n ( C,,) has four
irreducible 1 D representations: 4 spin config-orientations,

 Ni mag-moments nearly perpendicular to the a-b plane,
Co - are not-collinear, close to the plane



-

i

Rpaen 18 7.15% while ;/L-COE_I_ = 3.52(3) up that suggests an
orbital contribution of ~0.5 g, In good agreement with the
[efs Value. In this case the structure is clearly non-collinear
anymore according to the three components M, > M, > M,.







Top view on AF magnetic chains in
BiCoPO.- each unit is a large spin ~7 ;.

(b)
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More than 8 exchange parameters

T I A B B

Table 5. Geometrical parameters of the magnetic exchange interactions in BIMPO5 (M = Ni, Co) ordered by analogy to figure 5.

n. paths Mult. M-O 00 O-M M-0-0 0-0-M M-O-M Torsion(deg) M-M

Ji (2x)M-04)-M 1 Ni 2064 2678 2.089 99.71 3.174
Co 2089 2713 2144 100.4 3.256

5, (IX)M=O(1-0(5)-M 2 Ni 2100 2551 2005 1494 99.8 84.9 5.174
Co 2.156 2542 2009 1484 99.9 87.3 5.226

Ji  2x)M-O(1)-0(3-M 1 Ni 2101 2514 2094 1442 110.0 66.39 5.273
Co 2156 2504 2173 1434 109.7 69.3 3.353

J  (2x)M=0(3)-0(5)-M 1 Ni 2004 2521 2005 1425 1255 5.56 5363
Co 2173 2512 2009 1430 126.8 5.51 5462

Ji  (Ix)M-0(3)-0(2-M 2 Ni 2094 2544 2085 1532 120.4 73.6 3.751
Co 2173 2552 2086 1523 119.6 70.6 5.794

J; (1x)M=0Q2)-0(1)-M 2 Ni 2085 2528 2101 1525 1113 434 5.336
Co 2086 2524 2156 152.1 108.6 45.6 5.285

Js  (Ix)M-0(5)-0(2-M 2 Ni 2005 2453 2085 1542 145.0 144.7 6.284
Co 2009 2456 2086 153.2 145.3 143.5 6.287

M1 is magnetically interacting with 11 M2 neighbours via 14
paths. It highlights the complexity of the magnetic interplay.



Table 5. Geometrical parameters

More than 8 exchange parameters

T I A B B

J. Phys.: Condens. Matter 20 (2008) 415211

n. paths

M

Ji

)

(2x) M-O(4)-M
(1x) M=O(1)-0(5)-M
(2x) M-0(1)-0(3)-M
(2x) M-0(3)-0(5)-M
(1x) M-0(3)-0(2)-M
(1x) M=0(2)-0(1)-M

(1x) M=0(5)-0(2)-M

Figure 5. Representation of the exchange paths between the Ni**

cations. (a) Jy, J, intra double chains (d.c.) and J4, Js inter A-B d.c.
exchange interactions. (b) J3, J7, Jg inter A—C d.c. exchange
interactions. A, B and C entities are defined in figure 2(a).



More than 8 exchange parameters
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Figure 6. Scheme of the magnetic orderings between double chains
A. B and C associated with the structures S1—-S4. In this hgure, A, B
and C., are arranged by analogy to igures 5(a) and (b).
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Figure 7. (a)—(f) Maps of the magnetic phase diagram for BIMPOs (M = Ni, Co). The exchange constant J; has been taken as unity (J;
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BiCoPO.-structure

BiCoPOs BiNiPOs



General BiCoPO¢. like-structures

o Yo T

BiMnVOs BiMnAsOs BiNiAsOs
NaBi3V20;o BiPbVOs

T T

BiCoPOs BiNiPOs BiMnPOs




Specific Heat of BiCoP O.
Il Order Phase Transition

E. Mathews et al. / Solid State Communications 154 (2013) 56-59
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Succeptibility of BiCoP O«
Curie-Weiss like AF state
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The resulting eftective

moment g was calculated to be 3.1 yug and 5.2 ug for BiNiPOs
and BiCoPOs, respectively. For BiNiPOs, the calculated g 1s In close
agreement with the spin-only value of 2.83 up expected for Ni?+
(§=1) while for BiCoPOs, it is much higher than the expected spin
only value 3.9 pj for Co?* (S=3/2). Such an enhanced value of i



Comparison with traditional AF

The antiferromagnetic axis along which the sublattice magnetizations lie is determined by

magnetocrystalline anisotropy

Response below T, depends on the direction of H relative to this axis.

No shape anisotropy (no demagnetizing field)

s MA

MB

Calculation of the susceptibility of antiferromagnet below Ty. In a) the
nes show the configuration after a spin flop. The phase diagram shows the bel

lose to Tw.

i Nm=B,(xg)/ kT

g IS ;’.'“n'l.'»u'.'.[ kpl

‘.\_l_ l .o'.“.
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Parallel and perpendicular susceptibility of an antiferromagnet



Phase Diagram of BiCoPO.

12

BICoPO,

10 P

From Cp(T) data

0 > H1((')I') 15 20 Mathews et al
SSC, (2013)

Fig. 5. H—T phase diagram of BiCoPOs5 obtained from specific heat measurement:
Solid line is the fit using the formula H=H/ (1 —T/Ty)? with Ty~ 9.8 K, H.~ 15.3 1
and f=1/3.

NO features other than AF-PM transition!!!!



The thermodynamics of
complex magnetic such as BiCoPO.

e Strong and Long-Range Interaction between spins
and orbital moments

* Existing model has >8 exchange parameters

 The magnitude of the moments changes, e. g. Low vs
High Spin states in Co’* with T

* Due to frustration->The glassy characters and the
number states increases exponentially

 =>May have fractal energy spectra and the set of
orbital magnetic moments

To solve 1t 1s a hopeless task
We were looking for the help from???? In BLACK HOLE



Model for BICoPO. and SrCo,V,0Oq

The low-energy dynamics of the large-spin one-dimensional Heisenberg Antiferromagnet is
found to be the O(3) nonlinear sigma model. (Haldane, 1983)

2 2
L; = 1 G (v;ﬁﬂi)

Provided that the vector field n(x) satisfy

(n;)? = 1



Single Haldane Chain as Landau-
Ginzburg-Wilson model

2 J

L; hs(vﬁﬂlj + 8((111) )7,

When J S >>1 it is sigma model

How can we describe interaction between
the Haldane chains?!

Ly=—2 3 Jumomy),

‘-‘:i"-,j:?" y LY



Model for BICoPO. and SrCo,V,0q

A B

C e System consisting of 1 D AF
chains with large S

 The low-energy dynamics of
the large-spin model

* one-dimensional Heisenberg
Antiferromagnet as the O(3)
nonlinear sigma model.
(Haldane , 1983)

H=g), (Vn)*+) nn




General relativity “=“ quantum field
theory

Quantum fields

Gravity

Maldacena 1997

imaginary time
|€— i‘ =—>|
o




General relativity “=" quantum field
theory

Gravity Quantum fields

In Anti-de-Sitter space AdS/CFT When they are conformal =
correspondence  quantum critical

43



Gravity helps for quantum world by
holography

Einstein Universe “AdS” Quantum field world “CFT”

lives on boundary

/

‘t Hooft Susskind
holographic principle

Classical world,
weakly

Interacting \Very quantized,

strongly
interacting




AdS/CFT correspondence: String theory Magic!

d-dim. gauge theory (d+1)-dim string theory
/ conformal field theory G / gravity theory

One extra dimension,
hence the name
“Holography”

boundary:
d-dim space

gluons -time

: guarks
Witten, Gubser,Klebanov,Polyakov

Hawking radiation



The bulk: Anti-de Sitter space

Extra radial dimension
of the bulk <=> scaling
“dimension’ 1n the field

theory

Bulk AdS geometry = scale
Invariance of the field
theory=scaling in phase
transition=critical indices

dr?

+ r%(df? + sin® Od¢?)

F(r)
F(r) = —Ar*+1, A<O



The black hole is the heater
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Model for BICoPO. and SrCo,V,0q

A s ¢ We start with Haldane O(3)

| | nonlinear sigma chains(n?=1):

: ' ' H :%SZ (Vni)2+k%:ninj

| | * Then we would like to
| ! introduce quantum fields

| | * Like Landau-Ginzburg-Wilson

|IIL2
B =

(V,mi)? + guni)ﬁ —1)2,




The thermodynamics of BiCoPO:. is encoded
into the Anti de Sitter (AdS) space
with the black hole in the centre

1
§=75- P V—g[R+6/L* — F* Fy, + XN*(L1 + Lo + L12)],

1 , , 1 1 1
L (a) — __'l.,;.-'ﬁi "LI"“I'”T‘F ”-"E:I ]‘H ”rlauw ”Iﬂ] Y 1” ﬂ”wﬁw — =JV [ 1Igr§]]

4 4 sy} 8
V(M) = M@, M per M@, a=1,2
Lis = k MO prE)
2 d y ,. ) 5 : dr*
ds? = (= f(r)dt® + dz® + dy?) + T
% 1+p>+ B> p?+ B2
Black Hole fr)=1— j : LK i

™ ™

1 )
Temperature of black hole:  T=-B-¢" -5



The triumph: gravitational encoding
of all thermal physics!

Schwarzschild black hole Boundary: the emergence theories
In the bulk of finite temperature matter.

- All of thermodynamics! caveat:
phase transitions are mean field (large N limit).

- Precise encoding of Navier-

Stokes hydrodynamics! Right now

used to debug complicated hydrodynamics (e.g.
superfluids).

- For special “Planckian
dissipation” values of parameters

h (quantum criticality in HTSC).
Ty, =const. 7’ const.= O(1) J. Zaanen et al, Nature, Science 2010,...
5 FVK, M. Saarela (2015)




Equation of Motion in AdS space

o a)T
VMY —m2 M@ kM) —TM @ MY M@ —F,, =0

L

e Separate into two polarisation fields: Mlu
* Each is similar to the tensor F,

and M?

v

. le is the polarisation quantum field associated with magnetisation of first sub-lattice;

* M?, --is for the second one

 Tensor field is needed to take all multi-pole type of interaction: dipole, quadrupole and
guantum dynamics of the spins system ...

* m?-isthe charge(mass) of the tensor fields particles (like Higgs bosons);
k -isthe interaction between fields;
J -is the self interaction as in sigma or LGW models



1 1
o — LMY+ MD), B— (MY —MD). (7)

Then different values of & and 8 correspond to different
magnetic phases. The staggered magnetization can be

defined as,

NT/A2 = — /m %dr. (8)
1 '

The antiferromagnetic phase corresponds to the phase
with nonzero staggered magnetization.
Put the expressions (7) into equations (4), we have the

equations for &« and 5 as

f’ﬂ:" N [J[:S,SE —I—CE2} Qf.r

rr
o 1

(9)




The charged back hole encoding
for finite density (2008 - ???7?)

Anti de Sitter Finite density quantum matter:
universe.
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Quantum Critical Point in Magnetic Field
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Figure 2: The relationship between antiferromagnetic critical temperature T and mag-
netic field B. (a) In the whole region of 0 < B < Be. (b) In the region of B <« B,.. (¢) In
the region of 1 — B/B, — 07,



Quantum Critical Point at B=B_

Twn/InTy ~ —0.7393(1 — B/B.).

Where 7, =T\(B)/ T(0)

One may understand
It as rosy spin

In a mean field B,
of all other spins

External field B,,
compensates
the applied one, B

When B,, =B =B,
=>QCP



First Fit to Phase Diagram of BiCoPO.
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Phase Diagram of BiCoPO.

J=-6
m?2=-3/2
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Comparison of Phase Diagram of
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Quantum Critical Point for BiCoPO.
and other compounds
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Spectral Function, when B>B_
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we find the energy gap is fitted well by following
A ~ 1.4803(B/B. — 1), with A = A/Tno.



Summary, Part |

Holographic duality AdS/CFT used to solve the quantum
behavior of BiCoPO. at very low temperatures

Finding of QPT from antiferromagnetic phase(AF) to quantum
disordered or ferromagnetically order phase(QD)

the Neel temperature, Ty of AF order is suppressed by
magnetic field B at the critical magnetic field B, T, =0 there
Quantum Phase Transition and QCP occur.

At QCP, the dynamic exponent z = 2, which means that the
boundary critical theory is indeed a strong coupling theory with
effective dimensiond,=d +z = 4.

The hyperscaling law is violated, logarithmic corrections and
energy gap or ESR resonance excitation appear near the QCP,

Correlation length describes by power law with exponents v=
1/2 and z = 2.



BiCoPO. in Magnetic Field

Reduced Temperature: ¢ = (1-T/T,)

& _ " B _
Critical Exponents: . .. T < Te 3 S =
-~ — — — -
\ =~ | ' l [;* i 2 1/8 i /4 15 i
M HYY T=7T, d=23 10324 | 1.241 | 4.82 | 0.63
Cle|™ Ta2T, d=4]1172 |1 5
€ A = I =1
.S =k Ising
" (D) =24 e
G{r) == |r] (4 Y T=Te
Relations: a+ 20 4~ , :
meaning fl 3 x A
3o — 1) n— 0 polvmer 0236 0302 1.16  4.85  (.588
1" 1 Ising 0.110 03824 1.24 482 0.630
il 2 F"l) 5 : = : - )
n==2 XY 0.007 0346 1.32 481 0.669
=3  Heisenberg -0.115 0362 139 482  0.705
n=o0 spherieal 1 1/2 2 5

3D n-vector model

Holographic AF state TN ~ (_b)ﬂf} A~DBZ, I~bY. v=1/2

Y =z/(d+ 2z —2) z=d=2



Summary, Part Il

* Holographic duality AdS/CFT provides the complete characterisation
of the AF state and QCP

 =>other quasi one dimensional materials, no AF order

* HereBc=0, T, =0, and the QCP occur.

« At QCP, the dynamic exponentz = 2,

e The ESR resonance line (“energy gap”) appear near the QCP,

we find the energy gap is fitted well by following
A ~ 1.4803(B/B, — 1), with A = A/Tno.

correlation length described by power law T Elbbelie =
. _ _ ! Mo feld
* with exponents v=1/2 andz = 2. Shikys’
e Similar quasi 1D compounds *
Z |
* (Sr,Ba)Co,V,0q =
also Er. Y, Ti, O, ’
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Holographic AF State in BiCoPO.

Thank you for
your attention !



Magnetisation of BiCoPO.
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Weak vs Strong Interaction or
Kramers-Wannier duality

7 Kramers Wannier, 1946
Low temperature — D 55 High temperature

or Weakly coupled H = k,T
= <ij> or strongly coupled

+
+ + + +
+
+

= domain wall condensate =

H_kT SZ
J

<ij>

bAoA A A
S S STR
bAoA Ay

Self-duality special to 2D: e.g. in 3D global Ismg dual to Ismg
gauge theory. 67



Figure 1. The v, ground state spin configuration for the XY antiferromagnet Er; Tiy 07 [2].
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Figure 2. Experimental C, values at zero field for Er,Ti;0; expressed per mole of Er,Ti; 07, on heating and cooling, showing that
the transition is second order. (Online version in colour.)
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Magnetisation of Er,Ti,O,
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Magnetic excitations in the XY-pyrochlore antiferromagnet Er,Ti,0-

S. S. Sosin and L. A. Prozorova
P. L. Kapitza Institute for Physical Problems, RAS, 119334 Moscow, Russia

M. R. Lees, G. Balakrishnan, and O. A. Petrenko
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FIG. 6. (Color online) Upper panel: the phase diagram of
Er,;Ti,O5 for HII[100] (C1.M) and H|[111] (O. @) obtained from
specific heat and magnetic resonance data respectively. Lower
panel: gap values determined from fitting the CP{TJ curves for
HI|I[100] by Eq. (1); v(H) dependence of ESR branch 3 is shown by
crosses, solid line is a linear extrapolation of this branch to high
fields. The schematic transformation of the excitation spectrum at
high fields (based on experimental data from Ref. 14) is given in the
inset.
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Magnetic excitations in the XY-pyrochlore antiferromagnet Er,Ti,0,

S. S. Sosin and L. A. Prozorova
P. L. Kapitza Institute for Physical Problems, RAS, 119334 Moscow, Russia

M. R. Lees, G. Balakrishnan, and O. A. Petrenko
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

lThe compound displays a magnetic phase transition at

Tn =~ 1.2 K.?’ The large negative value of the Curie-Weiss
temperature Ocw (fcw = —22 K is deduced from susceptibility

According to Hund’s rules, the total angular momentum of
the Er** ion in its ground multiplet is J = 15/2. The 16-

fold degeneracy is lifted into Kramers doublets by the crystal
electric field (CEF).



FIG. 1. (Color online) The network of corner-sharing regular
tetrahedra formed by the rare-earth atoms in the pyrochlore structure
in which Er,Tio O crystallizes. The axis of trigonal symmetry at the
position of a rare earth is one of the cube diagonals. There are two
types of tetrahedra in the network, which differ by their orientation:
Type B is rotated by 90° about the cubic axes with respect to type A.
We distinguish the two sets by two colors in the drawing. Since each
rare earth is at a corner shared by two tetrahedra, one of each kind,
either the set of the four corners of all the A tetrahedra or the set of
the four corners of all the B tetrahedra is sufficient to describe the
Er’" lattice.



the static magnetic susceptibility x 1s expected to follow a
Curie-Weiss law far from the ordering temperature in the
paramagnetic regime. It reads

B C
T —few’

X (4)

where the Curie constant C can be expressed in terms of the
so-called paramagnetic moment m pyey:

| fLom?
¢ = - (5)
v 3k]3

where v = aS/Nceu with N being the number of Er’t ions
in the cubic cell (N = 16). For an isolated Er?t ion, Mpara =
g/ J(J + 1) up =9.58ug.

In Fig. 5 we display our result for the inverse of the
static susceptibility versus temperature in a large temperature
range. The Curie-Weiss law provides a good description of
our data above 30 K. The fit gives for the Curie-Weiss
temperature fcw = —17.5(3) K and C =3.73(4) K. This
means that mges = 9.355 (10)g, In agreement with the result




exchange integrﬂlf (Z = 0),1.e.,

Z Ji - Jj —IZJ Jj, (6)

LJA#] (i.7)
the molecular-field approximation predicts

3knlb
T B|Ocw| ' 7)

ZmJ(J + 1)
We denote as zp, the number of nearest neighbor Er’t ions
to a given Er** ion. In our case zp, = 6. From the measured
Ocw value and taking into account that J/ = 15/2, we compute
L/kg =0.138(2) K.

We have also measured the susceptibility for 2.0 < T <
6.0 K under a field of I mT applied along a [111] axis using
two protocols; see Fig. 6. Contrary to a previous report,’” we
do not observe any history-dependent effect at 7" < 3.2 K.
Hence, there is no spin-glass-like irreversible effect for our
Ery TioO7 crystals.




The other contribution to the low-temperature specific heat
arises from magnons. Low-energy magnons have indeed been
observed in neutron scattering experiments.?’ The dispersion
relation hw(q) for their lowest energy branch is needed to
compute Cgy. An approximate expression valid at small wave
vectors 1s

nw*(q) = i*w*(q) = A%, +h*v2 q°. (10)

Here Ay 1s the gap energy of the magnon spectrum at the
zone center and vgy 1s the magnon velocity. We note that a
dispersion relation has recently been proposed for Ery Tio0O7 in
the framework of linear spin-wave theory.?® The applicability
of this theory in frustrated systems might be questionable as
recently discussed in the case of the triangular lattice.** Still,
the model of Ref. 26 leads to an anisotropic dispersion relation.
The resulting specific heat depends on a single magnon
velocity which is the geometrical mean of the three magnon
velocities along orthogonal axes. In our model it corresponds
(0 Vgy.



quadrupole interaction i1s not negligible compared to the
Zeeman interaction. This 1s due to the fact that the quadrupole
moment (Jg7 of 67Er is larger than that of 9Th (3.565 vs
1.432 barns) and the gyromagnetic ratio y67 of 17Er is much
smaller, in absolute value, than that of °Tb (=7.7157 vs
64.31 Mrad s~! T~!); see Ref. 41. The Zeeman and quadrupo-

lar Hamiltonians are written
Hzee = —hy1671 - Bhyp (8)
and
Hq = hag[317 — I(I + 1)], 9)

respectively. In these equations, I is the '®’Er spin operator

(I =7/2) and hwg = j‘%ﬁf_v’:f}, where V., is the principal
component of the electric field gradient tensor acting on the
rare-earth nucleus with z being as before the local threefold
axis. The symmetry at the rare-earth site imposes the electric-
field gradient to be axial. Because the Er’* ordered magnetic

moments are (nearlv) perpendicular to z we shall also take
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FIG. 11. (Color online) Temperature dependence of the specific
heat of a Er, Ti,O5 single crystal for different magnetic field intensities
applied along [110]. The maximum of the specific-heat peak moves
to lower temperatures as the field increases up to 1.7 T. No peak is
observed when the field strength is above 1.7 T.
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FIG. 12. (Color online) The phase diagram derived from specific-
heat measurements for the three main crystal directions of cubic
Er, Ti,O4. The dashed-dotted lines are guides to the eye.



1. Magnetic correlation length

Here we determine the correlation length of the critical
magnetic correlations. For this purpose we consider the
scattered intensity measured in the vicinity of the reciprocal
positions qh.k.) = 92.2.0) and q1,1,1) at ' =2.00and 1.47 K,
respectively; see Fig. 15. This critical scattering intensity 1s
described by the sum of a Lorentzian function and a constant:

I
| + |9 — Qi) /x3

+ 1y, (15)

L>g — qeux,nl) =

(Color online) Top two panels: Magnetic diffuse neutron scattering intensity recorded for a crystal of Er,Ti;O;



FIG. 14. (Color online) Top two panels: Magnetic diffuse neutron scattering intensity recorded for a crystal of Er,TiyO; in the reciprocal
(h,k,0) and (h,k,k) planes at 2.00 (3) and 1.47 (3) K, respectively. The positions in the reciprocal lattice are in 27 /a units, where a is the latice
parameter of the cubic unit cell. These maps are obtained as explained in the main text. To preserve the maps appearance, pixels with off-scale
intensities, e.g., pixels influenced by Bragg reflections and critical scattering, as well as pixels located near the origin of the reciprocal lattice
have been graphically eliminated: They are represented in white color. Bottom two panels: (h,k,0) and (h,k,k) magnetic correlation maps
computed with the tetrahedron model explained in the main text. The comparison between the theoretical and experimental maps displayed
above enables us to derive information on the Er, Ti)0; interaction constants. The lines drawn in the (h,k,0) maps indicate the position of the

cuts shown in Fig. 16.
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Fig. 15 yield the magnetic correlation lengths &, = k! =
3.6(2) and 6.6 (5) A for the (2.2.0) and (1.1.1) reflections
measured at 2.00 and 1.47 K, respectively. As expected, &
shoots up as the sample 1s cooled toward the transition. These
two values are comparable with the Er’*-Er’* ion distance d =

3.56 A. Hence the analysis of the experimental maps shown
from nts ot Eq. (15) to the data.



Magnetisation of SrCo,V,0q

SrCo,V,0g has the tetragonal crystal structure of space
group I4lcd with lattice constants a=12.267(1) A, ¢
=8.424(1) A, and Z=8.! As shown in Fig. 1, similar to
BaCo;V;0g, the most prominent structural feature is that all
magnetic Co’* ions are equivalent in the arrays of edge-
shared CoOg octahedra forming a screw-chain along the
c-axis and the screw chains are separated by non-magnetic
VO, (V") tetrahedra and Sr** ions, resulting in quasi-one-
dimensional arrangement.

b

hs

FIG. 1. (Color online) Crystal structure of SrCo,V,0q. Octa-
headra, tetraheadra, large ball and small ball represent CoOg, VO,
Sr, and O, respectively.



Magnetisation of Sr
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Magnetisation of SrCo,V,0Oq
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Summary for SrCo,V,0q

There is the field-induced magnetic transitions in the quasi-1D spin chain system
SrCo, V, Og under longitudinal and transverse fields

by means of magnetic susceptibility and heat capacity measurements.

antiferromagnetic-paramagnetic transition is observed instead of spin-flop
transition in the longitudinal field to magnetic easy ¢ -axis, which is similar to that
in the transverse field.

The antiferromagnetic-paramagnetic ( AF-PM) transitions occur

in the same framework for both longitudinal and transverse fields.

These interesting magnetic transitions in SrCo, V, Og, irrespective of the applied
field direction, are likely due to its large anisotropy

The observation of field-induced magnetic transition in SrCo, V, Og will stimulate
further theoretical and experimental studies of quasi-1D anisotropic spin chain
systems
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Magnetisation of SrCo,V,0Oq

The low-energy dynamics of the large-spin one-dimensional Heisenberg Antiferromagnet is
found to be the O(3) nonlinear sigma model. (Haldane, 1983)



Basics of holographic description

Boundary values of bulk fields act as sources, deforming the action of

boundary theory
< Gf JO >—= im esgrav[ﬁbazze]‘l'sc.t.[qb,z:e]
e—0
* ¢(z — 0) ~ J Boundary values of are (burces for ©

e Extra “holographic” dimension z corresponds to scaling, so
scaling dimensions of boundary operators < bulk energies.
e Global charges in the boundary theory <~ Gauge fields in the bulk

* Finite electron density is implemented with electric field in the bulk =>
consider charged Reissner-Nordstrom Black Hole background

: 1 d2?
— —f(2)dt* + dz® + d
5 (—f(2)c +dy*) + 270
9 9 3"1 . - 0 3'3
flz)=1+(h"+¢q ]r&-ﬁ — (1 4+ (A= + Ifjf"]-l'."t'}?ﬁ
K223

Electrical charge ¥

~ 94212



The AdS/CFT dictionary

SUSY Einstein-Maxwell in AdS, <> SUSY 3D Yang-Mills CFT Analytic
E-field computation of
transverse E-field < 3d electric field real-time transport

radial E-field <> 3d charge density properties:
Resistivity,
B-field Heat conductivity
radial B-field < 3d magnetic field Nernst éffect,
transverse B-field < 3d current density Magnetic

susceptibility...
spatial metric perturbations

transverse gradient < 3d distortion Entanglement
radial gradient < 3d stress tensor entropy Is

proportional to
temporal metric perturbations Black hole horizon
transverse gradient <&  temperature gradient area.

radial gradient <  heat flow



to it and solve equations of motion.

General scheme of holographic computations

Take some Gravity+Maxwell+.... background i W= : .
Couple some scalar/fermion/vector/spin-2 field

Az,z)=a,(z)+b,(x)z+ ...

- 1 L 1 . .

0SEM = — / > 0A, 0, A, = — A3z oa, b,
g__ . z=() g

(JH) = _OL’ — ibﬂ-

a and b are source and expectation value. If there is a solution with a=0
and b#0 we get condensate (Black Hole with “hair”)

AdS-to-ARPES program: Coupling fermions to various scalar, vector and
tensor fields in the bulk, all types of behaviour can be generated:
pseudogap, Fermi arcs, Fermi pockets



Examples of AdS-to-ARPES

* Fermi-liquid from charged black hole background (J.zaanen et al, Science 325
(2009) 439)

* Marginal Fermi-liquid (C.M.vVarma, P.B.Littlewood,S.Schmitt-Rink, E.Abrahams,
A.E.Ruckenstein PRL 63, 18 (1989)) is constructed holographically from the same
background. T-linear resistance is obtained for some values of
parameters.(J.Zaanen et al, Science 325 (2009) 439,

S.S.Lee; Faulkner, Polchinki, Liu, Vegh, McGreevy, Igbal, Sachdev....2009 -2010)

Low-energy theory can also be derived by conventional large-N
approximation (from, e.g. Sachdev-Ye model). (Sachdev 2010)

Relativistic CFT Lattice Anderson Cuprate
with gravity (AdS) dual model

Nt A

(Credit: Alan Stonebraker!

IR CFT with

Z=®




Examples of AdS-to-ARPES

Fermi pocket and Fermi arc from coupling of fermions to p-

wave order parameter and to spin-density wave order. (D.vegh,
1007.0246)
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Holography as a tool to explore
microscopic models

How to connect to microscopic models?

Semi-holographic models: Goldstone modes are extracted from low-
energy dynamics. Obtained by holographic Wilsonian RG flow. New

“Fractionalization”, Spin-model <> Lattice Gauge theory duality

Microscopic theory

-

[ Matching IR theories J

A

Faulkner,Liu,Rangamani 2010



Real Imaglnary

time time \
Holographic
models Lattice
\ simulations

Microscopic

Experiment

models

Holographic models are good for:

Analytic computation of real-time transport properties:
Resistivity,

Heat conductivity

Nernst effect,

Magnetic susceptibility...

Entanglement entropy is proportional to the Black hole horizon
area.

BUT: Underlying field content of holographic model is usually not
clear.



Sachdev’s work as a prototype s.sachdey, prL 105, 151602 (2010)

* Mean-field solution of Hubbard model <~ Holographic model

* Detailed correspondence between low energy Fractionalized FL and
holography in which low-energy limit is factorized to AdS, x R?

H = Hy+ H{[d.c]+ Hags Conduction electrons

Zf d? alL i — 1) t / with small Fermi-surface

Hy

Hybridization with
dzﬁ ——1 strongly- led
| gly-couple
10, ¢] Z/ 12 IkLkanﬂ’—i_Ika ﬁ’kn} IR CFT

T T 2A L IR CFT
Ok (T)D 0 > ~
<:.1< (7)0y(0) Haae [5111(?TTTJ]

Marginal Fermi-Liquid for A;; — 1
Connected with Anderson model: Spins form gapless spin liquid

0 ~c¢cS In large-spin limit Sachdev gets the same IR CFT



Research plan

» Goal: develop QFTs near observed Quantum Critical points and connect
them with AdS-CFT phenomenology at low energies.

* Match fractionalized (with slave-boson technique) microscopic models to
semi-holographic models (with separation of Goldstone and Strongly-
coupled modes) :

- multiband Hubbard models;
- include long-range Coulomb interaction

 Compare with conventional techniques for finding corrections to Fermi-
liquid behaviour.

* Calculate physical properties and understand experimental data.

* Tune the holographic model by matching to lattice simulations and
experiments

* Study the effects of impurity scattering in the models.
* Compare Holographic RG with Functional RG calculations



Semi-Holographic models

Non-trivial QFT on the boundary
/ that is
cting with bulk modes

inter

Shrinking the boundary generates the RG flow
Goldstone modes on the boundary are coupled to
IR modes in the bulk

Nickel, Son 2010 “Deconstructing holographic liquids”;

Faulkner, Liu, Rangamani 2010 “Integrating out geometry:
Holographic Wilsonian RG and the membrane paradigm”

Heemskerk, Polchinski 2010 “Holographic and Wilsonian RG”



List of influential papers

Lee, Nagaosa,Wen 2006: Doping a Mott insulator: Physics of high-temperature
superconductivity

Sachdev 2010: The Landscape of the Hubbard model; Strange metals and AdS/CFT
correspondence

Faulkner, Polchinski 2010: Semi-Holographic Fermi Liquids
Nickel, Son: Deconstructing holographic liquids
Herzog 2009: Lectures on Holographic Superfluidity and Superconductivity

Kusmartsev, Saarela 2008: Nanoscale structures and pseudogap in Under-doped High-Tc
Superconductors



Bi forms Infinite (BiO2) chains

* Short bonds to 4 oxygen atoms in the plane
* Forming a distorted square pyramid

* Which share edges with two Bi atoms
 Above and below the BiO2 plane
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Bi forms Infinite (BiO2) chains

short bonds to four oxygen atoms forming
toms forming a distorted square pyramid:

Bi(IIT) has electronic configuration [Xe]4f *5d'°6s*

nonbonding electronic 6s pair, Bi’”

distorted square pyramids share edges, with bismuth atoms
above and below the mid-plane of oxygen atoms

The compounds BIMNOs; (M = Ni, Co, Ca, Cd, Pb, N=P, V, As)



