Role of defects in the
scintillation process

Federico Moretti
Dipartimento di Scienza dei Materiali
Universita di Milano Bicocca

ASCIMAT School on Advanced Scintillator Materials
Milan, 12-13 September 2016




.
scinullator

| photon n photons
(keV - GeV) (2-4¢V)




Scintillator requirements

TABLE 1.4

Scintillator Requirements in Various Application

Application

HEP

IEP

Nuclear physics
Astrophysics
FET

Gamma cameras
Positron lifetime
Synch. rad. det.
Industrial appl.
Neutrons

X-ray CT

X-ray imaging

Lr
(ph/MeV)

>200

Tq
(ns)

<20
Varies
Varies
Less imp.
<1

Less imp.
<l
10-100
Varies
10-100
No afterglow
Less imp.

Density
(g/cm?)

High
High
High
High
High
High
High
High
High
Low
b7

High

543

4

High
High
High
High/low
High
High
High
High
High
L1,B,Gd
>50
High

Rodnyi



Defects in crystalline materials

Any deviation from the perfect crystal structure can be considered a defect
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Point defects: (vacancies,
interstitials, antisites, colour
centres, polarons ...), both intrinsic
and extrinsic

® Ga
O As
* B
o @ ®n
Line defects: dislocations ...
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Two dimensional defects:
interfaces, grain boundaries, twins,
stacking faults ...

Three dimensional defects:
precipitates, voids ...

The next slides will be focused exclusively on point defects



Scintillation process

The luminescence is only the last of
a complex series of events
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Transport stage is the least
predictable process, depending on
material quality, lattice
imperfections, manufacturing
technology.
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Core band
Also the luminescence stage can be
affected by parasitic phenomena




Factors contributing to defect
formation/inclusion in crystals

Raw material purity
Synthesis technology
Ionizing radiation

Thermodynamics



Defect characterization: TSL

Glow curves with PMT

irradiation heating
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Traps can be studied by heating at a constant rate the sample after
irradiation. Probability of escape from the trap:

P = C exp(-E/kT)
Strongly dependent on T, appearance of peaks.

Obtained info: Ey, T, species of trap (in wavelength resolved mode)

Moretti PCCP 2016,
JPhysChemC 2014
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Point defect role on scintillation

Point defects perturb the band structure of the materials resulting in the
formation of localized levels inside the band gap

YES
T

Perturb the charge carrier Give rise to luminescence
recombination process on quenching phenomena or to
luminescence centres scintillation light re-absorption

The two effects are not always well distinguishable!



Point defect role on Q - reabsorption

- Usually not a big deal for good quality raw materials and optimized growth condition

- However, formation of new, or modification of already existing, defects can be induced
by ionizing radiation in high doses.

CsI:Tl relative light yield CslI:T1 optical absoption for different %°Co y-doses
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Absorptions related to Fy
centres, induced by irradiation
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Point defect role on Q - quenching

Usually not a big deal for good quality raw materials

Require close spatial correlation between emitting and quenching centres = high concentration

Ce3+>(- i Yb3+ 9C€4+ + Yb2+ > Ce3+ + Yb3+(>e)

GGAG:Ce, x Yb photoluminescence upon Yb content
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Luo, Inorg Chem 2016
Barandiaran, PCCP 2015



Point defect role on S

Competition between charge carrier trapping on defect
sites and recombination on luminescent centres

Time spent by the charges on the
defects strongly depends on trap
thermal depth (Eq)

T =C'exp (ET/kT)

According to E; value (from 102 to 10°
eV), huge range of T can be measured
(<us, > kyear).

Valid also for hole trapping states

c.b

irradiation




Point defect role on S

Competition between charge carrier trapping on defect
sites and recombination on luminescent centres

Due to charge carrier trapping by
defect the scintillation decay cannot be ¢ '

a single exponential c.b

L
If at room temperature 7 is of the
order of:

- us-—ms: slow scintillation decay
tails

irradiation

- min., hours: afterglow

- even longer: permanent trapping

Charge carrier slow migration toward ‘
recombination centres is also the cause h* O ‘
of rise time in scintillation time profile




(selt-)trapping and rise time: CsI:Tl

Rise time due to self trapped hole (STH , V,) migration/thermal decomposition

dependent on:

- temperature
- T1 content

CsI:T1 scintillation decay curve

Ultra-fast Component
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Scintillation slow decays

Scintillation decay profile is not single exponential, the scintillation tails
often represent a relevant fraction of the total amount of emitted light.

Measurement window
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On a longer timescale

End+of X-ray irradiation - -

Csl:Tl, Bi
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Persistent luminescence

LSO:Ce
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Fig. 2. Phosphorescence characteristics measured at 22°C after
10 min exposure to 200 Ix of D,, light ( the standard light with the
color temperature of 6504 K]. A: SrALO:Eu?', B: SrAlO,:Eu?*,
Dy**; C: SrALO :Eu™* Nd**; D: commercially used Zn$:Cu,Co.
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Luminescence sensitization
(aka bright burn, hysteresis)

Aleng
.. and various other

Radio-luminescence (RL) o
intensity increase with the N ,..V"'" R R N

accumulated dose. !
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Phenomenon interpretation
@ c.b

Progressive filling of traps present in the
scintillator during irradiation

Increase of the radiative recombination
probability of free carriers due to reduced
competition between emission centres (1) and
traps in carrier capture (2)

Memory effect may represent a problem in
those applications which rely on consistent RL
intensity as a function of the dose rate (e.g. CT,
digital radiography, real time RL dosimetry ...).
It can also affect LY

Patton PCCP 2016
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A model material: YPO,:Ce,Nd

Many traps whose concentration is
substantially unknown.

RL sensitization VS Nd content at 290 K

Ce3* emission (310-370nm) Radioluminescence (RL) as a RL sensi‘tiz‘ation VST, Nd 0.5 mol%
Ce® emission (310-370nm)

function of irradiation time is
characterized by an evident
sensitization which strongly
depends on the Nd content.

thus by the Nd related trap
stability.
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Mathematical modelling

n E
dtc =f(l—a) —n.(N—n)A, + nsexp (— ﬁ) — n.A,m
conduction band an By y ( E )
7r = e n)Ae — nsexp| — i
dm,
dt : f P mU(M — m)Ah
dm
—=m,(M —m)A, —n.A.m
dt
n.+n=m,+m
valence band
I, X nAm+ af
Where:
n, n.: electron concentration (cm=3) on traps and in the conduction band,
respectively

m, m,, : hole concentration (cm) on traps and in the valence band
M, N : hole and electron traps concentration (cm)

f: electron/hole pair creation rate (cm>s?)

A,, A, and A, : transition coefficients (cm3s1)

o : direct recombination coefficient Seereigily Enys Chem CTT15 (2014)

9670



Testing the model

LSO:Ce
Experimental Simulations

— M1

—— M2 after phosphor.

—— M3 after heat 370 K

—— M4 after heat 458 K
M5 after heat 630 K
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Measurement scheme:
Tirrad =290 K/ tirradz 300 s

TpC =370, 458, 630 K
Moretti PCCP 2016,

Clear during all
irradiations
dependence upon

different
Higher T traps?
Rather general

with at least 3 stable
traps

RL intensity upon T, not always in
good agreement with experimental
results

No improvements by considering
unstable traps

corrected for Ce**
RL T dependence
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Luminescence sensitization

Complex phenomenon dependent on:
Irradiation dose and dose rate
Measurement and storage temperature
Trap concentrations and energies

Irradiation history



Dealing with defects

Several strategies are currently used in reducing the role of traps:
Post-growth annealing in suitable atmospheres

Trap compensation/inactivation with alio-valent ions

Band gap engineering

Recombination process tailoring

Defect engineering
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(Co-)doping: PoWO,:La

La3* doping in PbWO, compensate
a- [La]= 460 ppm for Pb vacancies and related defects.
b- [La]=260ppm However, La%* also is the cause of

c- undoped non-radiative recombination centres
resulting in lower LY

The same strategy works also for

: CsL:T1 (Sm, Eu, or Bi) with a really
200 300 400 evident reduction in the afterglow.
time [ns] The mechanism is however not really
clear

Nikl APL 1997



Annealing in suitable atmosphere: LSO:Ce

CN. ER

Before annealing 681 8.4%
After annealing 876 10.8%

Annealing in air at 1400°C, reduces

the importance of TSL, increases light
yield.
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Band gap/composition engineering

LUGAG:Ce
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Reduction of band gap by alloying
LuAG:Ce + LuGaG:Ce

Traps tend to be less stable at room
temperature, higher probability of
thermal ionization of Ce3*.

Subject of vast research activity in
the last few years

Fasoli PRB 2011



Recombination process engineering
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electron
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Mg or Ca codoping in Ce doped LSO and garnets favours the formation of
Cet*

Ce** can promptly capture an electron in the conduction band disfavouring
the electron trapping at defect sites

Blahuta IEEETNS 2013
Nikl CrystGrowthDes 2014
Moretti Jlumin 2012
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Defect engineering

w/ high T trap
w/o high T trap
Temperature
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Moretti PCCP 2016,

- More evident sensitization during the
first irradiation, but

x-ray  induced
during the second
irradiation
contribution of the

- But lower RL intensity

Simulation results suggest a positive
effect of high stability and concentration
trap in the reduction of memory effects

New approach: make the sample
selectively worse from a defect point
of view by co-doping with suitable
ions



Conclusions

The presence of defects in scintillators is the cause of:

Loss of transparency of the material
Luminescence centre quenching

Delayed recombination phenomena
Luminescence hysteresis — memory effects

The defect effect on the scintillation process is very complex and it results
in a non-trivial relation among light output, trap characteristics (energy,
concentration, numerosity), sample irradiation hystory, and measurement
temperature.
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