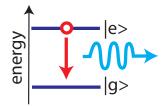
Radioluminescence and scintillation mechanisms

Christophe Dujardin

Institute of Light and Matter University Lyon1 & CNRS 10 rue Ada Byron christophe.dujardin@univ-lyon1.fr In the frame of H2020 EU-program ASCIMAT

A B + A B +

What is luminescence?

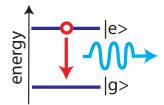

Luminescence is the cold emission of light (\neq black body radiation)

白マ くほう くほう

What is luminescence?

Luminescence is the cold emission of light (\neq black body radiation)

- The "system" for the physicist: \rightarrow quantum states = authorized energy levels
- \rightarrow fundamental and excited states

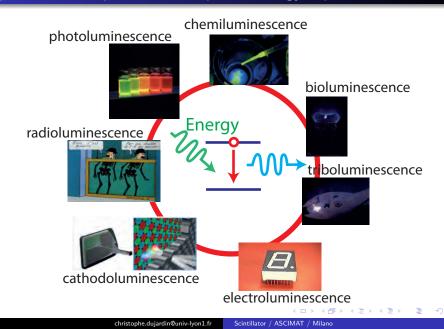

(B)

э

What is luminescence?

Luminescence is the cold emission of light (\neq black body radiation)

- The "system" for the physicist: \rightarrow quantum states = authorized energy levels
- \rightarrow fundamental and excited states


The physics of the energy level might originate from:

- Atoms (quantum numbers)
- Molecules (HOMO-LUMO)
- Nanoparticles (HOMO-LUMO or Energy bands)

()

• Solids (Energy bands)

prior to emit photon, it requires energy input

Scintillator: detecting ionizing radiations

Basics

- Ionizing radiations: x-ray; γ -ray, α , neutrons, ions, electrons...
- Detection requires electric pulse
- \bullet Interaction radiation-matter: ionizing \rightarrow electron extraction

Scintillator: detecting ionizing radiations

Basics

- Ionizing radiations: x-ray; γ -ray, α , neutrons, ions, electrons...
- Detection requires electric pulse
- \bullet Interaction radiation-matter: ionizing \rightarrow electron extraction

Direct charge detection

Geiger systems, semiconductors

Scintillator: detecting ionizing radiations

Basics

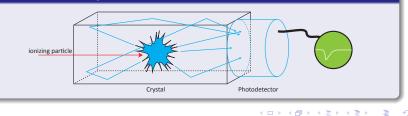
- Ionizing radiations: x-ray; γ -ray, α , neutrons, ions, electrons...
- Detection requires electric pulse
- Interaction radiation-matter: ionizing \rightarrow electron extraction

Direct charge detection

Geiger systems, semiconductors

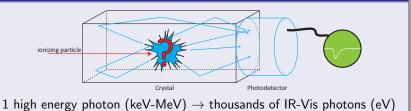
Indirect detection

```
Charges to light conversion
↓
Light detection
(PMT,CCD, SiPM...)
↓
Scintillation
```


回 と く ヨ と く ヨ と …

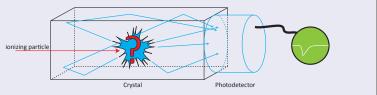
Scintillators in general

Detection of ionizing radiation: Old style



Detection of ionizing radiation: Modern one

About processes

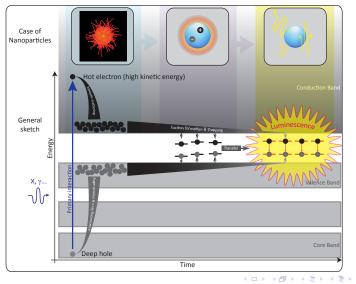

Huge relaxation of Energy

白 と く ヨ と く ヨ と …

About processes

Huge relaxation of Energy

1 high energy photon (keV-MeV) \rightarrow thousands of IR-Vis photons (eV)

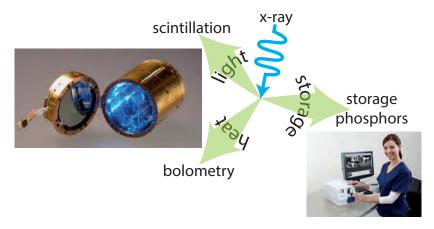

Multiscale Physics

- As cutting a 10km string in pieces of a few cm!
- First steps in the ps range, last ones can be in the s time range
- Energy deposition is structured at the nm and mm scale

向下 イヨト イヨト

Scintillation mechanisms

A brief description


christophe.dujardin@univ-lyon1.fr

æ

Scintillation mechanisms

As a result

Energy sharing during the relaxation process \rightarrow light, heat & storage

< ∃ > < ∃ >

Several scintillator classes

Organic solids

Plastics @ Saint Gobain

Inorganic solids

PbWO₄ @ CERN

Why so many materials and researches?

It does not exist universal scintillators!

• Requirements in terms of performances and shapes depend on the application

() <) <)
 () <)
 () <)
</p>

э

Why so many materials and researches?

It does not exist universal scintillators!

• Requirements in terms of performances and shapes depend on the application

First rank parameters

- Density & Z_{eff} (host selection): Stopping power, photoelectric effect
- Scintillation yield: Easier to detect, energy resolution, timing
- Scintillation decay (luminescent center): Counting rate, coïncidence gate, Time Of Flight...
- $\bullet \rightarrow$ cerium doped Lutetium based compounds were very popular (LSO)

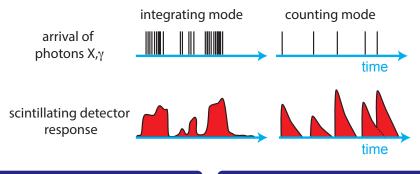
御 と く ヨ と く ヨ と

Why so many materials and researches?

It does not exist universal scintillators!

• Requirements in terms of performances and shapes depend on the application

First rank parameters


- Density & Z_{eff} (host selection): Stopping power, photoelectric effect
- Scintillation yield: Easier to detect, energy resolution, timing
- Scintillation decay (luminescent center): Counting rate, coïncidence gate, Time Of Flight...
- $\bullet \rightarrow$ cerium doped Lutetium based compounds were very popular (LSO)

Second rank parameters

Mechanical and chemical stability, emission wavelength, cost, mass production capability, radio-isotopes purity, thermal stability, shaping possibilities

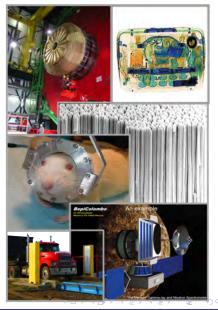
Why so many materials and researches?

2 main uses: counting and integration

Integrating

 $\begin{array}{l} \mbox{Scintillator can be "slow" (ms)} \\ (\mbox{except afterglow}) \\ \rightarrow \mbox{X-ray imaging, Dosimetry} \end{array}$

Counting


Scintillator has to be "fast" (< μs) \rightarrow PET, Homeland security, Calorimetry...

Various applications using scintillators

- High energy calorimetry
- Medical imaging (PET-Dosimetry-X-ray CT...)
- Homeland security
- Oil drilling
- Space exploration
- Dark Matter search
- Industrial control
- Nuclear industry

Ο ...

Nuclear waste survey

Research on new compositions \rightarrow Light production

It doesn't exist universal scintillator and each application has its own requirements

- host
- doping
- codoping
- defects
- synthesis protocols
- in connection with the theory of processes

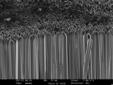
see SCINT conference series http://Scint.univ-lyon1.fr Next one: Chamonix 2017 First announcement: ** International Conference on Scintillating materials and their applications Betweenter (Page 22, 2017 Magnetic, Chamonak, Prance http://webcom.ch

or / and shapes \rightarrow Light collection

Single Crystal

Many applications

Inorganic Fibers


Calorimetry?

ZnS:Mn NP in PMMA

http://chm.tu-dresden.de

Medical x-ray imaging

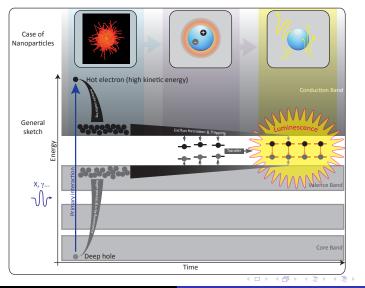
CsI-NaCl eutectic

@Canon, Adv. Mat. 2012

Thin films

High resolution x-ray imaging

Phosphor powder



x-ray imaging

3

通 と く ヨ と く ヨ と

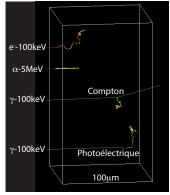
The scintillation mechanisms in mode details: Absorption-relaxtation-tranfer-emission

christophe.dujardin@univ-lyon1.fr

Step one: the primary interaction

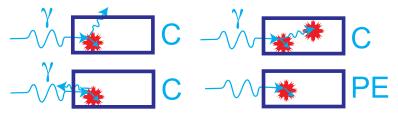
The interaction depends on the particle type and photon \neq massive particles.

- $\bullet~$ If photon \rightarrow absorption or transmission
- If massive particle \rightarrow energy loss $\left(-\frac{dE}{dx}\right)$


A B + A B +

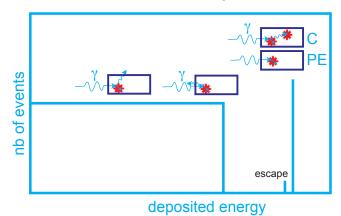
Step one: the primary interaction

The interaction depends on the particle type and photon \neq massive particles.


- $\bullet~$ If photon \rightarrow absorption or transmission
- If massive particle \rightarrow energy loss $\left(-\frac{dE}{dx}\right)$
- Photons (x or γ): Photoelectric-Compton pair creation (if E>2x511keV)
- α : $M_{\alpha} \gg M_{e^-}$, Bethe-Bloch formula
- electrons (β⁻): inelastic scattering or Bremsstrahlung (X-ray emission)
- neutrons: if fast, scattering on nucleus with recoil, if thermal (slow) capture by nucleus having a high neutron capture cross-section (⁶Li, ¹⁰B, ¹⁰⁵Gd, ¹⁰⁷Gd)

Simulation with GEANT4

interaction with photons (E<2x511keV)

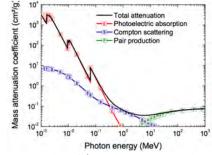

Compton and Photoelectric effects occur

- It generates a fast electron (which will generate the light at the end)
- In the case of Compton scattering, a γ photon generally escapes from the crystal and the full energy of the incoming γ is not deposited in the crystal. The energy deposition depends on the scattering angle.
- In some cases (top right), the secondary γ is absorbed by the crystal, it appears like a photoelectric event from the energy deposition point of view

→ ∃ → → ∃ →

interaction with photons (E<2x511keV)

As a result, the energy deposition following the interaction with a photon leads to this schematic histogram

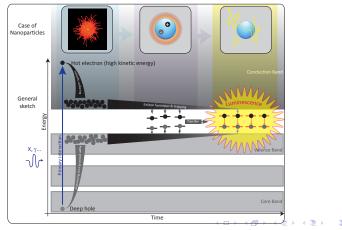

Crucial to understand the spectroscopy, the energy resolution and the light yield measurement

about absorption

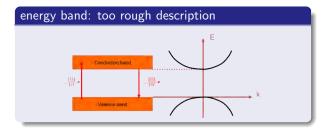
- Linear probability of interaction: $\mu = \frac{n_e \cdot \sigma_e}{Z_{eff}}$
- with n_e the density of electrons
- $Z_{eff} = W_A Z_A + W_B Z_B + W_C Z_C$ the effective atonic number of compound $A_X B_Y C_Z$ and W_i the mass fraction
- $\sigma_e = \sigma_{pe} + \sigma_c + \sigma_{pp}$ (various interaction cross sections)

•
$$\sigma_{pe} \alpha \frac{Z_{eff}^{b}}{E_{\gamma}}$$
 (+ effect of K, L, M...edges)

•
$$\sigma_c \alpha \frac{Z_{eff}}{E_{\gamma}}$$

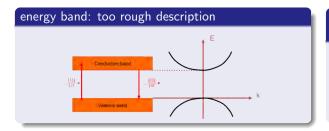


Mass attenuation of LuAG (curve from PhD thesis of K.Pauwels) = ,


step2: from fast electron to light emission

A crude description: $n_{photon} = \beta . E_{\gamma} \times S \times Q$

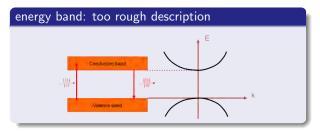
- β : conversion yield into relaxed electron-hole pairs
- S transfer yield from relaxed electron-hole pair to the activator
- Q: luminescence quantum yield

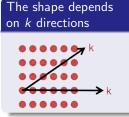


Solid description: energy bands & dispersion curves

A B M A B M

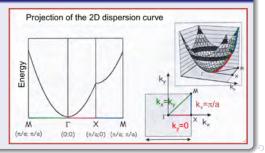
Solid description: energy bands & dispersion curves


The shape depends on k directions


A B + A B +

3

christophe.dujardin@univ-lyon1.fr Scintillator / ASCIMAT / Milano


Solid description: energy bands & dispersion curves

How to plot dispersion curves in 2D & 3D cases

$$\begin{array}{l} 1\mathsf{D} \rightarrow \mathsf{\textit{E}} = \frac{\hbar^2 k^2}{2m} \\ \mathsf{and} \\ 2\mathsf{D} \rightarrow \mathsf{\textit{E}} = \frac{\hbar^2 (k_x^2 + k_y^2)}{2m} \end{array}$$

Solid description: energy bands & dispersion curves

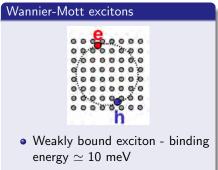
in real life: example with Ge (simple material) Simplified diagramme Dispersion curve 2 0 Energy (eV) -6 Ge -10 -12 X UK Г Specific (k=0) direction

Solid description: discrete states & localized states

We need to complete the Energy diagram: Excitons

- We saw the energy bands: semi-continuum of delocalized states
- An excited state is: electron in the conduction band and hole in the valence/core band
- The electron-hole pair can be correlated or not
- When correlated, it can form excitons

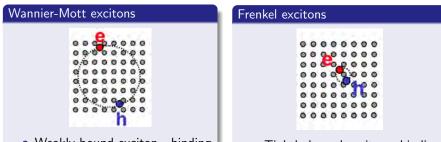
Solid description: discrete states & localized states


We need to complete the Energy diagram: Excitons

- We saw the energy bands: semi-continuum of delocalized states
- An excited state is: electron in the conduction band and hole in the valence/core band
- The electron-hole pair can be correlated or not
- When correlated, it can form excitons

We need to complete the Energy diagram: Defects

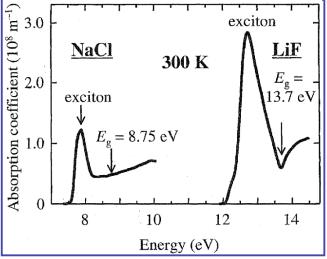
- The crystal can contain defects: unwanted and wanted
- A defect brings its own set of energy level to the schem: spatially localized, but a large number of defects
- $\bullet\,$ unwanted defects \rightarrow traps, parasitic luminescence, quenching centers
- wanted defects \rightarrow desired luminescence, trap engineering (photostimulated x-ray imaging, dosimetry)


Brief description of Excitons: 2 extreme cases

- Hydrogenoïde model: effective mass of e & h; ε_r...
- Common in inorganic semi conductor (AsGa, CdS...)
- Can migrate \rightarrow wavevector \rightarrow dispersion curve

Text book: M.Fox, Optical properties of Solids, Oxford Master Series

Brief description of Excitons: 2 extreme cases


- Weakly bound exciton binding energy $\simeq 10 \text{ meV}$
- Hydrogenoïde model: effective mass of e & h; ε_r...
- Common in inorganic semi conductor (AsGa, CdS...)
- Can migrate \rightarrow wavevector \rightarrow dispersion curve

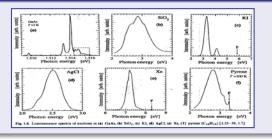
- Tightly bound exciton binding energy $\simeq 0.1$ 1eV
- Transfer of excited state model using Bloch wave function \rightarrow dispersion curves
- Common in insulators (rare gas crystals, alkali halides, organics crystals)

э

Text book: M.Fox, Optical properties of Solids, Oxford Master Series

Typical spectroscopic absorption

Palik, E.D. (1985) HandBook of the Optical constants, San Diego


< ∃ >

-

2

Brief description of Excitons: relaxation

Various luminescence behaviors

self-trapping

- $\bullet\,$ A charge induces ions displacement $\rightarrow\,$ potential well in the CB
- It travels with the displacement
- $\bullet \rightarrow$ trapped in the potential it created: Self trapped Exciton (STE)
- ullet ightarrow self-trapped means localization
- ullet ightarrow light or heat or transfer

Solid description: discrete states & localized states

Traps (We need to complete the Energy diagram)

- Displaced ions, vacancies, impurities... can be electron or hole traps
- It induces valence change. The reverse process (detrapping) may occur with energy input: heat or light
- With light \rightarrow photostimulation (x-ray imaging)
- With heat \rightarrow thermostimulation (thermoluminescence if it leads to emission of photons) (used in dosimetry) It brings some discrete levels in the Gap

Solid description: discrete states & localized states

Activators (We need to complete the Energy diagram)

- Materials are generally doped to "tune" the luminescence properties
- From a chemical point of view: the dopant has to be compatible with the host
- $\bullet\,\rightarrow\,$ Charge and volume compatibility for substitution
- More flexible for interstitial positions
- Each activator has its own set of energy levels
- Positioning these levels depends on the interaction strength with the host

Solid description: discrete states & localized states

Activators

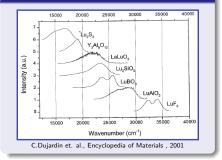
- Various kind of active ions: rare earth in 2+ or 3+ states, transition metal ...
- Weak interaction with the crystal field: quite insensitive from host to host

(B)

Solid description: discrete states & localized states

Activators

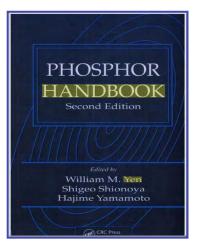
- Various kind of active ions: rare earth in 2+ or 3+ states, transition metal ...
- Weak interaction with the crystal field: quite insensitive from host to host


Example with the 3+ rare earth (shielded f orbitals=insensitive case) 14 Dieke diagram

Solid description: discrete states & localized states

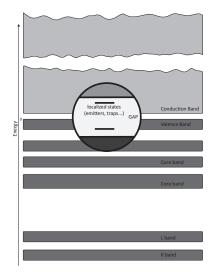
Activators

- Various kind of active ions: rare earth in 2+ or 3+ state, transition metal ...
- Weak interaction with the crystal field: quite insensitive from host to host


Example with the cerium 3+ (d \rightarrow f transitions sensitive case)

通 と く ヨ と く ヨ と

Some essential Books on Luminescent centers



・ 同 ト ・ ヨ ト ・ ヨ ト

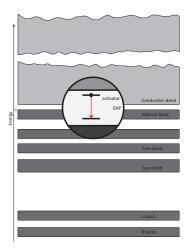
3

christophe.dujardin@univ-lyon1.fr Scintillator / ASCIMAT / Milano

Full Energy description of the solid (Energy "levels")

christophe.dujardin@univ-lyon1.fr Scintillator / ASCIMAT / Milano

□ > < E > < E > E - のへで


Luminescence: Last stage of the scintillation process

Timing

- Slow luminescence \rightarrow Slow scintillator
- Fast luminescence \rightarrow Fast or Slow scintillator

Light yield

- Electron phonon interactions
- Concentration quenching

3

Luminescence: timing & light yield

decay time

- about the timing properties
- Population: n(t) in the excited state.
- $dn = -n(t)W_{rad}dt$ (W_{rad} : spontaneous emission rate)

•
$$\rightarrow$$
 $n(t) = n_0 e^{-W_{rad}t} = n_0 e^{-t}$

$$ullet$$
 $ightarrow$ weak probability $=$ slow decay

* E > * E >

Luminescence: timing & light yield

decay time

- about the timing properties
- Population: *n*(*t*) in the excited state.
- $dn = -n(t)W_{rad}dt$ (W_{rad} : spontaneous emission rate)

•
$$\rightarrow$$
 $n(t) = n_0 e^{-W_{rad}t} = n_0 e^{-t}$

$$ullet o$$
 weak probability $=$ slow decay

spontaneous emission rate

- Fermi Golden's rule: $W_{rad} = \frac{2\pi}{3\hbar} \rho(\omega_{if}) |\boldsymbol{\mathcal{E}}_{loc}|^2 |\mu_{if}|^2$
- $\rho(\omega_{if})$: density of field oscillators at frequency
- \mathcal{E}_{loc} :local field at the position of the emitting center
- μ_{if} :transition dipole moment between li > and lf >
- As a result, au depends on the selection rules, λ and on n

3

・同 ・ ・ ヨ ・ ・ ヨ ・ …

Luminescence: timing & light yield \rightarrow Cartoon model

- n(t) = volume of wine
- decay time = time to make the barrel empty
- W_{rad} = diameter of the tap
- Light yield = Volume of drunk wine

(B)

Luminescence: timing & light yield \rightarrow Cartoon model

Middle W_{rad} High $W_{rad} \rightarrow fast$ Low $W_{rad} \rightarrow \text{slow}$

but the luminescence yield is the same: 100% (As example Eu^{3+} is very efficient despite the transition is forbidden $f \rightarrow f$)

christophe.dujardin@univ-lyon1.fr Scintillator / ASCIMAT / Milano

同 ト イヨ ト イヨ ト 二 ヨ

Luminescence: timing & light yield \rightarrow Cartoon model

A hole in the barrel

3

Luminescence: timing & light yield \rightarrow Cartoon model

non-radiative processes

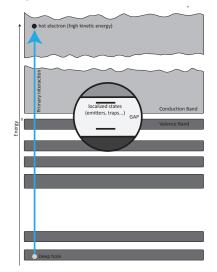
•
$$\rightarrow W_{nr}$$

•
$$dn = -n(t)(W_{rad} + W_{nr})dt$$

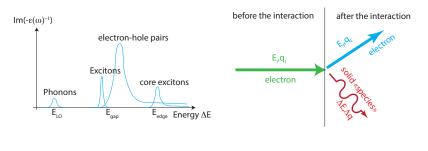
•
$$n(t) = n_0 e^{-(W_{rad} + W_{nr})t} = n_0 e^{-\frac{t}{\tau}}$$

$$ullet
ightarrow au \searrow$$
 but the yield \searrow

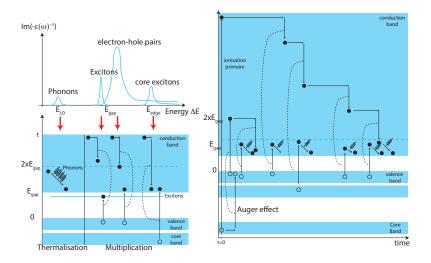
type of non-radiative processes


- electron-phonon interactions
- transfer toward non-radiative centers
- concentration quenching

A hole in the barrel

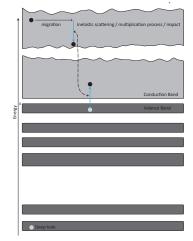

A B + A B +

Primary interaction \rightarrow first excitation: *solid**


同 ト イヨ ト イヨ ト ・ ヨ ・ ク ۹ ()

- Electron relaxation: connexion with optical constants ϵ
- Electron displacement = electromagnetic flash
- \rightarrow connected to the optical response of the solid ($n^* = \nu + i\kappa$) (see D.Smith et.al, NIM B, 2006 for details as example)
- Energy loss function: $Im(-\frac{1}{\epsilon})(\Delta E, \Delta q)$
- ΔE and Δq are the energy and momentum transfer

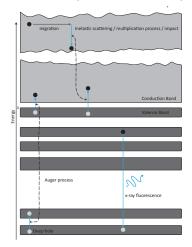
ヨッ イヨッ イヨッ


Relation with energy band diagram

< 回 > < 三 > < 三 >

2

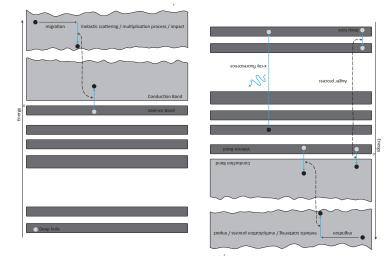
Hot electron relaxation



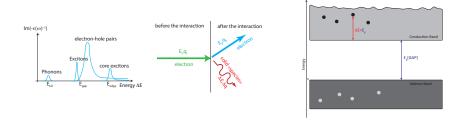
 $\rightarrow 1$ secondary "excitation" & the primary electron loses the equivalent energy

christophe.dujardin@univ-lyon1.fr	Scintilla

3


Hole relaxation: Auger process (\approx cross-relaxation) & x-ray fluorescence

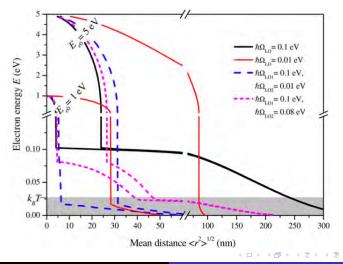
1 secondary "excitation" & the primary hole lost some energy


B b

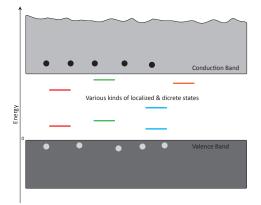
Auger process & multiplication: about the same

(日本) (日本) (日本) 日

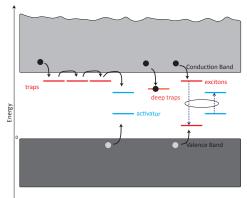
At the end of the first relaxation stage $E < E_{gap}$ then interaction with lower energies species (defects, phonon...)



() <) <)
 () <)
 () <)
</p>


3

Still some migrations over tens of nanometers

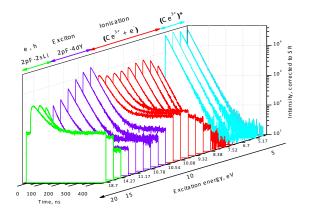

Kirkin et. al. IEEE TNS2012

When thermalized (relaxed), energy transfer toward lower energy species (activator, traps & excitons)

(B)

Several transfer processes are possible

 \rightarrow may induce delay, quenching depending on the temperature


A B M A B M

Even with a fast emitter, the overall process can be slow

An illustration of the evolution of the decay only due to the transfer process (the same emitter: $LiYF_4:Ce^{3+}$)

Belsky et. al. J.Phys. Chem. Lett. 2013

∃→ < ∃→</p>

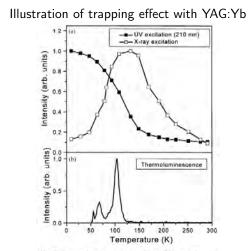
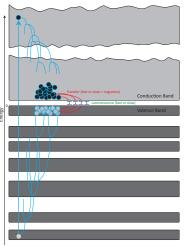


Fig. 3. Temperature dependence of the 333 nm integrated emission band intensity (a), and thermoluminescence (b) of YAG:Yb (50%).


Guerassimova et al., J. of Lum (2001)

< ∃⇒

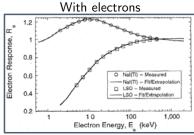
-

э

Summary picture

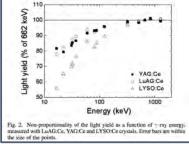
FAST(<100ps)+ MIGRATION

- The timing driven by the slowest process
- Heat, Light generation & trapping


•
$$LY = \frac{E_{gamma}}{2 \sim 3E_g} SQ$$

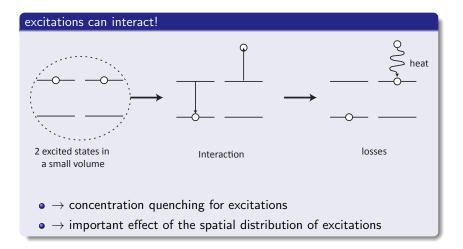
 → The light yield should be proportional to the energy of the primary particle.

() <) <)
 () <)
 () <)
</p>


э

And it is not

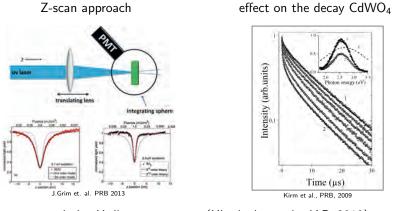
Valentine, IEEE TNS, 1998



Chewpraditkul, IEEE TNS, 1998

3

A few words about non-proportionnality

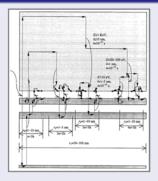


(*) *) *) *)

A few words about non-proportionnality

Analytical model, Bizarri et. al. JAP 2009

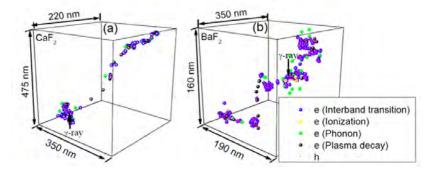
How to analyze it?



- and also K-dip spectroscopy (Khodyuk et. al., JAP, 2010)

christophe.dujardin@univ-lyon1.fr Scintillator / ASCIMAT / Milano

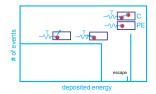
A few words about non-proportionnality


spread of the charges/excitations depends on the initial energy

- $\bullet\,\rightarrow$ from event to event the yield changes
- ullet ightarrow bad for the energy resolution
- ullet ightarrow the energy resolution is worse in non-proportional materials
- $\bullet\, \rightarrow$ it requires modeling of the spatial distribution of excitations

A few words about non-proportionnality

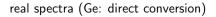
An illustration of modeling the energy cascade / spatial distribution

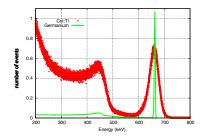


Gao et al., JAP, 2013

()

э

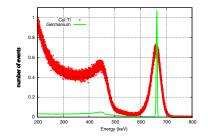

How to measure light yield? what is the resolution?



A monochromatic radioactive source is deposited on the top of the crystal itself coupled to a PMT

- $\bullet~1~\text{event} \rightarrow \text{deposited energy} \rightarrow \text{light flash production}$
- $\bullet \ \rightarrow \ \text{light detection} \ \rightarrow \ \text{electrical pulse}$
- $\bullet \ \rightarrow {\rm shaping \ the \ signal \ (as \ a \ gaussian)} \rightarrow {\rm histogram}$
- $\bullet \to$ the photo peak represents the full energy deposition, its position represents the amplitude of the signal
- \rightarrow knowing the the single photoelectron position and the detector efficiency \rightarrow # photon for xx keV deposited
- but: it depends on the wrapping, the crystal shape, the detector efficiency....
- CAUTION: it is a time resolved measurement \rightarrow it depends on the shaping time and it is different from radio luminescence efficiency

How to measure light yield? what is the resolution?



- It is used for spectroscopy, once calibrated, the shape of the spectra gives the nature of the radioactive source
- The "width" of the photopeak divided by the position is the energy resolution $(\frac{\Delta E}{E})$

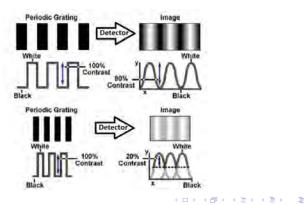
(B)

How to measure light yield? what is the resolution?

real spectra (Ge: direct conversion)

- $(\frac{\Delta E}{E})^2 = (2.3\sqrt{\frac{1+\epsilon}{N}})^2 + (\delta_p)^2 + (\delta_c)^2$
- the first term is the statistic resolution
- δ_p is the transfer resolution
- $\delta_{\rm c}$ is the crystal resolution \rightarrow connected to the proportionality response
- because each event leads to a different energy cascade, a crystal having a bad proportionality curve shows a bad energy resolution

For imaging, quality criteria are very different


- image quality? how to define it?
- time acquisition per image

• • = • • = •

3

The modulation transfer function (MTF)

- The contrast: $M = \frac{I_{max} I_{min}}{I_{max} + I_{min}}$
- $\bullet\,$ it depends on the frequency of the image (ν)
- MTF= $\frac{M^{image}(\nu)}{M^{object}(\nu)}$

The Detective Quantum Efficiency (DQE)

• DQE=
$$\frac{(Signal-to-noise)_{Output}}{(Signal-to-noise)_{Intput}} = \frac{\frac{S_o}{\sigma_o}}{\frac{S_o}{\sigma_i}}$$

- $\bullet\,$ S and σ are the average values and standard deviation of the signal
- Assuming a poison distribution of the incoming number of incident x-ray photons DQE= $\eta_{abs} \left[1 + \frac{1 + \frac{1}{\eta_{QE}}}{\eta_{col}\eta_{LY}} \right]^{-1}$
- η_{abs} is the scintillator absorption
- η_{abs} is the scintillator Light Yield
- η_{col} is the light collection efficiency
- $\eta_{\textit{QE}}$ is the detector quantum efficiency

 \rightarrow it gives the main quality criteria for the scintillator

• • = • • = •

And take care to the memory effects (traps)

- afterglow
- bright burn

Nagarkar et al., 2007

(B)

э