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a b s t r a c t 

A chemical reaction model, consisting of two gas-phase and a surface reaction, for the deposition of cop- 

per from copper amidinate is investigated, by comparing results of an efficient, reduced order CFD model 

with experiments. The film deposition rate over a wide range of temperatures, 473K-623K, is accurately 

captured, focusing specifically on the reported drop of the deposition rate at higher temperatures, i.e 

above 553K that has not been widely explored in the literature. This investigation is facilitated by an ef- 

ficient computational tool that merges equation-based analysis with data-driven reduced order modeling 

and artificial neural networks. The hybrid computer-aided approach is necessary in order to address, in a 

reasonable time-frame, the complex chemical and physical phenomena developed in a three-dimensional 

geometry that corresponds to the experimental set-up. It is through this comparison between the ex- 

periments and the derived simulation results, enabled by machine-learning algorithms that the prevalent 

theoretical hypothesis is tested and validated, illuminating the possible underlying dominant phenomena. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

In process analysis and design, data-driven methods are con- 

idered as the new paradigm that can lead to increased in- 

ight by leveraging various types of data ( Clayton et al., 2020 ; 

hu et al., 2021 ; Yan et al., 2020 ; Bracconi and Maestri, 2020 ;

arasingam and Sang-Il Kwon, 2018 ; Stluka and Ma ̌rík, 2007 ; 

oronaki et al., 2019 ; Koronaki et al., 2020 ; Alshehri, 2020 ; 

ee et al., 2018 ; Koo et al., 2019 ). Nevertheless, in recent years,

quation-based analysis has reached the point of remarkable ac- 

uracy, by efficiently combining transport phenomena simulations 

nd chemical reactions into a single predictive model ( Koo et al., 

019 ; Shi et al., 2021 ; Lira et al., 2020 ; Gyurik et al., 2020 ;

assmann et al., 2020 ; Chen et al., 2020 ; Kim et al., 2020 ;

ao et al., 2020 ; Chen et al., 2020 ; Gosiewski and Pawlaczyk- 

urek, 2019 ). In this work, data-driven methods are applied in 

onjunction with equation-based models for additional benefits in 

erms of accuracy and efficiency, in the study of the Chemical Va- 

or Deposition (CVD) of copper (Cu) from Cu amidinate. 

The CVD of copper has emerged as an attractive process for 

he replacement of aluminum by Cu in integrated circuits due 
∗ Corresponding author. 

E-mail address: ekor@mail.ntua.gr (E.D. Koronaki). 
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o the latter’s low resistance, high thermal and electrical con- 

uctivity ( Prud’homme et al., 2020 ; Rasadujjaman et al., 2015 ; 

wema et al., 2018 ; Tanaka et al., 2001 ). Extensive research in 

his field strives to improve deposition conformality, film unifor- 

ity and surface roughness and to relate these characteristics to 

he parameters of the process, namely the deposition tempera- 

ure, the chamber pressure, the mass-flow rate and consistency of 

he reactive gas mixture. Research also focuses on new precursors 

 Mayangsari et al., 2021 ; Sharif and Ahmad, 2020 ; Nishikawa et al., 

020 ; Panzeri et al., 2019 ) in an effort to improve the throughput 

f the process and the quality of the deposited metal, while re- 

ucing energy consumption and the involvement of dangerous raw 

aterials and by-products. 

The constant need to adapt and evolve processes to meet 

he current process and product quality requirements, given the 

rogress in precursor and material design, requires efficient and 

ccurate investigative workflows that are able to quickly propose 

iable modifications in the process. In this effort, predictive and 

esign tools that are accurate and easily adaptable are gaining mo- 

entum. Nevertheless, the cost associated with the development 

nd application of the predictive models is significant, rendering 

he multi-parametric investigation a time- and resource- consum- 

ng task. The answer to this problem is given by data-mining in 

he form of the popular Proper Orthogonal Decomposition (POD) 

https://doi.org/10.1016/j.compchemeng.2021.107289
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2021.107289&domain=pdf
mailto:ekor@mail.ntua.gr
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Fig. 1. Schematic illustration of the experimental MOCVD reactor. 
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Fig. 2. Arrhenius plot (deposition rate vs inverse of substrate temperature) of Cu 

deposition from Cu amidinate. 

Table 1 

Experimental operating conditions and gas mixture conditions. 

Experimental Conditions 

Pressure (Pa) 1333 

Reactor walls temperature (K) 368 

Substrate temperature (K) 473, 493, 513, 533, 553, 573, 593, 623 

Gas mixture 

Inlet temperature (K) 368 

Inlet mass flowrate (kg/s) 7.47 ·10 −6 

Mass fractions 

[Cu(amd)] 2 0.001016 

H 2 0.004107 

N 2 0.2556 

Ar 0.739277 

Table 2 

Boundary conditions of the 3D-CFD reactor model. 

Boundary Conditions 

Walls Stationary 

No slip 

Temperature - 368K 

Inlet Mass inlet flow – 7.473 ·10 −6 kg/s 

Initial gauge pressure – 0 Pa 

Temperature – 368 K 

Species mass fractions ( Table 1 ) 

Susceptor Stationary 

No slip 

Temperature – 473-623K 

Outlet Outflow 
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ethod ( Sipp et al., 2020 ; Wang et al., 2020 ; Li et al., 2019 ;

ijazi et al., 2020 ; Dey and Dhar, 2020 ), that has led to model or-

er reduction strategies by discovering low-order descriptions of 

he available data, i.e. an orthogonal basis of the subspace contain- 

ng the data. 

This work presents the implementation of a hybrid workflow 

hat hinges equation-based and data-mining methodologies, as a 

eans of identifying a chemical pathway for the deposition of Cu 

rom Cu amidinate (N,N-diisopropylacetamidinate or [Cu(amd)] 2 ), 

hat is valid over a wide temperature range. Despite the popular- 

ty of [Cu(amd)] 2 as a precursor ( Krisyuk et al., 2009 ), a deposi-

ion model that is valid across a wide temperature range is still 

acking. This precursor typically provides higher purity solid Cu 

lms due to its lack of halogens and oxygen, at relatively lower 

eposition temperatures (approximately 473K) compared to simi- 

ar precursors. Experimental measurements, available in the liter- 

ture will be used to calibrate the proposed model ensuring ac- 

uracy. Efficiency will be achieved by exploiting low-fidelity data, 

roduced at a low computational cost, in order to first derive a 

ow-fidelity/high-efficiency predictive model. The results of these 

odels will be used as initial approximations for detailed, or high- 

delity models, ensuring their faster convergence. 

The rest of the paper is organized as follows: The CVD case is 

resented, providing details on the geometry, experimental condi- 

ions and reactive gas mixture composition. This is followed by a 

iterature review of Cu deposition pathways, that lays the founda- 

ion for the deposition model. The computational workflow is then 

resented, starting from the equation-based component and pro- 

eeding to the data-driven workflow, followed by results and con- 

lusions. 

. Case study 

The case study here, is the vertical cylindrical MOCVD reac- 

or with stainless steel walls, used in the experimental set up de- 

cribed in ( Krisyuk et al., 2009 ), shown in Fig. 1 . In this reactor

onfiguration, a showerhead ensures homogeneous distribution of 

he reactive gases over the heated stainless steel susceptor. In ad- 

ition to the experiments presented in ( Krisyuk et al., 2009 ), ex- 

erimental measurements in the same reactor, in two higher sus- 

eptor temperatures, 593K and 623K, are made available ( C. Vahlas, 

ersonal communication, 2020 ). For details concerning the experi- 
2 
ental set-up and conditions, the interested reader in referred to 

 Krisyuk et al., 2009 ) for and in-depth presentation. The data are 

ummarized collectively in an Arrhenius plot of the deposition rate 

ith respect to the inverse of the susceptor temperature shown in 

ig. 2 . The deposition rate is computed experimentally by weight 

ifference of the substrate, before and after deposition. Three inde- 

endent weight measurements, pre and post experiment are taken 

or each substrate and the average value is reported in Fig. 2 . This

s repeated for different susceptor temperatures while the rest of 

he reactor conditions fixed. The latter are listed in Table 1 . 

. Proposed chemical reaction model 

The composition and reactivity of the gas phase dur- 

ng the MOCVD process of copper amidinate, is studied in 

 Turgambaeva et al., 2011 ) using mass spectrometry. It is suggested 

hat in the presence of hydrogen, the only significant reaction is 
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Fig. 3. Copper amidinate (left) vs copper guanidinate (right). 
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Fig. 4. Ligand shift for copper (I) Guanidinate. 

i

b

o

e

β
m

o

i

p

m

c

fl

i

(

t

[
(

[
(

4

o

t

t

e

n

G  

c

t

p

N

o

c

e

s

s  

i

s

t

c

r

t

g

m

t

H

o

a

he following surface reaction: 

 

Cu ( amd ) ] 2 ( g ) + H 2 ( g ) → 2C u ( s ) + 2H ( amd ) ( g ) (S1) 

The activation energy is estimated based on the available ex- 

eriments, in the reaction limited regime, i.e. at low deposition 

emperatures where the reaction rate is expected to be the dom- 

nant rate-defining mechanism. As shown in Fig. 2 , there is an al- 

ost linear increase of the deposition rate with respect to tem- 

erature, for deposition temperatures lower than 533K, signifying 

hat the reaction is the rate-limiting step in the deposition pro- 

ess. Given that an Arrhenius type kinetic is adopted for the reac- 

ion rate, the activation energy of the surface reaction, derived as 

he slope of the curve in this reaction-limited regime, is found to 

e 66 kJ/mol. This value is in good agreement with the one men- 

ioned in Lim (2003) , where they defined it as 60 kJ/mol. 

Nevertheless, the experiments described in ( Turgambaeva et al., 

011 ) were only carried out at temperatures up to 573K. Later ex- 

erimental findings ( Aviziotis et al., 2013 ) indicate that there is a 

otable reduction of Cu deposition rate past 573K (cf. Fig. 2 ), signi- 

ying possibly the depletion of precursor or a similar growth limit- 

ng phenomenon. In the following literature review, possible chem- 

cal pathways are presented aiming to identify the candidate that 

s more likely to capture the decrease in the deposition rate above 

73K. 

Gas phase nucleation or a volumetric decomposition reaction 

ctivated at high temperatures are possible reasons for the de- 

rease of the deposition rate at higher temperatures. The former 

s not considered as a likely candidate, because typically particles 

ould be observed on the reactor walls as a result of the nucle- 

tion reaction. Based on the literature and also on in-house exper- 

mental expertise, Cu particles are not reported even in high de- 

osition temperatures. Therefore, the effect of volumetric decom- 

osition is considered as more probable, based also on previous 

ndings from the study of the decomposition of metallic precur- 

ors with amidinate and amidinate-type ligands by Barry (2013) . 

he study suggests two different pathways for the decomposition 

f the copper amidinate, either by elimination of the carbodiimide 

r by abstraction of β-hydrogen. The first is preferable for lower 

emperature solution-based thermolysis and the second takes place 

n higher temperatures and gas-phase systems. These two path- 

ays are also suggested by Coyle et al. (2010) in a study of cop-

er guanidinate, a structurally similar precursor to copper amidi- 

ate; said similarity is shown in Fig.. 3 with the structures of each 

ompound side by side. In fact, this similarity is also suggested by 

arry (2013) . 

Two decomposition pathways are proposed in the literature 

 Barry, 2013 ; Coyle et al., 2012 ) both based on an initial endother-

ic ligand shifting, as illustrated in Fig. 4 . Ligand shifting for 

uanidinate has an activation energy of 94.1kJ mol −1 , which in the 

bsence of numerical data for amidinate is assumed to be identical 

or the latter due to their highly similar structures. This activation 

nergy is significantly higher than the one required for the sur- 

ace deposition reaction of Cu, thus is consistent with the idea of 

 high-temperature activated decomposition reaction taking place 
3 
n this process. After the ligand shift, the new geometry allows for 

oth the carbodiimide deinsertion and β-hydrogen abstraction to 

ccur. These subsequent pathways and their respective activation 

nergies are shown in Fig. 5 . 

In the gas phase both pathways can occur, but it is possible that 

-hydrogen abstraction is predominant due to surface-activated 

echanisms ( Barry, 2013 ). In the absence of information on which 

f the two subsequent pathways actually prevails, both are adopted 

n the model and fitted on the experimental results with identical 

re-exponential factors. Thus, the model is not relying on one, or 

ainly one of the two decomposition reactions to describe the de- 

reasing deposition rate at high temperatures, making the model 

exible for future optimization. 

In summary, in addition to the surface reaction (S1), the follow- 

ng two decomposition reactions of copper amidinate are included: 

a) the carbodiimide deinsertion and (b) the β-hydrogen abstrac- 

ion. 

Cu(amd)] 2(g) → 2Cu(CH 3 ) 2(g) + 2CH(CH 3 ) 2 -NCN-CH(CH 3 ) 2(g) 

G1) 

Cu(amd)] 2(g) → 2CuH (g) + 2CH(CH 3 ) 2 -N = C(CH 3 )-N = C(CH 3 ) 2(g) 

G2) 

. CFD modeling 

The reactor is represented by a three-dimensional (3D) ge- 

metry in order to account for the effect of the showerhead in 

he distribution of species and the development of the flow. The 

ime-dependent transport equations for mass, momentum and en- 

rgy are discretized with the finite volume method with 1.2 M fi- 

ite volumes and solved in ANSYS/Fluent ( Koronaki et al., 2019 ; 

kinis et al., 2017 a; Gkinis et al., 2017 ; Gkinis et al., 2019 ). Con-

erning the boundary conditions, for the velocity: at the inlet of 

he reactor a constant mass inflow rate of 7.473 × 10 −6 kg/s is im- 

osed, calculated from the total volumetric flow of the mixture. 

o-slip condition is imposed at all the walls of the reactor. At the 

utlet, a standard outflow boundary condition is used. At the sus- 

eptor the temperature varies, between 473-623 K based on the 

xperimental conditions described in ( Krisyuk et al., 2009 ). For the 

pecies: the mass fractions of the species entering the reactor are 

ummarized in Table 1 . The flux of all species at the reactor walls

s zero except on the substrate where the surface reactions (depo- 

ition) take place. An overall mass balance correction is imposed at 

he outlet. The operating pressure of the reactor is 1333 Pa. 

The properties of the individual species and of the mixture are 

omputed as in Aviziotis et al. (2013) . The Lennard-Jones (LJ) pa- 

ameters, namely σ and ε, are the parameters of the LJ poten- 

ial and are needed for the estimation of the properties in the 

as phase of the CVD reactor. σ is the measure of the size of the 

olecules and ε/k is a measure of how strongly the molecules at- 

ract each other. For the unknown species, namely [Cu(amd)] 2 and 

(amd), their values are calculated with group contribution meth- 

ds [18] and for [Cu(amd)] 2 are: σ= 10.8525 ̊A and ε/k = 423.2 K 

nd for H(amd): σ= 9.4874 ̊A and ε/k = 534.8 K. 
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Fig. 5. Potential decomposition pathways for copper amidinate; pathway (a) carbodiimide deinsertion, pathway (b) β-hydrogen abstraction. 
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Fig. 6. Step changes of susceptor temperature applied for snapshot collection. Blue 

bars correspond to temperature increases and orange bars to temperature de- 

creases. 
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The effect of the chemical reactions is included, specifically as a 

econd order bimolecular elementary and a first order elementary 

ate law, for the surface (S1) and the gas phase decomposition re- 

ctions (G1, G2) respectively. The kinetic constants for these reac- 

ions are fitted simultaneously based on the experimental findings, 

eposition rate ( DR ) = k 0 exp 

(
−66 kJ / mol 

RT 

)
C [ Cu ( amd ) ] 2 

C H 2 (S1) 

eaction rate ( RR ) = k 1 exp 

(
−90 . 4 kJ / mol 

RT 

)
C [ Cu ( amd ) ] 2 

(G1) 

eaction rate ( RR ) = k 2 exp 

(
−138 . 1 kJ / mol 

RT 

)
C [ Cu ( amd ) ] 2 

(G2) 

Here k 0 , k 1 and k 2 are pre-exponential factors, R the universal 

as constant, T the temperature, C [Cu(amd)]2 and C H2 the molecular 

oncentrations, in kmol/cm 

3 , of amidinate and hydrogen respec- 

ively. As mentioned in section 3 , the activation energy for the sur- 

ace reaction is calculated based on the deposition experiments re- 

orted in Fig. 2 , whereas for the gas-phase reactions, the activation 

nergies for the carbodiimide deinsertion and the β-hydrogen ab- 

traction of Cu guanidinate is adopted here, for lack of data about 

he amidinate decomposition. 

The complete, 3D CFD model that includes the three chemical 

eactions and the conservation equations for all the participating 

pecies, has over 16 million degrees of freedom. Each simulation 

equires about 72 CPU hours on 12 cores, i.e. 72 × 12 = 864 core 

ours. This amounts to significant computational effort, consider- 

ng that several parameter values are explored during the fitting 

rocedure, in order to determine the pre-exponential factors with 

 trial-and-error approach: CFD predictions, using assumed k 0 , k 1 
nd k 2 values are compared to experimental measurements and 

re recursively adjusted until the experiments are captured with 

atisfactory accuracy. The need naturally arises for the implemen- 

ation of an efficient model order reduction strategy that will en- 

ble the aforementioned parametric investigation. 

. Reduced Order Model development 

The workflow presented here, consists of a Reduced Order 

odel and a detailed, fine-mesh model that incorporates chemi- 

al reactions and species conservation equations. The goal of the 

OM is to predict a good enough approximation of the flow field 

nd temperature distribution for any given set of process parame- 

ers. This coarse, in terms of accuracy, approximation is then used 

s initial guess in the detailed CFD model and enables it to con- 

erge at a lower computational cost than it would have done if 

t were initialized from a generic initial guess. The ROM is obliv- 

ous of the chemistry model as it is built using snapshots from 

 low-fidelity CFD model, involving a coarse discretization, with- 

ut chemical reactions. This course of action is pursued in order 
4 
o keep the computational effort involved in developing the ROM 

s small as possible, while still generating an approximation of the 

olution that is close to the actual. This solution can then be used 

n order to initialize the detailed CFD model for various different 

alues of the kinetic parameters allowing it to converge faster. The 

atter is made possible by the fact that the mixture of gas reactants 

s dilute and therefore the depletion of precursor and the produc- 

ion of new species does not affect the development of the flow 

nd temperature distribution. 

The model order reduction methodology implemented here, is 

resented in detail in (Koronaki et al., 2017; Gkinis et al. 2017 b; 

kinis et al., 2019 ) and is summarized in this work for complete- 

ess. 

.1. Data collection for building the ROM 

The first step in the ROM workflow is the collection of data, 

ere vectors containing the distribution of velocity, pressure and 

emperature at each point in the spatial discretization. To col- 

ect these distributions, step changes are applied, to the suscep- 

or temperature, a critical process parameter, as shown schemati- 

ally in Fig. 6 . The blue bars correspond step increases of temper- 

ture (common starting point, T = 473 K) and the orange bars cor- 

espond step decreases of susceptor temperature (common start- 

ng point, T = 623 K). The choice of applied step changes to the 

emperature value is based on the actual experimental conditions 

or which the data are available. Therefore, within a temperature 

ange 473 < T < 633, several “snapshots” are collected from time- 

ependent simulations at a fixed time interval �t = 0.1s. The “snap- 

hots” in this case are the vectors containing the distributions of 
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ariables in the reactor, as the system changes in response to the 

pplied step change until it finally reaches a new steady state. 

ventually the N × k matrix S is assembled, where N is the num- 

er of degrees of freedom and k is the total number of instanta- 

eous vectors collected along the trajectories resulting from the 

ifferent step changes. 

Given the fact, that detailed 3D simulations entail a large num- 

er of degrees of freedom, it becomes obvious that the computa- 

ional cost associated with the data collection is not trivial. In this 

ase study, harvesting the data with the detailed 3D model would 

equire more than 20 days in CPU time. Even then, manipulating 

he resulting data/snapshots would also be a daunting task. 

In order to circumvent this problem and render the proposed 

orkflow more applicable in realistic problems, the size of the 

FD model is purposefully reduced by using a coarser discretiza- 

ion consisting of 309k finite volumes. As a result, the accuracy of 

he CFD solution is sacrificed for the sake of efficiency but as it 

ill discussed further on, it can be recovered. Here the discretiza- 

ion is reduced to one third of the “appropriate” one, which led 

o 1.2 million degrees of freedom. The computational cost of each 

imulation is 2 CPU hours in 12 cores and the computational cost 

f deriving the entire data set was 48 CPU hours. 

Another important aspect of the ROM that contributes to its 

omputational efficiency, is the fact that chemical reactions and 

hemical species that participate therein are not included in the 

imulations conducted for data collection. Therefore, only mass, 

omentum and energy conservation equations are solved which 

reatly reduces the required computational effort. This is done 

ased on the fact that the mixture of incoming gases contains a 

ery small amount of precursor (typically around 0.001%). The fact 

hat it is so dilute means that precursor depletion and by-product 

roduction does affect the overall gas flow or temperature distri- 

ution. 

With those considerations in mind, the ROM will be able to give 

ery quick coarse predictions of the flow, precursor mass fraction 

nd energy distributions inside the reactor. The augmentation of 

his prediction with information about the Cu deposition rate will 

e discussed further on. 

.2. Proper Orthogonal Decomposition basis 

Once the data is collected as a N × k matrix S , the next step is 

o derive a low-dimensional description, in this case a basis of the 

ubspace that contains the data. This is achieved by implementing 

 variant of the POD ( Berkooz et al. 1993 ), the method of snap-

hots ( Sirovich, 1987 ), which involves the singular value decompo- 

ition (SVD) of the matrix S = U � V 

T , where U and V are unitary

atrices and � is diagonal. Nevertheless, the data matrix is usu- 

lly composed of vectors containing more degrees of freedom than 

napshots (N >> k) and it is therefore more efficient to address a 

mall eigenvalue problem: 

 

T S ϕ j = λj ϕ j , for j = 1 , . . . , k (1) 

he product S T S is the k × k covariance matrix K = S T S , of the

ssembled data. It holds that: 

 

T S = V �2 V 

T ⇔ 

(
S T S 

)
V = V �2 (2) 

Which shows that the right singular vectors of S are equal to 

he eigenvectors of the covariance matrix and that the singular val- 

es of S are the positive square roots of the eigenvalues of K . 

The m most energetic modes that correspond to 99% of the en- 

rgy of the data matrix are selected in order to build a low dimen-

ional basis that accurately represents the data matrix. The energy, 

j , of ϕj is computed as 

 j = 

∑ j 
i =1 

φi ∑ k φi 

(3) 

i =1 

5 
Eventually the selected basis is formed as Z = [ z 1 , z 2 ,…, z m 

] ∈
 

m × k , where each column z i is computed as 

 i = 

1 √ 

λi 

k ∑ 

l =1 

( φi ) l S ( ·, l ) , 1 ≤ i ≤ m (4) 

here ( φi ) l is the l -th component of the i-th eigenvector z i of K 

nd S ( ·, l ) is the l -th column of S . 

Each column vector s i of S = [ s 1 , s 2 ,…, s k ] can be approximated

y a linear combination of the form: 

 

’ 
i = Z αi , (5) 

here αi = [ αi1, αi2 , …, αim 

] are time-dependent coefficients which 

escribe the time dependency of the data respectively. 

Therefore, in order to obtain an accurate low dimensional rep- 

esentation of the data, given a low dimensional basis, Z , the coef- 

cients αi are required. Typically, an ordinary differential equation 

overning the coefficients α, is obtained by substituting the low- 

rder approximation s ′ 
i 

to the governing equations (here the con- 

ervation equation for mass, momentum and energy) and the pro- 

ecting onto the subspace spanned by the modes Z i . In the follow- 

ng paragraph an alternative is presented that circumvents the ma- 

ipulation of equations by implementing machine learning strate- 

ies. 

.3. Prediction of coefficients with Artificial Neural Networks 

Artificial Neural Networks (ANNs) are computational algorithms 

ased on statistical principles and are widely applied in areas such 

rtificial Intelligence, Machine Learning and Data Mining. In this 

ork the nonlinear autoregressive network with external inputs 

onlinear autoregressive network with exogenous inputs (NARX) is 

sed ( Xie et al., 2009 , 2012 , 2015 ). This particular dynamic network

as a simpler structure than other known networks with feedback, 

ut is very powerful, converges faster and is better suited for data 

rom time-series. The NARX network can be described by the fol- 

owing expression: 

 ( tk ) = F 
(
x 
(
t k −n x 

)
, . . . , x ( t k −1 ) , x ( t k ) , y 

(
t k −n y 

)
, . . . , y ( t k −1 ) 

)
(6) 

.e., the output y of the system at time t k depends on the input x

t the same time as well as on the inputs and outputs of previous 

imes. The parameters n x and n y are delays between the input and 

he output, respectively and practically define the number of past 

ime steps that affect the current output. 

Eventually, setting the network input and output delays to one, 

he output is expressed as: 

 ( tk ) = F ( x ( t k −1 ) , x ( t k ) , y ( t k −1 ) ) (7) 

Finally, the nonlinear function F is determined through the 

raining of the dynamic network by known dynamic responses of 

he reactor to specific step inputs of the mass flow inlet which con- 

titutes the so-called series-parallel implementation of the ANN: 

hereas in the standard NARX architecture the output of the feed- 

orward network is used as input, in the series-parallel strategy, 

he actual outputs are used as feedback. This is shown schemati- 

ally in Fig. 7 . 

The backpropagation training method, combined with the 

evenberg–Marquardt regularization algorithm, is implemented in 

rder to achieve smooth convergence to a low training error, avoid- 

ng overfitting. The mean square error, i.e. the averaged squared 

ifference between the input and inferred values is used as perfor- 

ance function, in order to assess the training of the network. 

In this implementation, the number of hidden layers is set to 

 with 5 neurons. An overview of the network parameters is pre- 

ented Table 3 . and more details about its implementation are dis- 

ussed in section 6.2 . 
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Fig. 7. Structure of the Artificial Neural Network. 

Table 3 

Overview of specifications of Artificial Neural Network. 

ANN specifications 

Type of NN NARX 

Training Bayesian Regularization Backpropagation 

Time delay (n x ,n y ) 1 

Activation/Transfer function ( f ) Sigmoid 

Hidden layer 1 

Number of neurons 5 
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Fig. 8. Energy contained by POD modes. The first four are retained for the ROM, 

corresponding to 98.8% of the energy of the system. 
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. Results and discussion 

.1. Reduced order model 

The method of snapshots is implemented on a snapshot ma- 

rix containing all the data reported in paragraph 5.1 (cf Fig. 6 ), 

xcept for the series of vectors obtained for the step change from 

23K to 500K which is retained for testing and validation purposes. 

herefore, with one of the eight step changes removed, the snap- 

hot matrix S consists of data from seven step changes, with a to- 

al number of k = 62 snapshots. Each snapshot is a vector of size

 = 1.86 10 6 containing the values of the velocity components, pres- 

ure and temperature at point of the discretization. 

Following the methodology presented in paragraph 5.2, 4 POD 

odes are retained in order to form the low-dimensional basis, Z . 

hese represent 98.8% of the energy of the system as defined by 

quation 3 . The variation of the cumulative energy captured by the 

igenmodes is presented in Fig. 8 . In an effort to demonstrate, the 

ffect of the size of the basis on the accuracy of the predictions, 

esults are presented in the following paragraph, for gradually in- 

reasing basis size ranging from 1 to 4 POD modes. 

.2. ANN predictions 

Subsequently, the trained Artificial Neural Network (ANN) is 

sed in order to determine the value of the time-dependent co- 

fficients αi involved in equation 5 . The input data consists of the 

nitial condition, i.e. the vector containing the distribution of veloc- 
6 
ty, pressure and temperature at the initial value of the susceptor 

emperature. The initial and final value of the temperature in the 

tep change are also included. The output of the network includes 

he predictions of the time-dependent coefficients αi , that corre- 

pond to the snapshots along the trajectory from the state at the 

nitial temperature to the final one. By implementing equation 5 , it 

s possible to reconstruct the entire state vector and compare with 

he actual values. 

This comparison is carried out for all four predictive models 

one for each POD basis), with increasing size of basis Z . The devia- 

ion from the actual states, computed with the CFD code, is defined 

s 

 i = 

∥∥s i − s ′ 
i 

∥∥
‖ 

s i ‖ 

(8) 

here i is the snapshot number, s i and s ′ 
i 

are the CFD calculated 

nd ROM approximated snapshots respectively. The approximation 

rror for the test data set is shown in Fig. 9 . There is a decreasing

rend in the approximation error, as the size of the POD increases, 
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Fig. 9. Error between the ROM estimations and known CFD results (snapshots) 

along a trajectory that was not included in the training set of the ANN. 
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Table 4 

Comparison or required CPU hours. 

Wall clock CPU hours 

Detailed 3D CFD model with 

reactions 

72 hours @12 cores 864 core hours 

ROM based on coarse CFD results 18 hours @ 12cores 216 core hours 

Acceleration × 4 
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evertheless, in all cases the error is well under 1%, which shows 

 good generalization capacity of the model, regardless of the basis 

ize. All results shown henceforth are produced with a predictive 

odel involving 3 POD modes, in an effort to boost accuracy with- 

ut the efficiency of the methodology as a ROM of order 3 entails 

 very small computational cost. 

In order to recover the accuracy lost due to the coarse data that 

he ROM is based on, it is necessary to “fine-tune” the prediction 

rom the POD/ANN model by feeding them as initial estimates to 

 detailed CFD model with refined discretization. Due to the fact 

hat the initial estimate of the solution provided by the ROM is a 

lose to the actual one, only a few iterations of the high-fidelity 

FD code are required for convergence. The initialization of the 

FD code with the results from a coarse mesh, requires the so- 

alled mesh-to-mesh interpolation, here zeroth order (or “nearest 

eighbor”) interpolation, in order to “translate” the prediction to 

he fine mesh and use it as a preconditioner. During this step, the 

alue of the variables in the fine mesh are set equal to their value

n the nearest “coarse-mesh” neighbor. 

The computational cost reduction can be calculated in core 

ime, which is the time needed for the CFD computation multi- 

lied by the number of CPU cores used in parallel. Therefore, a 

ingle CFD computation of the detailed CFD model (fine mesh and 

hemical reactions) in parallel with 12 CPU cores requires roughly 

64 core hours. While the reduced order model computes an ap- 

roximation of the solution in less than a minute with a single 

PU core, with a further 18 core hours (12 CPU cores) for the de- 
ig. 10. Schematic of the workflow for the production of detailed steady state predictio

arameters fitting process (bottom). 

7 
ailed model to generate the solution, after being initialized with 

he ROM approximation. Thus, an acceleration of 4 times in core 

ime is achieved. These results are summarized in Table 4 . Consid- 

ring that this model has to be executed several times for different 

inetic constants during the fitting procedure, the overall compu- 

ational cost reduction is even greater and the benefit from this 

pproach increases with the number of unknown constants. 

.3. Chemical reaction parameters 

Fitting of the kinetic parameters involves solving the acceler- 

ted CFD model for different combination of the constants at the 

emperatures where the experimental data are available (c.f. Fig. 2 ). 

he predicted values of the deposition rate are then compared to 

he actual values determined experimentally ( Fig. 10 bottom) and 

he process is repeated until the computed predictions converge to 

he experimental measurements within a tolerance. 

A feature of this implementation that further enhances the ef- 

ciency of the computational workflow, is that the species mass 

ractions are not part of the ROM. Instead, chemical reactions are 

ncluded only in the detailed CFD model. This is made possible by 

he fact that species depletion or production does not influence the 

ow in the reactor chamber, because a very dilute gas phase mix- 

ure is involved. Therefore, for each new set of kinetic parameters, 

he detailed CFD model is initialized with the same ROM predic- 

ion for the flow and energy distributions. Under the assumption 

hat the flow is unchanged regardless of the kinetic model, the de- 

ailed CFD model need only compute corrections for the species 

oncentrations, which requires much less effort than the overall 

imulation. 

The values of the three pre-exponential factors, determined 

ith the help of the computational tool are summarized in Table 5 . 

he deposition rate prediction of the model is compared to the ex- 

erimental data in the Arrhenius plot shown in Fig. 11 . The pro- 

osed chemistry model captures accurately the trend of the data, 

ven in temperatures higher than 573K. 
ns for the computation of the deposition rate (DR) (top). Workflow of the kinetic 
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Table 5 

Fitted pre-exponential factors of the chemical reaction system. 

Reaction Pre-exponential factor 

Deposition reaction 1.35 ·10 10 m 

3 kmol −1 s −1 

Carbodiimide deinsertion 8.5 ·10 8 s −1 

β-hydrogen abstraction 8.5 ·10 8 s −1 

Fig. 11. Comparison of Cu deposition rate, between the fitted chemical reaction sys- 

tem and the experimental data. 
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. Conclusions 

A new chemistry model is proposed, for the CVD of Cu from Cu 

midinate. The innovative aspect is the inclusion of two gas phase 

eactions, with high activation energy, that capture the sharp de- 

rease of the deposition rate at temperatures above 573K, as a re- 

ult of precursor depletion. Two mechanisms for Cu amidinate are 

onsidered, carbodiimide deinsertion and β-hydrogen abstraction, 

ased on the literature regarding Cu amidinate and a structurally 

imilar precursor, Cu guanidinate. 

The kinetic parameters of the proposed chemical pathway are 

etermined by comparing predictions from a machine-learning- 

ssisted CFD model with experimental measurements. This fitting 

rocess is computationally expensive and, in this case, becomes 

easible by combining reduced order modeling via Proper Orthog- 

nal Decomposition and Artificial Neural Networks. Further sav- 

ngs are achieved by using low-fidelity data, from coarse-mesh CFD 

imulations, to build the ROM. Accuracy is then recovered by using 

he ROM prediction as a preconditioner for the detailed CFD model 

n order to accelerate its convergence. Furthermore, the chemistry 

odel is included only in the detailed CFD model, making the pre- 

ictive ROM even more efficient. 
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