HANDBOOK

STRUCTURAL REPAIR INSTRUCTIONS

USAF SERIES

C-46, ZC-46A, C-46D, C-46F

NAVY MODEL

R5C-1

AIRCRAFT

PUELISHED UNDER AUTHORITY OF THE SECREAARY OF TNI AIR FORCE AND TME CHIEF OF TME SUREAU OF AERONAUTICS

T.0. 1C-46A.3

Reproduction for non-military use of the information or illustrations contained in this publication is not permitted without specific approval of the issuing service (BuAer or AMC). The policy for use of Classified Publications is established for the Air Force in AFR 205-1 and for the Navy in Navy Regulations, Article 1509.

LIST OF REVISED PAGES ISSUED

insert latest revised paces. destroy supenseded pages.
NOTE: The portion of the text affected by the current revision is indicated by a verrical tiae in the outer marsing of the page.

Page	Date of Latest Revision	Page No.	Date of Latest Revision	Page No.	Date of Latest
No.		Revision			

*The asterisk indicates pages revised, added or deleted by the current revision.

additional copies of this publication may be obtained as follows

USAF ACTIVITIES.-In accordance with Technical Order No. 00.5.2
NAVY ACTIVITIES.--Submic request to nearest supply poiac listed below, using form NavAer-140; NASD, Philadelphia, Pa.: NAS, Alameda, Calif: NAS, Jacksonville, Fla.; NAS. Norfolk, Va,; NAS, San Diego, Calif.; NAS, Scattle. Wash.; ASD, NSC. Guam.
For tisting of available material and details of distribution see Naval Acronauriss Pablicutions Index NavAer 00-500.

T.0. 1C-46A-3

Page No.	Date of Latest Revision
156	.. 30 August 1945
157	. 9 April 1954
	... 2 August 1954
162 15 January 1945
163 15 January 1945
 15 January 1945
168. 15 January 1945
171	. 2 August 1954
172. 15 January 1945
172A. 15 January 1945
172B	... 2 August 1954
173 25 July 1944
174A.15 Jnnuary 1945
174B	. 2 August 1954
175. 25 July 1944
176 25 July 1944
177 25 July 1944
178 25 July 1944
188. 30 August 1945
191. 30 Augutt 1945
193. 30 August 1945
194. 30 August 1945
203. 15 Jaouary 1945
208 25 July 1944
211 25 July 1944
219. 30 August 1945
220 15 January 1945
224 30 August 1945

Page
No.

Date of Latest
Revision $|$

	e of Latest Revision
15 January 1945	
	30
2 5 May 1945	
2A................ 30 August 1945	
28 30 August 1945	
2C................ 30 August 1945	
$88 ~ 30 ~ A u g u s t ~ 1945 ~$	
108A................ 30 Augusc 1945	
	30 Augus
308C................. 30 August 1945	
99 5 May 1945	
311 29 Aus!ご 1952	
314 29 Augusi, 1952	
320 15 June 1945	
322 15 J une 1945	
323 15 January 1945	
331 25 July 1944	
..................... 25 July 1944	
335 25 July 1944	
337 25 July 1944	
340 15 September 1953	
341 15 September 1953	
342 15 September 1953	
2A...................... 5 May 1945	
34415 January 1945	
345 15 January 1945	
347 25 July 1944	

This page intentionally left blank.

TABLE OF CONTENTS

SECTION

I INTRODUCTION Page

1. General 1
2. Scope of Handbook 1
3. Type of Construction 1
4. Types of Repair 1
5. Support of Structure During Repair 5
6. Use of Bolts 5
7. Detecting the Presence of Cracks 5
8. Drilling Out Spotwelds 9
9. Heat Treatment 9
a. General 9
b. Aluminum Alloy 9
c. X4130 Steel 12
d. Repairs Requiring Formed Stock 12
10. Riveting 12
a. General 12
b. Description of Rivets 14
c. Determination of Rivet Size 14
d. Removal of Rivets 14
e. Replacement of Brazier and Flat- head Rivets 15
f. Flush Riveting Procedure 16
g. Cherry Blind Rivets 19
h. Du Pont and Chōbert Rivets 21
i. Enlarged Holes 21
j. Nominal Edge Distance 22
11. Finish Specifications 22
a. General 22
b. Materials 22
c. General Reguirements 22
d. Detail Requirements 23
e. Detail Requirements for Specific Parts 24
f. Screws, Threads, and Threaded Parts. 25
II ENGINE MOUNT AND FIREWALL REPAIR
12. Engine Mount 37
13. Firewall 43
III FUSELAGE REPAIR
14. General 46
15. Skin 46
16. Stringers 67
17. Bulkheads 73
| 5. Cargo, Troop, and Jump Doors 103
18. Floor 110

SECTION

Page
7. Doublers 118
8. Repair at Wing Intersection 118
9. Miscellaneous 118
IV LANDING GEAR REPAIR

1. General 131
2. Negligible Damage 131
3. Minor Repairs 131
V WING REPAIR
4. General 136
5. Center and Outer Panels 136
a. Skin. 136
b. Stringers 155
c. Spars 156
d. Ribs 184
e. Center Panel to Outer Panel Attachment 215
6. Wing Tips. 224
7. Ailerons 230
a. General 230
b. Nose Skin 230
c. Beam 230
d. Ribs 230
e. Fabric Repair 231
f. Mass Balancing 237
8. Flaps 237
a. General 237
b. Skin 238
c. Beams 239
d. Ribs 239
e. Trailing Edge Channel 239
VI NACELLE REPAIR
9. General 250
10. Skin 250
11. Bulkheads 252
12. Longerons. 261
13. Miscellaneous 266
VII EMPENNAGE REPAIR
14. Stabilizers 267
15. Fin 281
16. Rudder 288
17. Elevators 308
18. Mass Balancing 311

SECTION

VIII FAIRING AND COWLING REPAIR Page

1. Fin-Fuselage Fairing 317
2. Stabilizer-Fuselage Fairing 317
3. Wing-Fuselage Fairing 317
4. Wing Splice Fairing 317
5. Dorsal Fin to Fin Fairing 317
6. Tail Wheel Door 317
7. Landing Gear Nacelle Door 321
8. Engine Cowling and Ducts 322
IX GENERAL REPAIR
9. Repair of Sections Fabricated from Alclad Sheet 328
10. Repair of Extrusions 332
X MISCELLANEOUS
11. Fuel and Oil Tanks. 340

SECTION

Page

2. Oil Coolant Radiator 340
3. Tubes and Tubing Repairs........ 344
4. Control Cables 347
5. Soundproofing Repairs 347

XI DISASSEMBLY OF WING AND FUSELAGE

1. General. 355
2. Required Jigs...................... . . 355
3. Procedure of Jigging for Disassembly 355
4. Removal of Wing 356
5. Attachment of New Wing Panel. . . 356
6. Fuselage Damage 357
7. Tail Hoist. 357
8. Jigging . 357
9. Alignment . 357

C-46 SERIES MODEL DESIGNATIONS

Series	Block No.	Factory Sequence
C-46		1-25
C-46A	$1-\mathrm{CU}$	26-46
C-46A	$5-\mathrm{CU}$	47-50
C-46A	$5-\mathrm{CU}$	51-100
C-46A	10-CU	101-150
C-46A	$15-\mathrm{CU}$	151-200
C-46A	$20 \cdot \mathrm{CU}$	201-250
C-46A	$25-\mathrm{CD}$	251-300
C-46A	30-CU	301-350
C-46A	35-CU	351-456
C-46A	$40-\mathrm{CU}$	457-700
C-46A	45-CU	701-905
C+46D	1-CU	906-908
C-46A	45-CU	909-9 19
C-46D	1-CU	920
C-46A	$45-\mathrm{CU}$	921-925
C-46D	$1-\mathrm{CU}$	926
C-46A	$45-\mathrm{CU}$	927-948
C-46D	$1-\mathrm{CU}$	949
C-46A	$45-\mathrm{CU}$	950-962
C-46D	$1-\mathrm{CU}$	963
C-46A	45-CU	964-977
C-46D	1-CU	978
C-46A	45-CU	979
C-46D	1-CU	980-982
C-46A	45-CU	983
C-46D	1-CD	984-985
C-46A	$45-\mathrm{CU}$	986-1000
C-46A	$45-\mathrm{CU}$	1001-1003
C-46D	$5-\mathrm{CU}$	10004

AF Serial Number
AF4 1-5 159 -AF4 1-5183
AF41-5184 -AF41-5204
AF41-12280 - AF41-12283
AF41-12284-AF'41-12333
AF4 1-12334-AF41-12383
AF4 1-12384-AF4 1-12433
AF4 1-24640 - AF41-24689
AF41-24690 -AF41-24739
AF41-24740 -AF42-3577
AF42-3578 -AF42-3683
AF42-60942-AF42-107373
AF42-107374-AF'42-96707
AF42-96708 - AF42-96710
AF42-96711 -AF42-96721
AF42-96722
AF42-96723-AF42-96727
AF42-96728
AF42-96729-AF42-96750
AF42-96751
AF42-96752-AF42-96764
AF4 2-96765
AF42-96766-AF42-96779
AF'42-96780
AF42-96781
AF42-96782-AF42-96784
AF42-96785
AF42-96786-AF42-96787
AF'42-96788 - AF'42-96802
AF42-96803 - AF42-96805
AF42-96806

Series
Block No.
$45-\mathrm{CU}$
$5-\mathrm{CU}$
$45-\mathrm{CU}$
$5-\mathrm{CU}$
$45-\mathrm{CU}$
$5-\mathrm{CU}$
$45-\mathrm{CU}$
$5-\mathrm{CU}$
$50-\mathrm{CU}$
$5-\mathrm{CU}$
$50-\mathrm{CU}$
$5-\mathrm{CU}$
$50-\mathrm{CU}$
$5-\mathrm{CU}$
$50-\mathrm{CU}$
$5-\mathrm{CU}$
$50-\mathrm{CU}$
5-CU
$50-\mathrm{CU}$
$5-\mathrm{CU}$
$50-\mathrm{CU}$
5-CU
$50-\mathrm{CU}$
$5-\mathrm{CU}$
$50-\mathrm{CU}$
$5-\mathrm{CU}$
$50-\mathrm{CU}$
5-CU
$50-\mathrm{CU}$
$5-\mathrm{CU}$
$50-\mathrm{CU}$
$5-\mathrm{CU}$
$50-\mathrm{CU}$
$5-\mathrm{CU}$
$50-\mathrm{CU}$
$5-\mathrm{CU}$
$50-\mathrm{CU}$
5-CU
50-CU
5-CU
$50-\mathrm{CU}$
$5-\mathrm{Cu}$
$50-\mathrm{CU}$
$5-\mathrm{CU}$
$50-\mathrm{CU}$
5-CU
$50-\mathrm{CU}$
$5-\mathrm{CU}$
$55-\mathrm{CU}$
$10-\mathrm{CU}$
$10-\mathrm{CU}$
$15-\mathrm{CU}$
$20-\mathrm{CU}$
1-CU
$5-\mathrm{CU}$

Factory Sequence

1005
1006-1010
1011
1012-1017
1018-1020
1021-1024
1025-1026
1027
1028
1029-1032
1033
1034
1035-1036
1037-1039
1040
1041
1042-1045
1046
1047-1048
1049
1050
1051
1052-1057
1058-1059
1060-1062
1063
1064-1068
1069-1071
1072
1073-1074
1075-1077
1078
1079
1080-1083
1084-1097
1098
1099-1104
1105
1106-1112
1113-1115
1116-1117
1118-1119
1120-1122
1123-1142
1143-1144
1145-1191
1192
1193-1375
1376 \& 1378
1377 \& 1379
1380-1825
1826-2276
2277-2476
2477-2726
2727-2876

AF Serial Number

AF42-96807
AF42-96808 -AF42-96812 AF42-96813
AF42-96814 -AF42-96819
AF42-96820-AF42-96822
AF42-96823 -AF42-96826
AF42-96827 -AF42-96828
AF42-101036
AF42-101037
AF42-101038-AF42-101041
AF42-101042
AF42-101043
AF42-101044-AF42-101045 AF42-101046-AF42-101048 AF42-101049
AF42-101050
AF42-101051-AF42-101054
AF42-101055
AF42-101056-AF42-101057
AF42-101058
AF42-101059
AF42-101060
AF42-101061-AF42-101066
AF42-101067-AF42-101068
AF42-101069-AF42-101071
AF42-101072
AF42-101073-AF42-101077 AF42-101078-AF42-101080 AF42-101081
AF42-101082-AF42-101083
AF42-101084-AF42-101086
AF42-101087
AF42-101088
AF42-101089-AF42-101092 AF42-101093-AF42-101106 AF42-101107
AF42-101108-AF42-101113 AF42-101114
AF42-101115-AF42-101121
AF42-101122-AF42-101124
AF42-101125-AF42-101126
AF42-101127-AF42-101128
AF42-101129-AF42-101131
AF42-101132-AF42-101151
AF42-101152-AF42-101153
AF42-101154-AF42-101200
AF42-101201
AF42-101202-AF44-77443
AF44-77444 \& AF44-77446
AF44-77445 \& AF44-77447 AF44-77448 -AF44-77893
AF44-77894 - AF44-78344
AF44-78345-AF44-78544
AF44-78545 - AF44-78794
AF44-78795 -AF44-78944

ST. LOUIS-LOUISVILLE

Series
C-46A
C-46A
C-46A
C-46A

Block No.
1-CK
5-CK
55-CK
60-CK

Pactory Sequence
1-20
21-80
81-250
251-450

AF Serial Number
AF43-46953 -AF'43-46972
AF43-469'73 -AF'43-47032
AF43-47033 -AF43-47202
AF43-47203 -AF43-47402

LIST OF ILLUSTRATIONS

SECTION I
Figure Page
1 Three View Dimension Diagram X
2 Station Diagram 2
3 Major Disassembly 3
3A Access Door Diagram. 4A
4 Clearance for Nut Plates 8
5 Combination Center Drill 9
6 Rivet Types and Materials 13
7 Typical Flush Riveted Joint 16
8 Machine Countersinking 17
9 Dimple Countersinking 18
10 Dimple Tools 20
11 Cherry Blind Riveting Procedure 20
12 Rivet Gun Position. 21
13 Procedure for Plugging Rivet Holes 22
13A Rivetiess Skinpatch 31
14 Special Tools 34, 34A, 35, 36
SECTION II
Figure
15 Engine Mount Structure 38
16 Engine Mount Repair 40
17 Firewall Assembly 41
18 Firewall Repair 44
19 Firewall Beam Repair 45
SECTION III
Figure
20 Fuselage Sructure 47
21 Tail Cone Structure 49
22 Fuselage Skin Diagram 50, 51
23 Tail Cone Skin 52
24 Fuselage Skin Repair 66
24A Fuselage Skin Diagram 66A, 66B
24B Fuselage Skin Diagram $66 \mathrm{P}, 66 \mathrm{Q}$
25 Fuselage Zee Stringer Repair 68
26 Fuselage Stringer Diagram 69, 70
27 Upper Center and Lower Keel Extrusion Repair 71
28 Floor Match Extrusion Repair 72
28A Semi-Standard Stiffener 76
29 Fuselage Bulkhead Diagram Station 16. 77
33 Fuselage Bulkhead Diagram Station 34.5 77
31 Fuselage Bulkhead Diagram Station 50.5 77
32 Fuselage Bulkhead Diagram Station 53.5 77
33 Fuselage Bulkhead Diagram Station 60.5 77
34 Fuselage Bulkhead Diagram Station 70.7 78
35 Fuselage Bulkhead Diagram Station 88.5 78
36 Fuselage Bulkhead Diagram Station 107. 78
37 Fuselage Bulkhead Diagram Station 128. 78
38 Fuselage Bulkhead Diagram Station $150.75,173.50,255.5,419.5,440,663$, 651, 664.5, 688.5 79
Figure Page
39 Fuselage Bulkhead Diagram Station 194. 79
40 Fuselage Bulkhead Diagram Station 214.5 79
41 Fuselage Bulkhead Diagram Station 235, 460.5 79
42 Fuselage Bulkhead Diagram Station 276, 399. 80
43 Fuselage Bulkhead Diagram Station 285 80
44 Fuselage Bulkhead Diagram Station 296.5, 378.5 80
45 Fuselage Bulkhead Diagram Station 337.5, 358. 80
46 Fuselage Bulkhead Diagram Station 392.2, 312 81
47 Fuselage Bulkhead Diagram Station 481 81
48 Fuselage Bulkhead Diagram Station 501.5 81
49 Fuselage Bulkhead Diagram Station 522, 563, 583.5 81
50 Fuselage Bulkhead Diagram Station 542.5 82
51 Fuselage Bulkhead Diagram Station 597 82
52 Fuselage Bulkhead Diagram Station 615 82
53 Fuselage Bulkhead Diagram Station 704 82
54 Fuselage Bulkhead Diagram Station 720 82
55 Fuselage Bulkhead Diagram Station $734.7,746.5,758.2,770.5$ 83
56 Fuselage Bulkhead Diagram Station 782.9 83
57 Fuselage Bulkhead Diagram Station 795, 807 83
58 Fuselage Bulkhead Diagram Station 819.6, 832 84
59 Fuselage Bulkhead Diagram Station 848.2 84
60 Fuselage Bulkhead Diagram Station 867.2 84
61 Fuselage Bulkhead Diagram Station 886.2 84
61A Fuselage Bulkhead Diagram Station 542.5 84A
61B Fuselage Bulkhead Diagram Station 563 84A 61C Fuselage Bulkhead Diagram Station 583.5 84A
62 General Bulkhead Repair for a Minor Damage 87
63 Repair to Group "A" Bulkheads - Damage Confined to Web. 88
64 Repair to Group "A" Bulkheads 276, 399 -Lower Ring. 89
65 Detail A Repair. 90
66 Detail B Repair 91
67 Detail C Repair 92
68 Detail D Repair 93
69 Detail E Repair. 94
70 Detail F Repair 95
71 Detail G Repair 96
72 Detail H Repair 97
Figure Page
73 Detail I Repair 98
74 Detail J Repair 99
75 Detail K Repair 100
76 Repair of Bulkhead Station 886.2 101
77 Repair of Stub Rings 102
78 Main Cargo Door Diagram 103
79 Main Cargo Door and Pan Repairs 104
80 Main Cargo Door Frame Diagram 105
81 Main Cargo Door Frame Repairs 106
82 Main Cargo Door Sill Splice 107
83 Main Cargo Door Hinge Insert 108
83A Right Hand Jump Door 108A
83B Left Hand Jump Door 108B
84 Fuselage Flooring Diagram. 109
85 Repair to Fuselage Floor in Region of Corrugations 111
86 Repair to Cargo Floor Tracks. 112
87 Repair to Longitudinal Floor Beam 114
88 Repair to Transverse Floor Beam 115
89 Repair to Intermediate Floor Beam 116
90 Repair to Floor Beam Capstrips 117
91 Fuselage Doubler Diagram 119
92 Fuselage Doubler Repair. 122
92A Fuselage Doubler Diagram 122A
93 Glider Tow Longeron and Jump Door Stiffener 123
94 Empennage Torque Tube Support Repair 123
95 Repair in Region of Wing-Fuselage Inter- section 124.126
96 Special Fuselage Extrusions. 128, 129
SECTION IV
Figure
97 Landing Gear Assembly 132
98 Tail Wheel Assembly 134
SECTION V
Figure
99 Semi-Structural Door-Wing Skin 137
100 Wing Center Panel Structure 138
101 Cross-Section of Wing-Center Panel 139
102 Wing Outer Panel Structure 140
103 Wing Skin and Stringer Diagram- Center Panel 143
104 Wing Skin and Stringer Diagram- Outer Panel Upper 144
105 Wing Skin and Stringer Diagram- Outer Panel Lower. 145
106 Cover Plate for Negligible Damage 150
107 Hat Section Repair and Skin Patch 151
108 Standard Wing Hat Section Stringers. 152
109 Repair at Skin Intersection-Lower Center Panel 153
110 Wing Nose Skin Repair 154
111 Wing Spar Assembly-Center Panel Front 158Page
112 Wing Spar Assembly-Center Panel 30\% 160
113 Wing Spar Assembly - Center Panel 70\% 162
114 164
115 Wing Spar Assembly-Outer Panel 70\% 166
116 Wing Spar Capstrip Extrusions 168, 169
117 Wing Spar Capstrip Extrusion-CenterPanel 30\%170
118 Wing Spar Capstrip Extrusion-Outer Panel Front 171
119 Front Spar Capstrip Splice-Center Panel 172
119A Lower Front Sparcap Splice- Alternate 172A
120 30\% Spar Capstrip Splice-Center Panel 173
121 70\% Spar Capstrip Splice-Center or Outer Panel 174
122 70\% Spar Capstrip Splice-Center or Outer Panel 174
122A Upper 70\% Spar Capstrip Splice- Center Panel. 174A
122B Lower 70\% Spar Capstrip Splice- Center or Outer Panel 174B
123 30\% Spar Capstrip Splice-Outer Panel 175
124 Repair to One Leg of Capstrip 176
125 Repair to Front Spar Capstrip in Region of Fuselage Floor. 177
126 Repair to 30\% Spar Capstrip in Region of Fuselage Floor 178
127 Wing Spar Web Repair 180
128 Front Spar Capstrip Extension Splice- Outer Panel 183
129 Center Panel Rib Structure 185
130 Center Panel Rib Repair-Diagonals 186
131 Center Panel Rib Repair-Upper Capstrip (Station 9.5, 25.5, 41.5 Between 30\% and 70% Spars and Station 9.5 and 41.5 Between Front and 30\% Spars). 189
132 Center Panel Rib Repair-Upper Cap- strip (Station 25.5 Between Front and 30\% Spars) 190
133 Center Panel Rib Repair-Main Web to Skin 191
134 Center Panel Rib Repair-Web with Single Angle 193
135 Center Panel Rib Repair-Web with Single Angle (Complete Break) 194
136
Center Panel Rib Web Showing Insert. 195
137
Center Panel Rib Repair-Auxiliary Web to Skin 196
138 Intermediate Tank Rib Structure. 197
139 Nose Tank Rib Structure. 198
140 Repair to Tank Ribs-Upper 199
141 Repair to Tank Ribs-Lower 200
142 Repair to Tank Ribs-Horizontal Splice 201
143 Repair to Tank Riba-Aft End 202
144
Figure Page|145 Outer Panel Rib-Channel and WebRepair. 205
146 Repair to Outer Panel Rib Station 382. 206
147 Repair to Outer Panel Rib Station 412- Partial Damage 207
148 Repair to Outer Panel Rib Station 412- Complete Damage 208
149 Outer Panel Rib Station 412-Insert 209
150 Nose Rib Repair-Damage from Flange to Lightening Hole 210
151 Nose Rib Repair-Damage from Flange Through Lightening Hole 211
152 Nose Rib Repair-Formed Web Type 212
153 Nose Rib-Formed Web Type Replace. ment 213
154 Repair to Intermediate Nose Ribs 213
155 Aileron Hinge Rib Structure 216
156 Repair to Trailing Edge Ribs 217
157 Center Panel-Outer Panel Junction Repair (Station 192) 218
158 Floating Rib Structure (Station 192) 220
059 Floating Rib Web Repair (Station 192). 221
460 Leading Edge Match Angle Repair (Sta- tion 192) 222
161 Wing Attach Angle Extrusions 223
162 Wing Tip Structure 225
162A Wing Tip Structure 226A
162B Aileron Structure 226B
162C Aileron Skin Diagram 226D
163 Repair to Wing Tip Match Angle and Molding 227
164 Aileron Structure 228
165 Aileron Nose Skin Repair 231
166 Aileron Nose Beam Repair 232
167 Aileron Fabric Repair-Minor Damage. 234
168 Aileron Fabric Repair-Major Damage 235
169 Aileron Fabric Attaching Pin 236
170 Aileron Mass Balancing 238
171 Flap Structure-Center Panel 240
172 Flap Structure-Outer Panel 242
173 Flap Skin Diagrams 244
174 Flap Skin Repair 245
175 Component Parts of Flap Beams 246
176 Flap Trailing Edge Channel Repair 247
177 Wing-Special Extrusions 249
SECTION VI
Figure
178 Nacelle Structure 251
179 Nacelle Skin and Stringer Diagram 253
180 Nacelle Skin Patch Adjacent to Front Spar 255
181 Nacelle Bulkhead Repair-Station 88 256
182 Nacelle Bulkhead Repair-Station 98.8 to 127.3 257
183 Nacelle Bulkhead Repair in Region of Oil Tank 258
184 Nacelle Bulkhead Repair-Station 136.8 259
185 Nacelle Bulkhead Repair-Station 213 260
186 Nacelle Upper Engine Mount Longeron Repair 263
187 Nacelle Top Center Longeron Repair 264
188 Nacelle Lower Longeron Repair 265
SECTION VII
Figure
189 Stabilizer Structure 268
190 Stabilizer Skin Diagram 270
190A Stabilizer Structure 270A
190B Stabilizer Skin Diagram 270C
190C Stabilizer Tip Structure $270 D$
191 Stabilizer-Flush Skin Repair 271
192 Stabilizer-Repair of Bearn Web 273
193 Stabilizer-Beam Flange Repair in Rein- forced Region 274
194 Stabilizer-Beam Flange Repair in Rein- forced Region 275
194A. Stabilizer-Rib Repair. 276B
195 Stabilizer-Rib and Beam Flange Repair 277
196 Stabilizer-Tip Attachment Rib Repair 278
197 Stabilizer-Repair in Region of Attach Angles 279
198 Stabilizer Tip Structure 280
199 Fin Structure 282
200 Fin Skin and Stringer Diagram 284
201 Fin-Repair of Beam 285
202 Fin--Repair in Region of Attach Angles 286
203 Fin Tip Structure 287
204 Rudder and Tab Structure 290
205 Rudder Skin Diagram 292
205A Rudder and Tab Structure 292A
205B Rudider Skin Diagram 292C
206 Rudder Beam Repair 293
207 Rudder-Method of Shortening Rib 294
208 Rudder Tab Hinge Beam and Tab Beam Repair 295
209 Rudder-Repair of Counterbalance Rib 296
210 Rudder-Repair of Hinge Attachment Rib 298
211 Rudder-Repair of Torque Tube Attach. ment Rib 299
212 Rudder Tab Rib Repair 301
213 Rudder Tip Structure 303
214 Rudder Counterbalance Skin Doubler Repair 304
215 Rudder Trailing Edge Repair 305
Figure Page
216 Elevator Structure 306
216A Elevator and Tip Structure 308A
216B Elevator Skin Diagram 308C
217 Elevator Skin Diagram 309
218 Elevator-Repair to Beam 310
219 Elevator Tip Structure 312
220 Elevator Mass Balancing 313
221 Rudder Mass Balancing 314
222 Special Empennage Extrusions. 315
SECTION VIII
Pigure
223 Dorsal Fin 318
224 Tail Wheel Door Repair 319
225 Landing Gear Door Structure 320
226 Landing Gear Door Repair 321
227 Engine Cowl Structure 322, 323
228 Engine Cowl-Hat Section Repair. 326
SECTION iX
Figure
229 General Repair-Angles and Flats. 330
230 General Repair-Flanged Webs and Channels 331
231 General Repain-Extruded Angles 333
232 General Repair-Extruded Bulb Angles 335
233 General Repair-Extruded "T"
337,339

SECTION X

Figure
234 Butt Weld Flat Patch Fitted-in Place Prior to Welding 341
235 Tubing Repair-Pulling Iron 342
235A Repair to Welded Fuel Tanks 342A
236 Flaced Tube Ends-Parker Triple Type Fitting 343
237 Beaded Tube Ends 344
238 Repair for Flared End Tubes 345
239 Repair for Beaded End Tubes 345
240 Grip Die and Flaring Tool. 346
241 Cable Terminals 348, 349
242 Sound Proofing 353
243 Method of Straightening Angles 354
SECTION XI
Figure
244 Fuselage Nose Jig 358
245 Fuselage Intermediate Jig. 359
246 Fuselage Tail Ji 361
247 Tail Hoisting Frame 362
248 Wing Center Panel Jig 364
249 Method of Jacking Center Panel. 365
250 Disassembly Jigs in Position 367
25 I Wing Outer Panel Holding Jig. . 368, 370
252 Aileron Holding Jig 371
253 F lap Holding Jig-Center Panel 372
254 FIap Holding Jig-Outer Panel. 373
255 Stabilizer Holding Jig 374
256 Fin Holding Jig. 375
257 Elevator Holding Jig 376
258 Rudder Holding Ji 377
259 Airplane Alignment Diagram 378

LIST OF TABLES

SECTION I Page
1 Major Disasssembly. 3
2 Main Assembly Weight Breakdown 4
3 Standard Drill and Reamed Hole Sizes. 6
4 Standard Clearances and Countersunk Holes. 8
5 Temper Designation. 10
6 Heat Treat Soaking Time 11
7 Minimum Bend Radii 11
8 Rivet Head Diameters. 14
9 Drill Size for Rivet Removal 14
10 Rivet Drill Size 15
11 Rivet Grip Lengths 15
12 Shop Formed Heads 16
13 Simultançous Dimpling 17
14 Machine Countersink Dimensions 18
15 Dimple Countersink Dimensionsand Tools 18
16 Dimpling Tools 19
17 AN Standard Hex-Head and Clevis Bolts and Pins 26
18 Nuts-Self Locking Fiber Insert 27
19 Washers-Plain 29
20 Allowable Loads for Raised Head Rivets 30
21 Allowable Loads for Machine Counter-sunk Rivets32
22 Allowable Loads for Press Countersunk
Rivets 32
23 Allowable Loads for Cherry Blind Rivets 33
SECTION II
24 Engine Mount Structure 39
25 Firewall Structure 42
26 Materials for Engine Mount and Eire- wall Repair 43
SECTION III
27 Component Parts of Fuselage 48
28 Fuselage Skin Panels and Skin Splices 53
28A Fuselage Skin Panels and Skin Splices 66C
28B Fuselage Skin Panels and Skin Splices 66R
29 Bulkhead Grouping and Component Parts 85
30 Component Parts of Floor 110
31 Floor Beam Riveting 113
32 Sizes, Locations and Splices of Fuselage Doublers 120
33 Materials for Fuselage Repair 130
SECTION IV
34 Component Parts of Landing Gear. 133
35 Component Parts of Tail Wheel 135
SECTION V
36 Semi-Structural Door Frame Gages 136
37 Component Parts of Wing Outer Panel 141
38 Wing Skin Riveting 146Page
39 Component Parts of Wing Center Panel 149
40 Standard Hat Section Stringers 152
41 Wing Stringer Splices 155
42 Front Spar, Center Panel-Component Parts 159
43 30\% Spar, Center Panel-Component Parts 161
4470% Spar, Center Panel-Component Parts 163
4530% Spar, Outer Panel-Component Parts. 165
4670% Spar, Outer Panel-Component Parts 167
4730% Spar Cap Splice-Center Panel 173
48 Wing Spar Web Splices 181
49 Outer Panel Front Spar Extension Repair 183
50 Center Panel Rib Component Parts 185
51 Center Panel Rib Repair-Diagonals 187
52 Center Panel Rib Repair-Main Web to Skin 192
53 Center Panel Rib Repair-Web with Single Angle 194
54 Outer Panel Intermediate Tank Rib- Component Parts 197
55 Outer Panel Nose Tank Rib Component Parts. 198
56 Outer Panel Flanged Web Rib Com- ponent Parts. 203
57 Floating Rib (Station 192) Component Parts 220
58 Component Parts of Wing Tip 226
58A Component Parts of Wing Tip 226
58B Component Parts of Aileron 226
58C Aileron Skin Riveting 226D
59 Aileron and Tab Component Parts 229
60 Component Parts of Flap-Center Panel 241
61 Component Parts of Flap-Outer Panel 243
62 Materials for Wing Repair 248
SECTION VI
63 Component Parts of Nacelle 252
64 Nacelle Skin Riveting 254
65 Materials for Nacelle Repair 266
SECTION VII
66 Component Parts of Stabilizer 269
67 Stabilizer Skin Riveting. 270
67A Component Parts of Stabilizer 270B
67B Stabilizer Skin Riveting 270C
67C Component Parts of Stabilizer Tip 270D
68 Component Parts of Stabilizer Tip 280
69 Fin Skin Riveting 281
70 Component Parts of Fin. 283

Tables

AN 01-25LA-3

LIST OF TABLES

71 Component Parts of Fin Tip 288
72 Component Parts of Rudder 291
73 Rudder Skin Riveting 292
73A Component Parts of Rudder 292B
73B Rudder Skin Riveting 292C
74 Component Parts of Rudder Tip 303
75 Component Parts of Elevator 307
75A Component Parts of Elevator 308B
75B Elevator Skin Riveting 308C
76 Elevator Skin Riveting 309
77 Component Parts of Elevator Tip 312
78 Materials for Empennage Repair 316
SECTION VIII
79 Component Parts of Landing Gear Door 320
80 Component Parts of Engine Cowl 324
81 Materials for Fairing and Cowling Repair 327
SECTION IX
82 Rivet Patterns for General Repair to Sheet Stock 329
83 Repair to Extruded Angles 334
84 Repair to Extruded Bulb Angles 336
Page Page
85 Repair to Extruded Tees 338
86 Repair to Extruded Bulb Tees 338
SECTION X
87 Cable Chart 350
SECTION XI
88 Materials for Construction of Fuselage Nose Jig 360
89 Materials for Construction of Fuselage Intermediate Jig 360
90 Materials for Construction of Fuselage Tail Jig 363
91 Materials for Construction of Tail Hoist- ing Frame 363
92 Materials for Construction of Wing Center Panel Jig 366
93 Materials for Construction of Wing Outer Panel Jig 366
94 Outer Panel Station Contour Table 369
95 Alignment Diagram 378
96 American (National) Standard Screw Threads 379
97 British Association Screw Threads 379
98 British Standard Fine Screw Threads 380

C-46 AND C-46A AIRPLANE-NAVY MODEL R5C-1

SECTION I
 iNTRODUCTION

1. GENERAL.

a. This Handbook comprises instructions for the repair of the C-46, C-46A, C-46D, C-46F and Navy Designation R5C-1 Airplanes manufactured by the Curtiss-Wright Corporation, Airplane Division.
b. Except as specifically stated in the text, the various repairs given are applicable to all models of the airplane.

2. SCOPE OF HANDBOOK.

Although the Handbook is written primarily for use in the field where major overhaul facilities are not available, the use of mobile repair units and the possibility of effecting a repair at a depot warrant the inclusion of data of a more complex nature. With this in view, the present Handbook covers every structural item in the airplane keeping simplicity of repair always uppermost. Together with segregated individual repairs are shown those entailing several units simultaneously. This is done in order to clarify the procedure to be followed when damage occurs to members in close proximity.

No attempt is made to associate the repairs with any specific type of damage (enemy action, landing, handling, etc.) since they may be combined in any manner.

In many cases, several alternate repairs are given so that advantage may be taken of the specific conditions under which the work is done. In all cases sufficient data are given to effect a repair but as damage to a certain member may vary in size and location, it is up to the repair personnel to maintain the strength and dimensions as given for the member under consideration.

An added section gives the procedure for disassem. bly of the center panel from the fuselage. Since the wing forms an integral part of the fuselage, it is necessary prior to its removal, to jig the fuselage so that it will not sag or collapse under its own weight.

3. TYPE OF CONSTRUCIION.

The C-46, C-46A, C-46D, C-46F and Navy designation RSC-1 is a twin-engine low-wing monoplane whose overall dimensions are given in figure 1. The wing is of full cantilever construction and is composed of three main sections: the two outer panels which bolt onto the center panel, and the center panel which is structurally integral with the fuselage
and contains the engine nacelles and main gear. Both the main gear and the tail wheel are fully retractable, the former into the nacelles and the latter into the tail cone. The main structure is a network of bulkheads, spars and stringers which is covered with a thin, stressed aluminum alloy skin. The ailerons have a metal framework covered with fabric. The ailerons on Airplanes AF44-78545 and subsequent are covered with 24 ST alclad skin. With the exception of a few items, the airplane is of 24ST alclad construction with 24ST extrusions and 14ST forgings. The power plant, including the engine mount and the firewall, can be removed as a unit, being fastened to the nacelle by four bolts. The major disassembly of the airplane is shown in figure 3.

4. TYPES OF REPAIR.

a. GENERAL.-Due to the type of construction used, it is important that any repair to the skin, stringers and bulkheads be given careful consideration. Simple operations, such as repairs to dents, small skin holes and exterior injuries may be accomplished readily and easily. However, internal structures must be repaired by means of patches, inserts, or by splicing to reinforce the damaged section or areas before the outer skin is attached. Caution must be exercised to maintain the original contour and to eliminate excessive increases in weight.

b. CLASSIFICATION OF DAMAGE.—Damages

 have been divided into four groups to facilitate the classification of repair methods. The classification and general description of the various damage is as follows:(1) NEGLIGIBLE DAMAGE.-Small dents, holes or cracks in the sheet material requiring no addition of structural material or reinforcements. The dents must be bumped out, cracks stopped by a $1 / 8$ inch hole (No. 40 drill) at each end, and small holes rounded out to a .25 inch radius to prevent the formation of cracks.
(2) DAMAGE REPAIRABLE BY PATCH. ING.-Holes and cracks which impair the strength of the structure but which may be repaired by the use of sheet reinforcements attached by a specified number and arrangement of rivets or bolts. Patches must be shaped and arranged in such a manner as to permit the required rivet or bolt pattern to extend completely around the damage or to the edges of the original stock. Where a fitting or other structure is

FIGURE 3 - MAJOR DISASSEMBLY

TABLE 2
MAIN ASSEMBLY WEIGHT BREAKDOWN CALCULATED WEIGHTS PER DRAWING NUMBER ASSEMBLIES

Drawing Name	Drawing No.	Weight of Unit
Outer Panel Assembly	20-030-3311-2	1726
Outer Panel Leading Edge	20-030-607-11	534
Outer Panel Trailing Edge Aft 70\%	20-030-5040-21	128
Wing Tip	20-031-5701-55	22
Aileron Assembly Covered	20-050-5701-31	111
Flap Assembly - Outer Panel	20-070-1001-168	101
Panel Assembly - Center Panel	20-020-3200	4663
Center Panel Leading Edge	20-020-1010-15	1529
Floor Assembly Wing Section Main Cabin	20-260-1002-200	163
Closure Assembly - Center Panel	20-020-1009-1	221
Center Panel Wing Flap	20-070-1101-125	98
Skin Assembly Upper Center Panel Aft 30\%	20-020-1132-1	302
Skin Assembly Lower Center Panel Aft 30\%	20-020-1137-4	270
Rib Assembly Station 192 Center Panel	20-020-1112-1	47
Installation-Fuselage and Center Panel	20-230-1000-25	12604
Fuselage Assembly	20-210-3050-19	7397
Shell Assembly - Nose Section	20-210-1001-15	127%
Fuselage Assembly-Shell Center Section	20-210-3051-15	3733
Frame Assembly -Fuselage Center Section	20-210-3053-647	1906
Frame Assembly - Fuselage Center Section Sub Assembly	20-210-3053-2	98
Frame Assembly - Fuselage Center Section Sub Assembly	20.210-3053-3	336
Frame Assembly - Fuselage Center Section Sub Assembly	20-210-3053-4	360
Frame Assembly - Fuselage Center Section Sub Assembly	20-210-3053-5	184
Floor Assembly-Forward Section Main Cabin	20-260-1001-95	275
Floor Assembly-Center Section Main Cabin	20-260-3009-92	508
Floor Assembly - Rear Section Main Cabin	20-260-1004-21	89
Plating Assernbly - Fuselage Center Section	20-210-3052-490	856
Dorsal Fin Assembly	20-150-1002-1	12
Shell Assembly - Fuselage Tail Section	20-210-1300-6	595
Frame Assembly - Tail Section	20-210-1301-81,-505	181, 121
Plating Assembly - Tail Section	20-210-1302-2,-86	64, 101
Installation-Main Cargo Door	20-210-3070-1	117
Shell Assembly Fuselage-Under Wing	20-210-1200-11	246
Installation-Nacelles	20-720-1000-82L	240
Installation-Nacelles	20-720-1000-82R	241
Structure Assembly - Inside Nacelle Aft	20-720-1023-6	57
Nacelle Door Assembly	20-720-1019-1	36
Installation-Landing Gear	20-310-1001-50	1282
Installation-Tail Wheel	20-360-1001-7	494
Installation-Power Plant	20-400-1000-10	5981
Firewall Assembly	20-750-1001-50	67
Assembly -Stabilizer Horizontal	20-110-5001-70	159
Assembly - Fin	20-120-5110-65	184
Assembly - Elevator	20-130-5701-50	135
Assembly-Rudder	20-140-5110-25	162
Installation-Engine Cowl	20-730-1001-3	215

KEY TO ACCESS DOOR DIAGRAM

1. Nose Access Door
2. Service and Inspection Access Door
3. No. 10 Spark Plug Access Door
4. Ground Heater Duct Opening
5. Oil Drain
6. Wheel Well Doors and Inspection Door
7. Hangar Installation
8. Hangar Installation
9. Hangar Installation
10. Hangar Installation
11. No. 1 Spark Plug Access Door
12. Motor Lifting Eye Access Door
13. Oil Tank Filler Access Door
14. Service and Inspection Access Door
15. Fuel Strainer Access Door
16. Fuel System Access Door
17. Ground Access Door
18. Telephone Connection
19. De-Icer Access Door
20. Sump Drain
21. De-Icer Access Door
22. Fuel System Access Door
23. De-Icer Access Door
24. Fuel System Access Door
25. Fuel System Access Door
26. Fuel Tank Sump Drain
27. Inspection Access Door
28. De-Icer Access Door
29. Inspection Access Door
30. Inspection Access Door
31. Inspection Access Door
32. Inspection Access Door
33. De-Icer Access Door
34. Inspection Access Door
35. Inspection Access Door
36. Inspection Access Door
37. Inspection Access Door
38. Inspection Access Door
39. Wing Tip Light Junction Box Inspection Door
40. Aileron Tab Motor Access Door
41. Vent Line Connections Inspection Door
42. Fuel Tank Filler Access Door
43. Vent Line Connections Inspection Door
44. Vent Line Connections Inspection Door
45. Fuel Tank Filler Access Door
46. Liquid Level Transmitter Inspection Door
47. Fuel Tank Filler Access Door
48. Liquid Level Transmitter Inspection Door
49. Liquid Level Transmitter Inspection Door
50. Inspection Access Door
51. Inspection Access Door
52. Inspection Access Door
53. Inspection Access Door
54. Aileron Control Cable Inspection Door
55. Inspection Access Door
56. Outer Flap Bellcrank Inspection Door
57. Aileron Control Cable Inspection Door
58. Aileron Control Cable Inspection Door
59. Aileron Tab Control Inspection Door
60. Aileron Control Cable Inspection Door
61. Aileron Control Cable Inspection Door
62. Aileron Bellcrank Inspection Door
63. Inspection Access Door
64. Magnesyn Compass Transmitter Access Door
65. Inspection Access Door
66. Inspection Access Door
67. Aileron Bellcrank Bolt Access Door
68. Inspection Access Door
69. Inspection Access Door
70. Inspection Access Door
71. Inspection Access Door
72. Inspection Access Door
73. Inspection Access Door
74. Aileron and Tab Cable Inspection Door
75. Aileron and Tab Cable Inspection Door
76. Aileron and Tab Cable Inspection Door
77. Aileron and Tab Cable Inspection Door
78. Aileron and Tab Cable Inspection Door
79. Aileron and Tab Cable Inspection Door
80. Aileron and Tab Cable Inspection Door
81. Aileron and Tab Cable Inspection Door
82. Aileron and Tab Cable Inspection Door
83. Aileron and Tab Cabie Inspection Door
84. Aileron and Tab Cable Inspection Door
85. Aileron and Tab Cable Inspection Door
86. Aileron and Tab Cable Inspection Door
87. Aileron and Tab Cable Inspection Door
88. Aileron and Tab Cable Inspection Door
89. Inspection Access Door
90. Inspection Access Door
91. Inspection Access Door
92. Inspection Access Door
93. Inspection Access Door
94. Rudder Bellcrank Access Door
95. Rudder Bellcrank Access Door
96. Rudder Bellcrank Access Door
97. Rudder Bellcrank Access Door
98. External Electric Power Cart
99. Low Pressure Oxygen Filler Valve
100. Fuel Tank Sump Pump Drain
101. Inspection Access Door
102. Inspection Access Door
103. De-Icer Inspection Door
104. Elevator Tab Control Inspection Door
105. Elevator Tab Control Inspection Door
106. Spring Tab Bellerank Door
107. Elevator Torque Tube Inspection Door
108. Inspection Access Door
109. Yoke Assembly Access Door
110. Elevator Bellcrank Inspection Door
111. Elevator Torque Tube Inspection Door
112. Elevator Tab-Pulley Bracket Access Door
113. Tail Wheel Doors
114. Inspection Access Doors
115. Carburetor Access Doors
116. Fire Wall Shut-Off Valve Access Door
117. Oil Tank Access Door
118. De-Icer Access Door
119. Fairing Tie Down Bolt Access Door
120. Stabilizer Trim Tab Control Inspection Door
121. Stabilizer Trim Tab Control Inspection Door
122. Stabilizer Trim Tab Control Inspection Door
123. Stabilizer Trim Tab Control Inspection Door
124. Stabilizer Trim Tab Control Inspection Door
125. Rudder Bellcrank Inspection Door
126. Rudder Bellcrank Inspection Door
127. Rudder Bellcrank Inspection Door
128. Inspection Access Door
129. Tail Light, Towing Mech. Inspection Door
130. Inspection Access Door
near the damaged area, the patches may have to be extended beyond these in order to obtain the required attachment. In many cases the damaged material must be replaced to give support to the patch and to other parts of the structure, or to obtain continuity, as in the fuselage skin. This added material is designated as a filler or insert.
(3) DAMAGE REPAIRABLE BY INSER-TION.-Extensive damage requiring large ingerts which may be attached by means of splices. When the damage is extensive or the presence of fittings and other structure make it difficult to use patches, the damaged material must be removed and replaced by formed inserts of the same or equivalent material, gage, and shape. Where practical, the inserts should be made to extend to the edges of the original sheet and should be attached by using the original rivet or bolt pattern. In cases where complete replacements are impractical, splices may be effected by using patches. Patches used in splicing must be continuous along the length of the splice and of sufficient width to take the rivet or bolt pattern specified for patching on each side of the cut. Continuous patches for splices that are not straight, that is, for angles, rectangles or circles, are designated as frames. Frames are frequently used in repairing small sections of skins. Where continuity is not essential, splices may be effected by overlapping the insert and the undamaged material. The attachment for an overlap should be the same in pattern as that used on one side of a patch splice.
(4) DAMAGE NECESSITATING REPLACE-MENT.-Damage to fittings, highly stressed material, and small pieces such as clips and gussets which may be easily replaced. Fittings which are cracked, sprung or nicked must be replaced. Small sheet fittings, gussets, clips, brackets, etc. are easily duplicated and should be replaced if damaged or stretched out of shape.
c. EXTENT OF DAMAGE.-The extent of the damage must be carefully ascertained. If the damage is due to gun fire, the path of the bullet is determined and an examination made of all damaged members and their attachments.

Look for damage caused by the travel of shock loads along large members. If necessary, the skin may be rolled back or cut away to facilitate inspection. The skin may then be repaired as described under that item in the various sections that follow. Check particularly for the following: dents and cracks in extrusions and fittings; elongated rivet and bolt
holes; cracks and sharp cornered dents or wrinkles, corrosion in sheet material; and rivets which have stretched or sheared leaving their heads intact. After the extent of damage has been determined, devise a method for its repair by combining the repairs given in the text and illustrations for the various individual members.

5. SUPPORT OF STRUCTURE DURING REPARR.

When repair operations are being performed whic ${ }^{1}$ necessitate the removal of structural material, care must be taken not to overload other parts of the structure. A fixture of some type must be used in brace or hold that portion of the structure being worked upon. It is essential that the damaged structure be suitably and firmly supported against distortion.

Section XI gives data on the most important wing and fuselage jigs necessary for disassembly of wing from fuselage. Holding jigs are also shown for extensive work on the outer panel and control surfaces. These jigs serve primarily to keep deflections and twisting down to a minimum.

6. USE OF BOLTS.

No aluminum alloy bolts less than $1 / 4$ inch or steel bolts less than $8 / 16$ inch in diameter shall be used. No commercial machine screws or bolts shall be substituted for aircraft bolts. The condition, to be obtained with standard bolts employing washers under the nuts where necessary, is that the threaded portion of a bolt must not be used to take a shear or bearing load: that is, there should not be any thread in the bolt hole. When replacing a bolt, the plain portion of the shank of the new bolt must be identical in length with that of the original. All bolts must be suitably locked. Wherever lockwire is used, the wire must fit the hole. Care must be taken to ensure that the nuts are locked in the same manner as the original. Elastic stop nuts shall be inspected for usability and reused wherever possible. Table 3 gives the various drill and ream sizes. Allowable loads for bolts are given in table 17 at the end of this section.

7. DETECTING THE PRESENCE OF CRACKS.

When effecting repairs, great care must be exercised at all times to ensure that no cracks in the immediate structure remain undetected. Fine hairsize cracks in fractured sheets if undetected will open and spread under vibration. Minute cracks caused by bullet impacts should be cut away when cleaning up frac-
tured areas for repair. However, if any doubt exists as to the presence of a crack, the part or area should be soaked in paraffin and thoroughly dried. The
application of a whiting water or whiting-methylated spirit paste to the surface will, on drying, disclose the presence of a crack by a discolored mark.

TABLE 3
STANDARD DRILL AND REAMED HOLE SIZES
TWIST DRILL TABLES
DECIMAL EQUIVALENTS OF LETTER SIZE DRILLS

Letter	Size of Drill Inches						
z	. 413	S	. 348	L	. 290	E	. 250
Y	. 404	R	. 339	K	. 281	D	. 246
X	. 397	Q	. 332	J	. 277	c	. 242
W	. 386	P	. 323	1	. 272	B	. 238
v	. 377	0	. 316	H	. 266	A	. 234
U	. 368	N	. 302	G	. 261	-	-
T	. 358	M	. 295	F	. 257	-	-

Drilled Holes Tolerances shall be as follows:

Drill Size	Tolerances
\#60 to \#31	+.002-.000
* 30 to 711	+. $004-.000$
410 to 156	+.005-. 000
$1 / 4$ to 3164	+. $007-.000$
$1 / 2$ to $47 / 64$	+. $010-.000$
3/4 to 6964	+. $013-.000$
$1^{\prime \prime}$ to $2^{\prime \prime}$	+.015-. 000

TWIST DRILL AND STEEL WIRE GAGE
 MANUFACTURERS STANDARD

No.	Size of Drill Inches	No.	Size of Drill	No.	Size of Drill	No.	Size of Drill
1	.228	16	.177	31	Inches	.120	46
Inches							

TABLE 3 (CONTINUED)

STANDARD DRILL AND REAMED HOLE SIZES
 REAMED BOLT HOLE—SIZES AND TOLERANCES

(AN-) Hex-Head Bolt
Bolt
Hole Size

Size	$\begin{aligned} & \text { Sing } \\ & \text { SStd. } \end{aligned}$	Hole eamer)	$\begin{gathered} \text { Mul } \\ \text { (Spec } \end{gathered}$	Holes eamer)		or Holes		Fit Reamer)	*Gro	d Bolt m.	Rearn D	Hole
10-32	. 190	$\begin{aligned} & +.001 \\ & -.000 \end{aligned}$. 191	$\begin{aligned} & +.001 \\ & -.000 \end{aligned}$. 1875	$\begin{aligned} & +.001 \\ & -.000 \end{aligned}$. 186	$\pm .0005$. 1860	$\begin{array}{r} +.0000 \\ -.0005 \end{array}$. 1865	$\begin{aligned} & +.0005 \\ & -.0000 \end{aligned}$
1/4	. 250	$\begin{array}{r} +.001 \\ -.000 \end{array}$. 251	$\begin{array}{r} +.001 \\ -.000 \end{array}$. 250	$\begin{aligned} & +.001 \\ & -.000 \end{aligned}$. 248	$\pm .0005$. 2495	$\begin{array}{r} +.0000 \\ -.0005 \end{array}$. 250	$\begin{aligned} & +.0005 \\ & -.0000 \end{aligned}$
5/16	. 3125	$\begin{aligned} & +.001 \\ & -.000 \end{aligned}$. 314	$\begin{aligned} & +.001 \\ & -.000 \end{aligned}$. 3125	$\begin{aligned} & +.001 \\ & -.000 \end{aligned}$. 311	$\pm .0005$. 3120	$\begin{aligned} & +.0000 \\ & -.0005 \end{aligned}$. 3125	$+.0005$
$3 / 8$. 375	$\begin{aligned} & +.001 \\ & -.000 \end{aligned}$. 3765	$\begin{aligned} & +.001 \\ & -.000 \end{aligned}$. 375	$\begin{aligned} & +.001 \\ & -.000 \end{aligned}$. 373	$\pm .0005$. 3745	$\begin{aligned} & +.0000 \\ & -.0005 \end{aligned}$. 375	$\begin{aligned} & +.0005 \\ & -.0000 \end{aligned}$
7/16	. 4375	$\begin{aligned} & +.001 \\ & -.000 \end{aligned}$. 439	$\begin{aligned} & +.001 \\ & -000 \end{aligned}$. 4375	$\begin{aligned} & +.001 \\ & -.000 \end{aligned}$. 436	$\pm .0005$. 4370	$\begin{array}{r} +.0000 \\ -.0005 \end{array}$. 4375	$\begin{aligned} & +.0005 \\ & -.0000 \end{aligned}$
1/2	. 500	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$. 502	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$. 500	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$. 497	$\pm .0005$. 4995	$\begin{array}{r} +.0000 \\ -.0005 \end{array}$. 500	$\begin{array}{r} +.0005 \\ -.0000 \end{array}$
9/16	. 5625	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$. 564	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$. 5625	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$. 5620	$\begin{aligned} & +.0000 \\ & -.0005 \end{aligned}$. 5625	$\begin{aligned} & +.00075 \\ & -.00000 \end{aligned}$
5/8	. 625	$\begin{array}{r} +.0015 \\ -.0000 \end{array}$. 627	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$. 625	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$. 6245	$\begin{aligned} & +.0000 \\ & -.0005 \end{aligned}$. 625	$\begin{aligned} & +.00075 \\ & -.00000 \end{aligned}$
$3 / 4$. 750	$\begin{array}{r} +.0015 \\ -.0000 \end{array}$. 752	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$. 750	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$. 7495	$\begin{aligned} & +.0000 \\ & -.0005 \end{aligned}$. 750	$\begin{aligned} & +.00075 \\ & -.00000 \end{aligned}$
7/8	. 875	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$. 877	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$. 875	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$. 8745	$\begin{array}{r} +.0000 \\ -.0005 \end{array}$. 875	$\begin{aligned} & +.00075 \\ & -.00000 \end{aligned}$
1	1.000	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$	1.002	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$	1.000	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$. 9995	$\begin{aligned} & +.0000 \\ & -.0005 \end{aligned}$	1.000	$\begin{array}{r} +.001 \\ -.000 \end{array}$
*If chrome plated, also give diameter before plating.											$1^{\prime \prime}$ to $2^{\prime \prime}$	$\begin{aligned} & +.0015 \\ & -.0000 \end{aligned}$

DEFINITION OF BOLT USES AND CONDITION OF FIT:

Multi-Holes: Multiple bolted joints having reamed holes jigged to $\pm .002$ inch Center Distance.
Tight Fit: Air control system trim tab connections. Where no perceptible shake is allowed.
Special Fit Ground Bolt: Suitable for special lubricated joints having a slight rotation under load and minimum shake.
Also, suitable for special fixed joints having reversal of stress and minimum shake.

TABLE 4

STANDARD CLEARANCE AND COUNTERSUNK HOLES MINIMUM CLEARANCE DRILL SIZES IN METAL BOLTS, CLEVIS BOLTS, CLEVIS PINS, MACHINE SCREWS

Nominal	Clearance	Nominal	Clearance	Nominal	Clearance
Size	Drill	Size	Drill	Size	Drill
$\# 3$	$\# 38(.1015)$	$1 / 8$	$1 / 8$	$1 / 2$	
$\# 4$	$\# 32(.116)$	$3 / 16$	$3 / 16$	$9 / 2$	$9 / 16$
$\# 5$	$\# 30(.1285)$	$1 / 4$	$5 / 8$	$5 / 8$	
$\# 6$	$\# 28(.1405)$	$5 / 16$	$3 / 16$	$3 / 4$	
$\# 8$	$\# 18(.1695)$	$3 / 8$	$3 / 8$	$7 / 8$	$7 / 8$
$\# 10$	$\# 10(.1935)$	$7 / 16$	$7 / 16$	1	1

PLATE NUT--SCREW CLEARANCE

Nominal	Clearance	Nominal	Clearance
Size	Drill	Size	Drill
$\# 6$	$\# 18(.169)$	$\# 10$	$7 / 32$
$\# 8$	$\# 10(.1935)$	$1 / 4$	932

FIGURE 4-CLEARANCE FOR NUT PLATES

Inspection Holes: Should be $\# 50(.070)$ drill where it is only necessary to check the depth of engagement of parts.
MINIMUM CLEARANCE DRILL SIZES-IN METAL

Rivets		Cotter Pins		Lock Wire	
Rivet	Drill	Pin	Drill	Wire	DrìI
Size	Size	Size	Size	Size	Size
$1 / 16$	\#51 (.167)	1/16	\#50 (.070)	. 040	\#56 (.0465)
$3 / 32$	\#41 (.096)	$3 / 32$	${ }_{5} 36$ (.1065)	. 051	\# 752 (.0635)
1/8	\#30 (.1285)	1/8	*28 (.1405)	. 064	*48 (.076)
5/32	\#21 (.159)	$5 / 32$	\#16 (.177)		
$3 / 16$	\#11 (.191)	$3 / 16$	\$ 4 (.209)		
1/4	1/4	$1 / 4$	I (.272)		
$5 / 16$	O(.316)				
3/8	V (.377)				

TABLE 4 (CONTINUED)
STANDARD CLEARANCE AND COUNTERSUNK HOLES

COMBINATION CENTER DRILL

FIGURE 5-COMBINATION CENTER DRILL

No.	A	B	No.	A	B
A1	3/64	1/8	F2	$3 / 16$	7/16
C 2	$1 / 16$	13/64	J1	7/32	$1 / 2$
D1	$5 / 64$	1564	J2	$9 / 32$	1/2
E1	$3 / 32$. 300	M1	$7 / 32$	$5 / 8$
22	1/8	. 300	M2	9/32	$5 / 8$
51	$5 / 32$	7/16	N1	$1 / 4$	$3 / 4$

INSPECTION HOLES: Should be No. 50 (.070) drill where it is only necessary to check the depth of engagement of parts.

8. DRILLING OUT SPOTWELDS.

Sheets spotwelded together may be disassembled by drilling through the center of the spot with a No. ' 30 drill and inserting a chisel between the sheets. The chisel may be made from approximately .025 sheet steel beveled at one end.
9. HEAT TREATMENT.
a. GENERAL.-This section covers the direction for the heat treatment of both aluminum alloys and X4130 steel based on Specification Nos. AN-QQ-H-186 and AN-QQ-H-201.
b. ALUMINUM ALLOY.-The material used in the construction of the airplane is almost entirely aluminum alloy. High strength rolled sheet is used for the stressed skin; formed sheet is used for the webs, bulkheads, ribs and most of the stringers; and extrusions are used for some stringers, web stiffeners, and all spar capstrips.

In cases where the required bend radius for a piece of bent-up repair stock is smaller than the allowable for 24 ST material the piece must be formed from 24 SO stock and heat treated as outlined below in order to have the required structural strength. (See table No. 7 for minimum bend radii.)

TABLE 5
TEMPER DESIGNATION

heat-treatable alloys			
Class	Description	Designation	Example
Wrought	Annealed Condition	"O"	24SO
(Desig.	Fully Heat-Treated	"T"	24ST
	Quenched, but not Completely Aged	"W"	61SW
	Heat-Treated and Cold Worked	"RT"	24SRT
Cast	Specific Heat-Treatment	"T4"	$195 . \mathrm{T} 4$
	Indicated by Number	"T6", etc.	
non-heat-treatable alloys			
Class	Description	Designation	Example
Wrought	Annealed Condition	"O"	3 SO
(Designated "S")	Intermediate Cold Worked	"1/4 ${ }^{\text {H }}$	52S-1/4H
		" $1 / 2 \mathrm{H}$ "	52S-1/2H
		" $3 / 4 \mathrm{H}$ "	52S. $3 / 4 \mathrm{H}$
	Maximum Commercial Degree of Work Hardening	"H"	2SH
Cast	No Temper Designation	-	43

(1) HEATING.-The 24 SO parts are heated in a salt bath that is in turn heated by gas, oil, or electricity; or in an electric air furnace. The salt bath is composed of fused sodium nitrate, or a mixture of 50 per cent sodium nitrate and 50 per cent potassium nitrate U. S. Army specification No. 50-11-26-B. The most important point in connection with the furnace selected is that it must maintain an even temperature throughout its interior. The temperature of the furnace at the time the 24 SO material is inserted shall be $488-500$ degrees C. ($910-930$ degrees F.). If the heating is done in a salt bath, the parts should be raised and lowered, always keeping the work submerged, to insure an even temperature and to circulate the liquid.
(2) SOAKING.-The length of time for the material to remain in the furnace will depend upon several factors, namely: the nature of the material, the thickness of the material, and the condition of the heat-treating unit. If an air furnace is used, the time required for soaking is longer than that required if a salt bath is used. The following table gives the required time for soaking of different thickness of stock in both types of furnaces.

TABLE 6

TIME REQUIRED FOR SOAKING OF 24SO MATERIAL

Thickness (Inches)	Salt Bath	Air Furnace
0.020 and less	15 minutes	20 minutes
Over 0.020 to 0.032	20 minutes	25 minutes
Over 0.032 to 0.063	25 minutes	30 minutes
Over 0.063 to 0.125	30 minutes	45 minutes
Over 0.125 to 0.250	45 minutes	60 minutes
Over 0.250 to 0.500	60 minutes	90 minutes

TABLE 7
STANDARD BEND RADII
FOR SHEET METAL

Material	Aluminum Alloys			Material	Stainless Steel		Low Carbon定 X-4130**
	$24 S T$	24SO	2 S 1.2 Hard				
Thickness	and	and	3S 1/2 Hard	Thickness	Annealed	*1/2 Hard	Annealed
	Alclad	Alclad	$52 \mathrm{~S} 1 / 2 \mathrm{Hard}$	Up to . 015	. 03	. 03	
Up to . 015	. 06	. 06	. 03	. 016			. 03
. 016	. 06	. 06	. 03	. 020	. 03	. 06	. 03
. 020	. 09	. 09	. 03	. 025	. 03	. 06	. 03
. 025	. 12	. 09	. 03	. 030	. 03	. 06	. 03
. 032	. 12	. 09	. 06	. 035	. 06	. 09	. 06
. 040	. 12	. 09	. 09	. 042	. 06	. 09	. 06
. 051	. 19	. 09	. 09	. 050	. 06	. 12	. 06
. 064	. 19	. 09	. 12	. 062	. 09	. 12	. 06
. 072	. 25	. 12	. 16	. 078	. 09		. 09
. 081	. 31	. 12	. 19	. 093	. 12		. 09
. 091	. 38	. 16	. 19	. 109	. 16		. 12
. 102	. 44	. 19	. 19	. 125	. 19		. 12
. 125	. 50	. 19	. 19	. 156	. 19		. 19
. 156	. 69	. 28	. 28	$3 / 16$. 25		. 19
$3 / 16$. 81	. 38	. 38	1/4			. 25
1/4	1.00	. 50	. 50				
				${ }^{* *} \text { These rad }$	so apply	8639 and	similar steels

When there are several parts in the bath or furnace that have different gages, the time allowed for soaking shall be equal to that required for the thickest part. 24 S aluminum alloy can stand prolonged soaking without harming the metal; but 24 S alclad aluminum must not be allowed to soak longer than the allotted time or it will lose its corrosion resistant properties.
(3) QUENCHING.-The quenching medium shall be cold water at a temperature as low as practicable and not over 29 degrees C. (85 degrees F.). The bath in which the material is to be quenched shall be large enough so that the temperature of the water will not exceed 37 degrees C. (100 degrees F.). The temperature of the parts should be 482 degrees C. (900 degrees F.) when they are put into the quenching bath. The material must be quenched immediately after it is taken out of the heating unit as metal will lose its corrosion resistant properties if allowed to remain in the open air for any length of time. The best results may be obtained by having the quenching bath close to the heating unit.
(4) WASHING.-Material that is heated in a salt bath must be washed to remove all of the salt as salt remaining on the part will hasten corrosion. Warm water is used for washing but it must not exceed 65 degrees C. (150 degrees F.) because water above this temperature will hasten the hardening of the metal.
(5) WORKING OF METAL.-Heat-treated parts must be worked within one hour after heattreatment.

c. X4130 STEEL.

(1) The type of heat-treatment given to the steel will depend upon the required tensile strength. If an ultimate tensile strength of approximately 90,000 pounds per square inch is needed, the steel part shall be normalized. If an ultimate tensile strength of 125,000 pounds per square inch is needed, the heat treatment shall consist of hardening and tempering.
(2) NORMALIZING.-The temperature of the furnace in which the material is to be inserted shall not be above 650 degrees C. (1200 degrees F.). The temperature of the furnace should be gradually increased to $870-925$ degrees C. ($1600-1700$ degrees F.) over a period of approximately 45 minutes. After the furnace has reached this temperature, it should be held constant for a period of 30 minutes to insure
uniform heating throughout the material. Remove the work from the furnace and allow it to cool slowly in still air.
(3) HARDENING.--The temperature of the furnace in which the material is to be inserted shall not be above 590 degrees C. (1100 degrees F.). The temperature of the furnace should be gradually increased to $850-885$ degrees C. (1575-1625 degrees F.) over a period of approximately 45 minutes. After the furnace has reached this tempersture, hold constant for a period of 30 minutes. Remove the work from the furnace and quench in oil at a temperature of 27-65 degrees C. (80-150 degrees F.).
(4) TEMPERING.-The hardened material shall be put in a furnace whose temperature is below the desired tempering temperature. Raise the temperature of the furnace to 555 degrees C. (1050 degrees F.) and allow to remain at this temperature approximately 45 minutes. Remove the work from the furnace and allow to cool in still air or quench in oil at a temperature of 18 degrees C. (65 degrees F.).

d. REPAIRS REQUIRING FORMED STOCK.

 -Since a large number of repairs requiring formed stock are those using angles of various flange widths, efforts have been made to have repair stock in the field which will include the following gages of heat treated SO aluminum alloy material: . $032, .040, .051$, .064 , and .081 . These angles are supplied with one 3 -inch leg and 1.5 inch leg. The flanges may be trimmed down to the necessary width using left over stock for fillers, etc. This is done in order to avoid the problem of heat treatment in the field and to maintain the small bend radii required. If the damaged material is of smaller gage than the stock angles, the nearest larger gage angle may be used providing the bend radius of the angle does not interfere with the proper riveting of the repair.
10. RIVETING.

a. GENERAL.-Except where specifically noted in the text and in the figures, rivets used in repair should be of the same type as those which existed in the original undamaged region. The skin riveting tables give the type, size and spacing of all rivets used in skin splices. In all but a few cases, these rivets are of modified brazier head type 671D and the 100 degree countersunk type AN426AD. Rivets inside the structure are of the AN442AD flat head type. Any variation from this in making the repairs is with the

NOTE

1. LAST NUMBER IN EXAMPLES INDICATES DIAMETER OF SHANK IN 32NDS OF AN INCH.
2. WHEN 67ID TYPE RIVETS ARE CALLED FOR IN THIS MANUAL, AN456 RIVETS MAY BE SUBSTIUTED.
3. SEE TABLES 20, 21, AND 22 FOR AllOWABLE LOADS FOR RIVETS.
aim toward simplification of the work. If the Curtiss rivet type $671-\mathrm{D}$ is not available, AN456 type rivets may be used.
b. DESCRIPTION OF RIVETS.-Four types of rivets are used in effecting repairs. These are shown in figure 6. The permissible loads for these rivets are given in tables 20,21 , and 22.
(1) AN426AD 100 degree countersunk rivets are employed when it is necessary to maintain a flush outer surface on the airplane.
(2) AN442AD flat head rivets should be used in repairing all internal structure except in isolated cases where interferences require the use of the countersunk rivets.
(3) $671 \mathrm{D}-\mathrm{AD}$ modified brazier head rivets are used in skin repairs where a smooth contour is desired but a flush surface is not required. This is a Curtiss Standard; if not available, the AN456AD rivets may be used.
(4) LS1127 Cherry blind rivets may be used for any of the above rivets where it is difficult or impossible to set a solid rivet. It must be noted, however, that unless otherwise noted, a joint of adequate strength requires twice as many Cherry blind rivets as solid rivets.
(5) Figure 6 also gives the identification coding for the various rivet material.
c. DETERMINATION OF RIVET SIZE.-.-The rivet diameter may be determined from the dimensions of the manufactured head. The head diameters for various rivets are given below.
d. REMOVAL OF RIVETS.-Great care should be exercised in removing rivets so that the holes are not enlarged and the sheet not damaged. The following table gives the correct drill size to be used in drilling out various size rivets.

TABLE 8

RIVET HEAD DIAMETERS

Rivet Dia.	AN426	AN442	$671 D$	AN456
$3 / 32$.170	.187	.188	.156
1.	.216	.250	.218	.235
$5 / 32$.278	.312	.266	.312
$3 / 16$.344	.375	.312	.390

TABLE 9

DRILL SIZE FOR RIVET REMOVAL

Rivet Diameter	Drill Size
$3 / 32$ inch	No. 40
1 sinch	No. 30
$5 / 32$ inch	No. 21
$3 / 16$ inch	No. 11

With the drill centered exactly on the manufactured head, drill to a depth equal to the depth of the rivet head. A slight side motion of the drill should cause the head to come free of the shank. If for any reason the head does not fall free, it may be removed by gently tapping the head with a small pin punch. When the head is removed, the shank may be driven out with a flat-end pin punch whose diameter is equal to the rivet diameter.

CAUTION

THE PUNCH MUST BE SQUARELY ALIGNED WITH THE RIVET BEFORE DRIVING.

If the proper drill has been used, and the head drilled directly in the center, no diff.culty should be experienced in removing the rivet. A center mark should be put on the rivet before drilling.
e. REPLACEMENT OF BRAZIER AND FLAT HEAD RIVETS.
(1) DRILLING OF NEW HOLES.-All rivets should have a close fit in their holes. Where rivets are replaced in existing holes, it is assumed that the original rivets have been removed as in paragraph d above, and that the holes have not been enlarged during the operation. When new holes are to be drilled they should be started with a pilot drill and then drilled to final size. The various size drills are given below:

TABLE 10—RIVET DRILL SIZE

Rivet Diameter	$8 / 52$	$1 / 8$	$5 / 52$	$3 / 16$
Pilot Drill No.	50	40	40	40
Finish Drill No.	40	30	21	11

Rivets through the outside skin should be inserted from the outside. All burrs should be removed from the sheets prior to riveting.
(2) DETERMINING RIVET LENGTHS.The proper length of rivet may be determined from the following table.

TABLE 11—RIVET GRIP LENGTHS

SHOP HEADS FORMED AGAINST FLAT SURFACE

When sheet thickness falls between table values, select the longer rivet.

	3/82 Diameter		1/8 Diameter		5/32 Diameter		3/16 Diameter	
Rivet Dash No. Lengths	Maximum Thickness of Sheets							
	Flat	Dimple	Flat	Dimple	Flat	Dimple	Flat	Dimple
-2	. 018							
-3	. 075	. 040	. 040					
-4	. 130	. 095	. 100	. 060	. 065		. 035	
-5	. 190	. 155	. 155	. 115	. 125	. 075	. 090	. 030
-6	. 245	. 210	. 210	. 170	. 180	. 130	. 150	. 090
-7	. 300	. 265	. 265	. 225	. 235	. 185	. 205	. 145
-8	. 355	. 320	. 325	. 285	. 290	. 240	. 260	. 200
-9	. 410		. 380	. 340	. 350	. 300	. 315	. 255
-10	. 470		. 435		. 405	. 355	. 370	. 310
-11	. 525		. 490		. 460		. 430	. 370
-12	. 580		. 550		. 515		. 485	
-13	. 640		. 605		. 570		. 540	
-14	. 695		. 660		. 630		. 595	
-15	. 750		. 715		. 685		. 655	
-16	. 805		. 775		. 740		. 710	

The correct length must be chosen in order to obtain a shop head of the required diameter and thickness.
(3) SHOP - FORMED HEADS. - The shop formed heads should conform with the following dimensions with a maximum tolerance of $+1 / 32$ inch. This holds for all types of driven rivets.

TABLE 12-SHOP-FORMED HEADS

Rivet Dia.	Head Dia.	Head Height
$3 / 32$	964	$3 / 64$
$1 / 8$	$3 / 16$	$3 / 16$
$5 / 32$	1564	564
$3 / 16$	9	962

(4) DRIVING RIVETS BY HAND.-Although compressed air operated rivet guns are desirable, the rivets may be hand driven with a 6 ounce ball peen hammer against the necessary bucking bar. The proper force must be applied or else strain hardening will occur before the rivet is set and the joint will be unsatisfactory. Figure 14 shows various types of bucking bars.

f FLUSH RIVETING PROCEDURE.

(1) REMOVAL OF OLD RIVETS.-Rivets are removed as in paragraph d above.
(2) COUNTERSINKING OF SHEETS.
(a) GENERAL.-The procedure is divided into "Machine Countersink" and "Dimple Countersink", and the thickness of the sheet in question automatically determines which process will be used. Tools and countersink diameters are tabulated by the position of the sheet in the riveted assembly, and dimple countersink tools are also listed for various sheet thickness in each position. The machine countersink or dimple diameter is larger for the underneath sheet than for the top sheet. See figure 7 for typical flush riveted joint.
(b) SIMULTANEOUS DIMPLING.-(Dimpling Two or more Sheets at One Time.) When using the following instructions for dimpling simultaneously, thickness " T " denoted by heavy outline, represents the total thickness of sheets being dimpled together, and tools must be used as if " T " were a single sheet, throughout all operations.

The total thickness " T " cannot exceed the maximum set for " T " as a singie sheet, and no single sheet can be smaller than the thinnest sheet specified. The sheets shown by light outline are for reference only, to indicate additional sheets of the assembly, above those simultaneously dimpled.

REFERENCE: TABLE 13
FIGURE 7-TYPICAL FLUSH RIVETED JOINT

TABLE 13—SIMULTANEOUS DIMPLING

Sheet	Thickness	Method	Tools (Select from Tables)		
			Drill	Punch	Die
A	. 032	Dimple Countersink"Outer Sheet"	\#30 (.129)	10	12
B	.041 Total	Dimple (Simultaneously) "Second Sheet"	\#30 (.129)	13	15
C	. 064	Machine Countersink-. $105^{\circ} \times .268^{\prime \prime}$	\#30 (.129)		

CAUTION

WHEN THE DRILL WILL NOT PRODUCE A CLEAN ROUND HOLE, IT SHOULD BE SHARPENED. AVOID CHATTER MARKS ON MACHINE COUNTERSINKS, AS THIS IS AN INDICATION THAT THE TOOL WAS SHARP. ENED POORLY, OR IS BEING HELD INCORRECTLY. DIES SPECIFIED WERE SPECIALLY DEVELOPED FOR SHEET COMBINATIONS SHOWN. ANY DEVIATION MAY PRODUCE DIMPLES APPARENTLY SOUND, BUT WITH A TENDENCY TO CRACK IN THE AIRPLANE WHEN SUBJECTED TOSTRESS AND VIBRATION.
(c) MACHINE COUNTERSINKING.

Procedure, see figure 8.

1. Drill pilot hole (third column, below)
2. Burr under side.
3. Machine countersink to required diameter as given in last three columns of the following table.

Minm. Gage

of Sheet	Pilot Drill
.051	$\# 41(.096)$
.064	$\# 3(.1285)$
.072	$721(.159)$
.081	$\$ 11(.191)$

Diameter of Countersink
1 Sheet

.214	.228	.242
.254	.268	.282
.344	.358	.372

.404 .418 . 432
(d) Dimple Countersinking. - Procedures.

1. Drill pilot hole.
2. Burr under side.
3. Dimple with punch and die as specified below.
4. Redrill on assembly (if necessary).

TABLE 15-DIMPLE COUNTERSINK DIMENSICNS AND TOOLS

Rivet	$\begin{aligned} & \text { Pilot } \\ & \text { Drill } \end{aligned}$	Maximum Gage of Sheet	Outer Sheet			Second Sheet			Third Sheet			Redrill Size
			$\begin{aligned} & \text { Gage } \\ & \text { " } T_{1} \text { " } \end{aligned}$	Punch No.	Die No.	$\begin{aligned} & \text { Gage } \\ & \text { " } T_{2} " \end{aligned}$	Punch No.	Die No.	$\begin{aligned} & \text { Gage } \\ & " T_{3} " \end{aligned}$	Punch No.	Die No.	
$8 / 52$	*41 (.096)	. 045	.016-.031	1	2	.020-. 031	4	5	.025-.031	7	8	441 (.096)
			.032-.045	1	3	.032-.045	4	6	.032-.045	7	9	
$3 / 52$	430 (.1285)	. 051	.016-.031	10	11	.016-.031	13	14	.016-.031	16	17	\$30 (.1285)
			.032-.051	10	12	.032-.051	13	15	. $032-.051$	16	18	
	\#26 (.147)	. 064	.020-.031	19	20	.025-.031	23	24	.032-.064	26	27	721 (.159)
			.032-.051	19	21	.032-.064	23	25				
$3 / 16$	\$18 (.169)		.052-.064	19	22							
			.025-.031	28	29	.032-.072	32	33	.040-.072	34	35	\#11 (.191)
			.032-.051	28	30							
			.052-.072	28	31							

FIGURE 9-DIMPLE COUNTERSINKING
Heavy outlines represent sheet being dimpled and light outlines are reference sheets to locate sheet "T" in an assembly. For simultaneous dimpling, see paragraph f (2) (b) above.
(e) Dimpling Tools (See figure 10).

TABLE 16-DIMPLING TOOLS

Rivet Dia.	Punch				Die			
	Tool No.	A	B	C	Tool No.	D	E	F
3/82	1	. 200	100°	. 094	2	. 096	. 202	105°
					3	. 096	. 212	105°
	4	. 214	105°	. 094	5	. 096	. 216	105°
					6	. 096	. 226	105°
	7	. 228	105°	. 094	8	. 096	. 230	105°
					9	. 096	. 240	105°
	10	. 240	100°	. 126	11	. 128	. 242	105°
					12	. 128	. 252	105°
1/8	13	. 254	105°	. 126	14	. 128	. 256	105°
					15	. 128	. 266	105°
	16	. 268	105°	. 126	17	. 128	. 270	105°
					18	. 128	. 280	105°
$5 / 32$	19	. 320	100°	. 145	20	. 147	. 322	105°
					21	. 147	. 332	105°
					22	. 147	. 342	105°
	23	. 344	105°	. 145	24	. 147	. 346	105°
					25	. 147	. 356	105°
	26	. 358	105°	. 145	27	. 147	. 370	105°
3/16	28	. 280	100°	. 167	29	. 169	. 380	105°
					30	. 169	. 392	105°
					31	. 169	. 402	105°
	32	. 404	105°	. 167	33	. 169	. 416	105°
	34	. 418	105°	. 167	35	. 169	. 430	105°

(3) DRIVING OF RIVETS.-The setting of the rivet will be the same as for brazier and flat head rivets (see paragraph e. above). The driving set should be slightly convex and about two or three times the diameter of the rivet head. Care should be taken to keep the peen of the bucking bar centered on the head.

g CHERRY BLIND RIVETS.

(1) DESCRIPTION.-Only one type of Cherry blind rivet will be used for repair; namely; the selfplugging brazier head type LS1127.
(2) Preparation of Sheets for Riveting.
(a) Drill Sizes.

Rivet Diameter	$1 / 8$	$5 / 32$	$3 / 16$
Pilot Drill No.	40	40	40
Finish Drill No.	$1 / 8$	23	13

Keep fit as tight as possible.
(b) GRIP RANGE.
Rivet Dash No.
-2
-4
-6
-8

Grip Range
.030-.077
.078-. 140
.141-. 202
.203-. 266
If drilling is blind, allow .020 for chips between sheets, and burr on blind side.

In all questionable cases, use the longer rivet.
(c) CLAMPING OF SHEETS.-Some form of fasteners, such as cleco pins, should be placed at closer intervals than is required for solid rivets, since the rivet has very little draving action on the sheets. Any gap between sheets exceeding 005 inches should be avoided. Clean out between sheets with more care than usual because of the smaller squeezing action on the sheets by these rivets.

AN 01-25LA-3

NOTE: BLEND AND POLISH FACE OF TOOL

FIGURE 10-DIMPLING TOOLS

SECTION VIEW AFTER PULLING

SIDE VIEW OF FINISHED RIVET

FIGURE 11-CHERRY BLIND RIVETING PROCEDURE
(3) RIVETING PROCEDURE, (figure 11).
(a) USE OF G-10 HAND OPERATED GUN.

1. The pulling head of these guns is similar to the air gun, but the rivet is headed by squeezing the handles together. This is done with two or three short squeezes, each one pulling the head a bit further back, in a manner similar to a ratchet auto jack. The one stationary handle should be held against the body, and pressure toward the rivet maintained until rivet stem breaks. This operates a clutch and keeps the gun pulling head from slipping back between strokes.
2. Much greater skill and care is required to operate the hand tool than an air gun, as the stationary arm must be held absolutely in line with rivet stem while operating, and steady pressure on rivet head maintained through this arm.
3. If the clutch should fail to operate, unscrew retaining cap below pulling head, and inspect washers and shaft for wear.

(b) GENERAL INFORMATION.

1. Do not operate the gun loaded with a rivet not inserted through proper sheet, or the stem will always pull through the rivet and jam badly in the pulling head.
2. Be sure stem head is at bottom of slot in gun pulling head as shown in figure $12-\mathrm{A}$, not as shown in figure $12-\mathrm{B}$, or stem head will be supported only on two sides and will shear off, instead of breaking stem.

B
IMPROPER

FIGURE 12-RIVET GUN POSITION
3. The stem must break off to form a good rivet. If stem head shears off, drill out rivet carefully and insert another rivet.
4. If by drilling out a bad rivet, or for any reason, the hole is oversize, the stem may be pulled entirely through the shank, leaving a hollow rivet. In this case the rivet must be removed and the hole redrilled for the next larger diameter rivet.
5. When pulling rivet be sure gun is directly in line or stem will be pulled through the shank "around a comer", tending to make the hole eggshaped and giving the stem a loose fit so that it may vibrate out.
6. Press gun firmly on rivet head while pulling rivet, or gun will "cup" a brazier rivet head on the sheet, or fail to clamp sheets together.
7. If rivets are placed in a row of holes before heading, be careful not to bend rivet stem when sliding the pulling head over the rivet.
(c) CLEANING OF STEM.-After pulling, the stem is cleaned up by filing close to the head of the rivet.
(4) RIVET SUBSTITUTION.-Except as oth. erwise specified in the text, Cherry blind rivets may be substituted for solid rivets in inaccessible places provided two Cherry blind rivets are used for each solid rivet of the same size.
h. DU PONT AND CHOBERT RIVETS.These rivets are not recommended for repairs because of their high deflections and the possibility of not obtaining a good joint.
i. ENLARGED HOLES.-If the procedure under paragraph 4 above is followed, no difficulty will be experienced in maintaining the original rivet hole diameter when removing rivets. If, however, the holes have been enlarged or elongated, they may be repaired in one of the following manners:
(1) REDRILLING FOR NEXT LARGER RIVET.-If sufficient pitch, edge distance, and row spacing exists, the holes may be redrilled for next larger rivet.

FIGURE 13—PROCEDURE FOR PLUGGING RIVET HOLES
(2) DRILLING BETWEEN EXISTING RIVET HOLES. - If the rivet spacing is great enough, new rivets may be placed between existing rivet holes, the existing holes being plugged as shown in figure 13.
(3) SLIGHTLY ELONGATED HOLES. Holes that are only slightly elongated can in some cases be filled by using a longer rivet of the original diameter.
(4) RIVET HOLES THAT CANNOT BE RE-PAIRED.-Holes that cannot be repaired by the above methods should be treated as a break and repaired accordingly.
j. NOMINAL EDGE DISTANCE.-Unless otherwise specified in the text and figures, a minimum edge distance of two times the diameter of the rivet should be maintained.

11. FINISH SPECIFICATIONS.

a. GENERAL.-This specification covers the methods and materials to be used in the preparation for and the application of protective coatings to the airplane and its component parts.
b. MATERIALS.
(1) MATERIALS AND COMPOUNDS.-All materials and compounds specified shall be equivalent in quality to U. S. Army Air Force standards, except where specifically stated otherwise.
(2) COCKPIT COATING FORMULA.-The compound referred to as "Cockpit Coating" shall be prepared as follows.

The use of Aluminum Paste shall be optional. A tinted primer may be used in lieu of the foregoing cockpit coating.
(3) PRIMER.-The material referred to as "Primer" shall correspond to AN Specification No. AN-TT-P-656.
(4) LUBRICANTS.
(a) AN Specification No. AN-C-53 to be used on adjustable fittings and removable aluminum threads.
(b) Paralketone, type B, or corrosion preventive compound, Specification No. AN-C-52 to be used on control cables.

c. GENERAL REQUIREMENTS.

(1) CLEANING PARTS PRIOR TO FIN. ISHING.
(a) ALUMINUM PARTS.-Parts heavily coated with grease or forming compound shall be degreased in a vapor degreaser.

The parts shall be dipped in a solution of 6 ounces per gallon of approved alkaline cleaner at 74 degrees C. (165 degrees F.) for five minutes and thoroughly rinsed in hot water.

Aluminum parts which do not receive anodizing (Alclad, 2S, 3S, 4S, $51 \mathrm{~S}, 52 \mathrm{~S}, 53 \mathrm{~S}$) shall be immersed in a 5 percent chromic acid solution at 60 degrees C. (140 degrees F.) for one to two minutes after cleaning in alkaline cleaner, rinsed and dried. Care should be taken to avoid touching the parts with dirty or greasy hands. This process is the chromic acid dip.

Material

Zinc Chromate Primer
Black Enamel
Toluene
Aluminum Paste

Specification

(AN-TT-P-656)
(AN-E-3)
(AN-R-T-541)
(AN-TT-A-461)

Quantity

1.0 U.S. gal (833 Imp. gal)
0.1 U.S. gal (083 Imp. gal)
2.0 U.S. gal ($1.666 \mathrm{Imp} . \mathrm{ga!}$)
4.0 ounces
(b) STEEL PARTS.-Parts to be Cadmium Flated shall be cleaned as follows:

1. Sand blast or use descaler if necessary ${ }^{-}$
2. Rinse if descaler is used.
3. Clean in alkaline cleaner and rinse.
4. If stained, give short hydrochloric acid dip and rinse.
5. Dip in cyanide cleaner, rinse, and place in plating bath.
6. Parts not to be cadmium plated shall be cleaned by sand blasting and then painted.
(2) WELDED ALUMINUM PARTS.-These parts shall be immersed for one hour in a 10 percent sclution of sulfuric acid, Federal Specification No. O.A.111, to remove the welding flux, thoroughly washed in clean water and dried.
(3) STAINLESS STEEL PARTS.-These parts which have become scaled shall be immersed in a 15 to 17 percent solution of commercial nitric acid, Federal Specification No. O-A-88, at a temperature of 49 degrees C. (120 degrees F.) for 20 minutes, rinsed in clean water, and dried. If the acid does not remove the scale, sand blasting with flint shall be used.
(4) DISSIMILAR METALS. - When dissimilar metals are in contact, they shall be protected in the following manner. The primer shall form a slight fillet at edges of faying surfaces. This fillet may be applied by brushing.
(a) ALUMINUM AND STEEL.-17ST and 24 ST aluminum alloy sheet shall be anodized and coated with one coat of zinc chromate primer AN-TT-P-656. The steel should be cadmium plated and given one coat of primer. Alclad, forgings, and castings shall be given chromic acid dip and one coat of primer. All parts shall be primed in detail prior to assembly.
(5) SHOP COATING. -24 ST alclad sheets shall be coated on both sides with zinc chromate primer as scon after receiving as possible.

24SO alclad, and other forming materials receive no shop coating until after forming or heat treating. After fabrication and prior to assembly they shall be given one coat of zinc chromate primer.

The shop coating shall be used as the priming coat on all assemblies.

The rivet heads and minor scratches shall receive no touch-up prior to final coat. Where large amounts of shop coating have been removed, the spots shall be primed before finishing.
(6) WEARING SURFACES, HOLES, ETC.Care shall be exercised to prevent the application of paint materials to wearing surfaces, threads, and all holes. Care should be exercised to see that such parts are properly lubricated.

d. DETAIL REQUIREMENTS.

(1) ANODIC TREATMENT.-The following aluminum or aluminum alloy parts shall be treated in accordance with Specification No. AN-QQ-A-696. As much forming, drilling, and cutting as possible shall be performed on the parts before surface treatment in order to obtain maximum protection. With the exception of parts assembled by welding and parts which are not under stress, all parts shall be treated in detail before assembly.
(a) All 24 ST and 17 ST aluminum alloy.
(b) Parts in contact with dissimilar metals.
(2) PARTS NOT TO BE ANODIZED OR GIVEN THE ALROK PROCESS.
(a) All 24ST and 17ST alclad, 2S, 3S, 51S, 52 S , and 53 S shall be given the chromic acid dip in lieu of anodizing.
(b) All castings and forgings shall be given the chromic acid dip.
(c) FUEL AND OIL TANKS.-The exterior $s^{u r f a c e s}$ of all fuel and oil tanks shall be treated with ${ }_{t}$ he chromic acid dip prior to final finishing.
(3) CADMIUM PLATING.-Prior to the normal organic finish, all steel parts shall be cadmium plated in accordance with Specification No. AN-QQ-P-421 with the following exceptions.
(a) Corrosion resistant and stainless steel.
(b) Welded structures too large for the available plating equipment.
(c) Parts which are welded to unplated structures.
(d) Parts which are to be soldered.
e. DETAIL REQUIREMENTS FOR SPECIFIC PARTS.
(1) FUSELAGE FINISH REQUIREMENTS.
(a) EXTERIOR SURFACES.-If finish is required, exterior surfaces may receive one coat of camouflage enamel, Specification No. AN-E-7.
(b) INTERIOR SURFACES.-The cargo and passenger compartments shall be finished with one coat of primer and one coat of cockpit coating.
(c) RADIO RACK AND CXYGEN BOTTLE SUPPORTS.-These shall be furnished with one coat of primer and one coat of cockpit coating.
(d) FLOORS. - The upper surface of all floors shall receive no finish. The underneath shall receive one coat of primer and one coat of cockpit coating.
(e) COCKPIT,-The cockpit shall be finished with one coat of primer and one coat of cockpit coating. Any sound proofing or cockpit lining shall have cockpit coating for the final finish.
(2) DOOR FINISH REQUIREMENTS.
(a) CARGO AND LANDING GEAR DOORS. -These doors shall be given one coat of primer and one cockpit coating on the internal surfaces. One coat camouflage enamel may be applied to external surfaces if finish is required.
(b) PLYWOOD PILOT COMPARTMENT DOOR.-Finish over with two coats of phenolic spar varnish and two coats of cockpit green to match the adjacent surfaces. Extreme caution shall be used to thoroughly apply the phenolic spar varnish to the cut edges of the door. All parts shall be put on the door after the application of the varnish.
(3) SEAT FINISH REQUIREMENTS.
(a) PILOTS' SEATS.-These seats shall be finished and upholstered.
(b) TROOP BENCHES. - The bottom side shall receive one coat of primer and one coat of cockpit coating. The top side shall receive no finish.
(c) LITTER SUPPORTS.-These shall receive a chromic acid dip, one coat of primer and one coat of cockpit coating.
(4) LANDING GEAR AND TAIL WHEEL REQUIREMENTS.-All steel parts shall require no finish other than cadmium plating. All aluminum alloy parts shall receive one coat of primer and one coat of cockpit coating.
(5) WING FINISH REQUIREMENTS.
(a) EXTERIOR AND INTERIOR SURFACES. - The external surface may be finished with one coat of camouflage enamel if finish is required. The internal finish shall be one coat of primer and one coat of cockpit coating.
(b) LEADING EDGE.-The leading edge may be finished externally with one coat of camouflage enamel if finish is required. The internal finish shall be one coat of primer and one coat of cockpit coating.
(c) TIPS.-The external surface of the wing tip may be finished with one coat of camouflage enamel if finish is required. The internal finish shall be one coat of primer and one coat of cockpit coating.
(d) FLAPS.-The internal finish of the flaps shall be one coat of primer and one coat of cockpit coating. The external finish may be one coat of camouflage enamel if finish is required. The actuating mechanism shall be finished with one coat of cockpit coating.
(6) AILERON FINISH REQUIREMENTS (for airplanes up to AF44-78545).
(a) EXTERNAL SURFACE.-The external finish shall consist of three brush coats of dope, three spray coats of dope with the coat containing at least $1 / 3$ thinner and applied heavy enough to smooth out the roughness of the underneath coats; and last two coats of pigmented dope.
(b) INTERNAL DETAIL PARTS, -The internal parts shall be finished with one coat of primer and one coat of cockpit coating.
(c) TRIM TABS.-The external finish may be one coat of camouflage enamel if finish is required, and the internal finish shall be one coat of primer and one coat of cockpit coating.
(d) DOPE PROOFING.-All parts in contact with doped surfaces shall be primed followed by one coat of cockpit coating.
(e) METAL COVERED AILERON (airplanes AF44-78545 and subsequent) shall be finished in a manner similar to that outlined in paragraph 11 e. (7).
(7) ELEVATOR, RUDDER, STABILIZER AND FIN FINISH REQUIREMENTS.
(a) EXTERNAL FINISH.-If finish is re'quired, one coat of camoufage enamel may be used.
(b) INTERNAL FINISH.-This shall consist of one coat of primer and one coat of cockpit coating.
(c) TRIM TABS.-External finish: one coat of camouflage enamel may be used if finish is required. Internal finish: one coat of primer and one coat of cockpit coating.
(8) COWLING AND FAIRING FINISH REQUIREMENTS.
(a) COWLING FINISH.-External finish: one coat of camouflage enamel may be used if finish is required. No internal finish is required.
(b) NACELLE FAIRING.-The external finish may be one coat of camoufiage enamel if finish is r required. The internal finish consists of one coat of primer and one coat of cockpit coating.
(9) FIREWALL FINISH REQUIREMENTS. -The stainless steel firewall liner or disc shall receive no finish.

Asbestos for firewall filler shall be installed as received.

The alclad firewall tiner or disc shall receive one coat of primer and one coat of cockpit coating on both sides.

The internal sections of the firewall shall receive one coat of primer and one coat of cockpit coating.

Firewall radius edging shall receive one coat of primer and one coat of cockpit coating on internal surface.
(10) MOTOR MOUNT FINISH REQUIRE-MENT.-The motor mounts shall be sandblasted after welding and given one coat of primer and one coat of cockpit coating.

(11) TUBING FINISH REQUIREMENT.-

All tubing and hollow parts shall be treated as outlined below.
(a) OPEN END OR HOLLOW PARTS.The interior surfaces of all steel and aluminum hollow and tubular parts except liquid carrying lines, conduit tubing and junction boxes which receive no internal treatment shall be given one coat of primer. This shall be applied by filling and draining or by dipping.
(b) CLOSED OR SEALED STEEL TUBU. LAR MEMBERS OR HOLLOW PARTS. -All steel tubing except $3 / 8$ inch outside diameter or smaller shall be protected on the internal surface with a coating of Paralketone or hot linseed oil. The material shall be applied by forcing it into the hollow member under pressure or by immersion in a bath of the liquid. Parts which are immersed shall be manipulated so as to insure the absence of air pockets and shall remain in the bath until all bubbling has ceased. In case of a large structure, interconnecting holes may be drilled so that the liquid will circulate. The members shall be thoroughly drained after treatment and wiped free of oil on all exterior surfaces. All accessible holes drilled in the members shall be closed with cadmium plated Parker self tapping screws.
(c) SEALED TUBULAR OR CLOSED HOLLOW ALUMINUM PARTS.-These parts shall receive no internal finish.
f. SCREWS, THREADS, AND THREADED PARTS.-Standard parts such as bolts, nuts, pins, shackles, etc., and fasteners such as rivets, screws, etc, shall not be painted prior to assembly. Bolts used in highly stressed fittings shall be freely coated with Paralketone prior to assembly. Threads on adjustable parts which are to be disconnected or disassembled shall be lubricated with anti-seize compound, Specification No. AN-C-53.

Corrosion resistant steel threads shall be lubricated with anti-seize compound, Specification No. AN-C-53.

The threads of adjustable aluminum alloy parts shall be lubricated with anti-seize compound, Specification No. AN-C-53.

Threads of fittings in fuel, oil, hydraulic, coolant and instrument lines shall be treated as follows:

ALUMINUM ALLOY.-Lubricate tapered pipe threads with anti-seize compound Specification No. AN-C-53.

TYPE HEX HEAD EXAMPLE ANA

CLEYS HEAD AN29

WASHER HEAD AN525

RUSTER HEAD DRIVE PN 55152

Size	A	Part Num	rs	Alu	Alloy			Steel	125,000	Ult. Te	
Nominal	Hex-	Clevis-	Clevis	Shear				Shear		Tension	
Diameter	Head Bolt	Head Bolt	Pin				Clevis Bolt	Bolts and Pins	Hex-Head Bolt		Clevis Bolt
				UIt.	Yield	UIt.	UIt.	UIt.	Yield	UIt.	UIt.
1/8			AN 392					920			
816			AN 393					2070			
10-32	AN 3	AN 23						2126	1709	2136	1068
3/4-28	AN 4	AN 24	AN 394	1717	1274	1975	986	3681	3186	3982	1991
5/10-24	AN 5	AN 25	AN 395	2684	2057	3189	1595	5751	5143	6429	3214
3/8-24	AN 6	AN 26	AN 396	3868	3185	4937	2469	8287	7962	9953	4976
7/18-20	AN 7	AN 27	AN 397	5261	4299	6663	3332	11272	10746	13433	6716
1/2-20	AN 8	AN 28	AN 398	6871	5874	9104	4552	14722	14685	18356	9178
816-18	AN 9	AN 29	AN 399	8697	7460	11563	5782	18637	18650	23313	11656
5/8-18	AN 10	AN 30	AN 400	10738	9496	14719	7360	23010	23741	29676	14838
8/4-16	AN 12	AN 32	AN 402	15463	13918	21573	10287	33135	34795	43494	21747
7/8-14	AN 14	AN 34	AN 404	21046	19045	29520	14260	45097	47612	59515	29757
1-14	AN 16	AN 36	AN 406	27489	25651	39759	19880	58905	64127	80159	40079

NOTE 1. SHEAR STRENGTHS ARE BASED ON AREA OF SHANK AT FULL DIAMETER. TENSION STRENGTHS ARE BASED ON AREA OF SHANK AT ROOT DIAMETER.
NOTE 2. AN 525 (WASHER HEAD SCREWS) TO BE USED ONLY IN THE FOLLOWING SIZES: NO. 10 (AN 525-10) AND $1 / 4$ (AN 525-416). ALLOWABLE TO BE THE SAME AS FOR CLEVIS BOLTS.
NOTE 3. FILLISTER HEAD BOLTS TO HAVE THE SAME ALLOWABLES AS AN HEX-HEAD BOLTS.

AN 01-25LA-3

TABLE 18
SELF-LOCKING FIBER INSERT NUTS

Thread						Part Numbers	
		Pitch Dia.	Flats	Corners	Height	Steel	Aluminum
4-40	NC2	$.0958 \begin{gathered} +.0024 \\ -.0000 \end{gathered}$	1/4	9/32	964	AN365-400	AN365D440
4.48	NF2	$.0985 \begin{gathered} +.0022 \\ -.0000 \end{gathered}$	1/4	\% ${ }^{2}$	9/64	AN365-448	
6-32	NC2	$.1177+.0027$	$5 / 6$	23/64	1/8		
6-32	NC 2	${ }^{.1177}+\begin{gathered} +.0027 \\ -.0000 \end{gathered}$	5/6	23/64	11/84	AN365-632	AN365D632
$6-40$	NF2	$.1218 \begin{gathered} +.0024 \\ -.0000 \end{gathered}$	5/16	${ }^{23} 64$	1/8	AN364-640	
6-40	NF2	$.1218 \begin{gathered} +.0024 \\ -.0000 \end{gathered}$	5/16	23/64	11/64	AN365-640	
8-32	NC2	$\begin{array}{r} .1437+.0027 \\ -.0000 \end{array}$	3/8	7/16	11/64		
8 832	NC2	$\begin{array}{r} .1437 \begin{array}{c} +.0027 \\ -.0000 \end{array} \end{array}$	3/8	7/16	15/64	AN365-832	AN365D832
8-36	NF2	$.1460 \begin{gathered} +.0025 \\ -.0000 \end{gathered}$	11/32	$25 / 64$	1164	AN364-836	
8-36	NF2	$.1460 \begin{array}{r} +.0025 \\ -.0000 \end{array}$	11/32	35/64	15 价	AN365-836	AN365D836
10-24	NC3	$\begin{array}{r} +.0024 \\ .1629 \\ -.0000 \end{array}$	3/8	7/16	1564	AN365-1024	AN365D1024
10-32	NF3	$\begin{array}{r} .0097 \\ -.0000 \\ -.0000 \end{array}$	3/8	7/16	11/64	AN364-1032	AN364D1032
10-32	NF3	$.1697 \begin{array}{r} +.0019 \\ -.0000 \end{array}$	3/8	7/66	15/64	AN365-1032	AN365D1032
1/4-20	NC3	$.2175 \begin{gathered} +.0026 \\ -.0000 \end{gathered}$	1/2	37/64	$3 / 8$	AN365-420	AN365D420
2/4-28	NF3	$.2268+.0022$	7/66	$31 / 34$	$13 / 4$	AN364-428	AN364D428
1/4-28	NF3	$.2268 \begin{gathered} +.0022 \\ -.0000 \end{gathered}$	7/18	$31 / 64$	960	AN365-428	AN365D428
5/16-18	NC3	$.2764 \begin{gathered} +.003 \\ -.000 \end{gathered}$	9/16	21/82	2964	AN365-518	AN365D518
5/6-24	NF3	$.2854 \begin{gathered} +.0024 \\ -.0000 \end{gathered}$	1/2	$37 / 84$	1/4	AN364-524	AN364D524
5/6-24	NF3	$.2854+.0024$	1/2	37/84	11/32	AN365-524	AN365D524
3/8-16	NC3	$.3344+.0032$	$11 / 16$	51/4	${ }^{35} 64$	AN365-616	AN365D616

Section I

AN 01-25LA-3

TABLE 18-Continued

 SELF-LOCKING FIBER INSERT NUTS| Thread | | | | | | | Part Numbers | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Pitch | Dia. | Flats | Corners | Height | Steel | Aluminum |
| 3/8-24 | NF3 | . 3479 | $\begin{array}{r} +.0024 \\ -.0000 \end{array}$ | $3 / 8$ | $21 / 22$ | 17/4 | AN364-624 | AN364D624 |
| $3 / 8-24$ | NF3 | . 3479 | $\begin{array}{r} +.0024 \\ -.0000 \end{array}$ | 9/16 | 21/32 | 2964 | AN365-624 | AN365D624 |
| 7/18-14 | NC3 | . 3911 | $\begin{array}{r} +.0036 \\ -.0000 \end{array}$ | 3/4 | $7 / 8$ | 3964 | AN365-714 | |
| 7/16-20 | NF3 | . 4050 | $\begin{aligned} & +.0026 \\ & -.0000 \end{aligned}$ | 5/8 | 23/32 | 5/16 | AN364-720 | AN364D720 |
| 7/16-20 | NF3 | . 4050 | $\begin{array}{r} +.0026 \\ -.0000 \end{array}$ | 5/8 | 23/32 | 29/64 | AN365-720 | AN365D720 |
| 1/2-13 | NC3 | . 4500 | $\begin{array}{r} +.0037 \\ -.0000 \end{array}$ | 7/8 | 1 1/64 | 45/64 | AN365-813 | |
| $1 / 2-20$ | NF3 | . 4675 | $\begin{array}{r} +.0026 \\ -.0000 \end{array}$ | $3 / 4$ | 7/8 | 516 | AN364-820 | AN364D820 |
| 1/2-20 | NF3 | . 4675 | $\begin{array}{r} +.0026 \\ -.0000 \end{array}$ | $3 / 4$ | 7/8 | 19\%6 | AN365-820 | AN365D820 |
| $9 / 6-18$ | NF3 | . 5264 | $\begin{array}{r} +.003 \\ -.000 \end{array}$ | 7/8 | $11 / 64$ | 23/64 | AN364-918 | AN364D918 |
| 5/8-18 | NF3 | . 5889 | $\begin{array}{r} +.003 \\ -.000 \end{array}$ | 15/16 | $11 / 16$ | 25/64 | AN364-1018 | AN364D1018 |
| 3/4-16 | NF3 | . 7094 | $\begin{array}{r} +.003 \\ -.000 \end{array}$ | $11 / 16$ | 11564 | 18/22 | AN364-1218 | AN364D1216 |
| 7/8-14 | NF3 | . 8286 | $\begin{array}{r} +.0036 \\ -.0000 \end{array}$ | $11 / 4$ | $17 / 16$ | 15/28 | AN364-1414 | AN364D1414 |
| 1-14 | NF3 | . 9536 | $\begin{array}{r} +.0036 \\ -.0000 \end{array}$ | 1716 | 121/22 | 86 | AN364-1614 | AN364D1614 |

Engineering Information
Material: Elastic Stop Nut Corp. or equivalent. Manufacturing Specification: 2527 Limits: Standard Commercial 2330 steel Specification AN-00-S-689, for LS894 only.

Note: 1. Nuts must fit A.S.A. wrench openings.
2. Round or chamfered end bolts or screws must extend at least the full round or chamfer through the nut. Flat end bolts or screws must extend at least $1 / 82$ through the nut.
3. Must not be used where temperature exceers $121^{\circ} \mathrm{C},\left(250^{\circ} \mathrm{F}\right)$.

Examples: $\mathrm{AC} 364=$ No. $10-32$ steel self-locking nut.
AC364D1032 $=$ No. $10-32$ aluminum self-locking nut.

AN 01-25LA-3
TABLE 19
PLAIN WASHERS

Light Series	h Numb Steel	Steel		A	D	T
	Regular	Alum.	Bolt			
	Series	Alloy	Size			
10L	3	D3	\#3	764	1/4	1/32
	4	D4	\#4	1/8	5/16	1/32
	6	D6	46	964	$3 / 8$	$1 / 32$
	8	D8	/8	11/64	3/8	1/22
			\#10	13/64	7/16	1/82
	10	D10	\#10	$13 / 64$	7/16	$1 / 16$
416L			1/4	1764	1/2	1/32
	416	D416	1/4	1764	1/2	$1 / 16$
516L			5/16	$21 / 64$	$9 / 16$	$1 / 32$
	516	D516	5/16	2164	$9 / 16$	$1 / 16$
	616	D616	$3 / 8$	25/64	5/8	$1 / 16$
	716	D716	7/16	2964	3/4	$1 / 16$
	816	D816	$1 / 2$	33/64	7/8	$1 / 16$
	916	D916	$9 / 16$	$37 / 64$	1316	116
	1016	D1016	5/8	41/64	18/16	1/16
	1216	D1216	$3 / 4$	4964	15/16	3/32
	1416	D1416	7/8	57/64	11/2	$8 / 32$
	1616	D1616	1	1164	$13 / 4$	$3 / 32$

NOTE: 1. Either aluminum or steel washers may be used in the following applications:
A. With bolts up to and including $5 / 16$ diameter; B. With all screws;
C. With all clevis bolts.
2. Only steel washers may be used in the following applications:
A. With bolts over $5 / 18$ diameter.
B. With all internal hex bolts,
3. All washers must be flat and free from burrs.

MATERIAL:

STEEL-Specification AN-QQ-S-651, or SAE 1010 steel (hard finished SAE 1010 steel optional) or Specification AN-QQ-S-685
ALUMINUM ALLOY-Specification QQ-A-353, or 24ST alclad-Specification 11067
FINISH:
Steel-Cadmium plate, Specification AN-QO-P-421
Aluminum alloy-Anodize-Specification AN-QQ-A-696
24ST Alclad-none
PACKING SPECIFICATION 40560
LIMITS: $\pm .010$

AN 01－25LA－3

TABLE 20－ALLOWABLE LOADS FOR RAISED HEAD RIVETS．

ALLOWABLE SINGLE SHEAR STRENGTH OF ALUMINUM ALLOY RIVETS（LB．）

Dia．of Rivet or Pin，in．	$1 / 16$	$3 / 32$	1／8	5／32	3／16	$1 / 4$	$5 / 10$	3
A17ST \＆56SH								
（ $\mathrm{F}_{\mathrm{su}}=27,000 \mathrm{lb} / \mathrm{sq} \mathrm{in}$. ）	83	186	351	518	745	1325	2071	2984
17ST								
（ $\mathrm{F}_{\mathrm{su}}=30,000 \mathrm{lb} / \mathrm{sq} \mathrm{in)}$.	92	206	368	573	828	1472	2300	3313
24ST								
（ $F_{\text {su }}=35,000 \mathrm{lb} / \mathrm{sq} \mathrm{in}$. ）	107	241	429	670	966	1718	2684	3865

ALLOWABLE BEARING STRENGTH OF 24ST ALUMINUM ALLOY SHEET（LB．）
（ $\mathrm{Fbr}=90,000 \mathrm{lb} / \mathrm{sq} \mathrm{in}$. ）

Dia．of Rivet or Pin，in．	$1 / 18$	8／32	1／8	5／32	3／16	1／4	5／16	$3 / 8$
． 014	78							
． 016	90							
． 018	101	151						
． 020	112	168						
－ 025	140	210	281					
\％ 0.032	180	269	360	449				
辿 0.036	202	303	405	506	607			
\％ 040	225	337.	450	562	675			
$\mathrm{O}_{0} .045$	253	379	506	632	759			
窘 ． 051	286	430	573	716	860	1147		
\cdots－ 064	360	539	720	899	1080	1440	1800	
囫 0.072	405	607	810	1012	1215	1620	2025	2430
遥 ． 081	455	683	910	1138	1366	1822	2278	2733
岕 ． 091	511	767	1023	1279	1535	2047	2559	3071
． 102	573	860	1147	1434	1721	2295	2868	3442
． 128	720	1079	1440	1799	2160	2880	3600	4320
$5 / 32$	878	1317	1757	2195	2635	3514	4393	5271
3／16	1054	1581	2109	2635	3164	4218	5273	6328
1／4	1406	2108	2812	3514	4218	5625	7031	8437

TABLE 20－ALLOWABLE LOADS FOR RAISED HEAD RIVETS（Cont＇d）

ALLOWABLE BEARING STRENGTH OF 24ST ALCLAD ALUMINUM ALLOY SHEET（LB．）

$$
\left(\mathrm{F}_{\mathrm{br}}-82,000 \mathrm{lb} / \mathrm{sq} \text { in. }\right)
$$

Dia．of Rivet or Pin，in．	$1 / \mathrm{f}$	$3 / 32$	1／8	$5 / 32$	3／16	1／4	518	3／4
． 014	71							
． 016	82							
． 018	92	138						
． 020	102	153						
． 025	128	192	256					
0.032	164	245	328	409				
$\begin{array}{ll}\text { 号 } \\ 乙 & .036\end{array}$	184	276	369	461	553			
令 ． 040	205	307	410	512	615			
$\sum_{3}^{0} .045$	230	345	461	576	691			
箩 0.051	261	391	522	653	784	1045		
＋	328	491	656	819	984	1312	1640	
国 ． 072	369	553	738	922	1107	1476	1845	2214
毸 0.081	415	622	830	1037	1245	1660	2075	2490
¢ ． 091	466	699	932	1165	1399	1865	2331	2798
． 102	522	783	1045	1306	1568	2091	2613	3136
． 128	656	983	1312	1639	1968	2624	3280	3936
$5 / 32$	800	1200	1601	2000	2401	3202	4002	4803
3／16	960	1440	1921	2401	2882	3843	4804	5765
！	1281	1920	2562	3202	3843	5125	6406	7687

FIGURE 13A－RIVETLESS SKIN PATCH

TABLE 21

ALLOWABLE LOADS FOR MACHINE COUNTERSUNK RIVETS

ALLOWABLE SHEAR STRENGTH－LB．PER RIVET

Rivet Dia．		$3 / 32$	1／8	5／32	3／16
$\stackrel{\Delta}{2} \underset{\sim}{0}$	Al7ST	186	331	518	745
	17ST	206	368	574	828
	24ST	241	429	670	966

ALLOWABLE BEARING STRENGTH—LB．PER RIVET

Sheet AlloyDia，of Rivet		24ST Alclad				24ST			
		8／32	1／8	5／32	3／66	3／32	1／8	$5 / 32$	$3 / 16$
	． 020	122	150			131	162		
	． 025	138	175			149	189		
	． 032	160	210	280		172	226	302	
	． 036	173	231	303		186	249	327	
＊ 4	． 040	185	251	327	460	199	271	353	496
堨	． 045	201	277	357	545	217	299	385	589
定芴	． 051	220	308	393	600	237	332	424	648
句，	． 064	241	376	470	717	241	405	507	775
स嵒	． 072	241	417	518	788	241	429	558	850
	． 081	241	429	557	870	241	429	600	940
	． 091	241	429	602	966	241	429	650	966
	． 102		429	652	966		429	670	966
	． 128			670	966			670	966

TABLE 22

ALLOWABLE LOADS FOR PRESS COUNTERSUNK RIVETS

ALLOWABLE SHEAR STRENGTH－LB．PER RIVET

Rivet Dia．

$3 / 32$	$1 / 8$
276	480
300	530
350	620

$5 / 32$	$3 / 16$
735	1020
810	1130
950	1325

ALLOWABLE BEARING STRENGTH－LB．PER RIVET

	Sheet Alloy Rivet Dia．
	． 020
	． 025
	． 032
	． 036
	． 040
	． 045
	． 051
	． 064
	． 072
	． 081
	． 091
	． 102
	． 128

AN 01-25LA-3
TABLE 23 - ALLOWABLE LOADS FOR CHERRY BLIND RIVETS

$t=$ Sheet Thick- ness* Inches	Allowable Ultimate Shear or Bearing Load-Lbs.					
	24ST ALUM. ALLOY SHEET			24ST ALCLAD SHEET		
	$F_{t u}=62000 \mathrm{lb} . / \mathrm{sq}$ in., $F_{b r}=90000 \mathrm{lb} / \mathrm{sq}$ in. $\quad F_{t u}=56000 \mathrm{lb} / \mathrm{sq} \mathrm{in.}, F_{b r}=82000 \mathrm{lb} / \mathrm{sq} \mathrm{in}$.					
	$d-1 / 8$	$5 / 32$	3/16	1/8	$5 / 32$	3/16
0	0	0	0	0	0	0
. 010	60	86	100	54	78	91
. 016	96	136	159	87	124	144
. 020	119	170	197	108	155	180
. 025	147	210	245	136	193	223
. 028	164	234	274	150	214	250
. 030	175	249	293	161	228	268
. 032	186	265	312	170	243	286
. 036	207	296	350	191	272	320
. 040	228	325	386	210	299	354
. 045	253	360	431	233	332	395
. 050	276	391	475	256	363	436
. 051	280	397	483	260	369	444
. 057	302	431	533	284	402	491
. 060	311	445	556	294	418	514
. 064	321	462	586	306	437	544
. 070	329	483	626	321	461	584
. 072	330	488	638	324	468	597
. 080	331	506	680	331	490	643
. 081	331	508	684	331	493	648
. 090	331	517	715	331	510	689
. 091	331	518	717	331	511	692
. 094	331	518	725	331	514	702
. 100	331	518	736	331	518	718
. 102	331	518	739	331	518	722
. 110	331	518	745	331	518	737
. 120	331	518	745	331	518	745
. 125	331	518	745	331	518	745

* $t=$ Total thickness of loaded sheets outside of shear plane (t_{1}), or total thickness of loaded sheets inside of shear plane (t_{2}), whichever is smaller.

FIGURE 14 (SHEET 1 of 4 SHEETS)-SPECIAL TOOLS-BUCKING BARS

FIGURE 14 (SHEET 2 of 4 SHEETS)—SPECIAL TOOLS-BUCKING BARS

FIGURE 14 (SHEET 4 OF 4 SHEETS)—SPECIAL TOOLS—RIVET HOLE LOCATOR

AN 01-25LA-3 | Section II |
| ---: |
| Paragraph 1 |

SECTION II

ENGINE MOUNT AND FIREWALL REPAIR

1. ENGINE MOUNT.

a. GENERAL.

The engine mount is an arc-welded structure using air-hardening X-4130 steel tubing. The various sub-assemblies are normalized after welding but the completed mount does not receive any heat treatment. Figure 15 and table 24 give the engine mount dimensions and tube sizes.

b. NEGLIGIBLE DAMAGE.

(1) Smooth dents in all the members except the mounting ring may be considered negligible if their maximum depth is equal to or less than .08 inches. Only one dent will be allowed for each tube.
(2) Smooth bows in all tubes may be neglected provided the maximum bow is equal to or less than .18 inch. Only one bow will be allowed for each tube.
(3) Members described under paragraph (1) above may also have a single bow as described under paragraph (2).
c. REPAIR TO ENGINE MOUNT.
(1) REPAIR OF DENTS.
(a) Smooth dents greater than that specified in paragraph $1 b(1)$ of this section, and having no sharp corners or cracks may be repaired as follows. If any doubt exists as to the presence of cracks, refer to section I, paragraph 7 for the method used to disclose any cracks. Drill and tap a hole not to exceed $1 / 4$ inch in diameter in the opposite side of the damaged tube. Screw a short length of pipe into the hole to which an air hose may be attached. Heat the bent section of the tube evenly with an acetylene torch and at the same time apply air pressure to the tube. A welding rod tack welded to the dent may be used as a further aid to pull the tube into shape. After the
tube has been repaired, allow to cool in stild air. Remove the section of pipe and close the hole by welding. Clean the tube by sand blasting and apply corrosion resistant finish as per section I, paragraph 11.
(b) An alternate repair for dents is shown in figure 16. In this figure, the repair is effected by wrapping two semi-circular sleeves around the tube and bolting them in place as shown. Two lengths of dent are shown with the corresponding size sleeve for each. The requirements of the figure should be carefully adhered to.
(2) REPAIR OF CRACKS.-Cracks running parallel to the axis of the tube and having a maximum length of 1.5 inches may be repaired as follows: drill a hole at each end of the crack with a No. 40 drill ($1 / 8$ inch). Cut a diamond shaped patch of X4130 steel one gage higher than that of the tube being repaired. Weld the crack together and, centering the diamond patch over the crack, weld it to the tube. See figure 16 . Only one such repair is allowed per tube. Cracks in the mounting ring cannot be repaired.
d. DAMAGE NECESSITATING REPLACEMENT.
(1) Individual members may be cut out and new ones welded in. It is necessary that the length of the weld be kept the same as in the original structure. Care must be taken not to introduce any eccentricity at the tube ends.
(2) Cracks or dents in the mounting ring require replacement.
(3) Tubes which cannot be straightened to within the limit specified in paragraph $1 b$ (2) of this section shall be replaced.

FIGURE 15—ENGINE MOUNT STRUCTURE

AN 01-25LA-3

TABLE 24

ENGINE MOUNT STRUCTURE MATERIAL X4130 STEEL

Item No.	O.D. (Inches)	Wall Thickness	Length
1	1.50	.065	36.00
2	1.50	.065	40.00
3	1.50	.065	40.00
4	1.50	.083	38.00
5	1.50	.065	48.00
6	1.50	.065	40.00
7	1.50	.065	40.00
8	1.50	2.25	124.00
9	TYPICAL MOUNT, PRATT \& WHITNEY DRAWING E-48806		

GAGE OF GUSSETS

11
12
13
14
15
16
17
18
19
20
21
22
23
24
. 063
.063
.125
. 063
. 063
.125
.063
. 063
. 063
. 063
.125
. 063
.125
. 063

REPAIR FOR DENTS UP TO . 88 INCHES LONG

SEMI-CIRCULAR PATCH, ONE GAGE THICKER THAN DAMAGED TUBE.
X4130 STEEL NORMALIZED HEAT TREAT TO $90,000 \mathrm{LB} / \$ \mathrm{Q} \mathrm{IN}_{\mathrm{y}}$.

REFERENCE: SECTION II, PARAGRAPH Tt

FIGURE 16-ENGINE MOUNT REPAIR

FIGURE 17-FIREWALL ASSEMBLY

TABLE 25

FIREWALL STRUCTURE

Item No.	Part	Gage	Material
1.	Channel	. 064	24ST Alclad
2.	Plate (FWD.)	. 102	24ST Alclad
	Plate (AFT)	. 051	24ST Alclad
3.	Channel	. 081	24ST Alclad
4.	Plate (FWD.)	. 102	24ST Alclad
	Plate (AFT)	. 093	24ST Alclad
5.	Hat Section	. 040	24SO Alclad
6.	Pan Reinforcement	. 040	24SO Alclad
Added at			
Airplane			
AF41-12384			
Discontinued			
At Airplane			
AF44-77894			
7.	Channel	. 081	24SO Alclad
8.	Plate (FWD.)	. 081	24ST Alclad
	Plate (AFT)	. 081	24ST Alclad
9.	Joint	. 051	24SO Alclad
10.	Skin (Type 302)	. 010	Stainless Steel
	Millboard	. 062	Asbestos
	Skin	. 016	24ST Alclad
11.	Cover Plate	. 030	Stainless Steel

2. FIREWALL.

a. GENERAL.

The firewall consists of an .010 stainless steel and an .016 aluminum alloy bulkhead separated by an .062 sheet of asbestos. On the aft side of the firewall are stiffening box and hat section beams. Figure 17 shows the firewall assembly and table 25 gives the component parts.

b. REPAIR TO FIREWALL.

Figure 18 shows a combined repair to the bulkhead, hat section and box beam. It is seen that the repair to the side of the beam against the bulkhead must be made on the forward face of the bulkhead. Any repair material added on the engine compartment side of the firewall must be of stainless steel. The box beam repair is given in greater detail in figure 19.

TABLE 26

MATERIALS FOR ENGINE MOUNT AND FIREWALL REPAIR

Spec. No.

18-8, 1/2 H-Type 308
101-S
24ST
24ST
24ST
24 SO
X4130
X4130
X4130
X4130
AN442-AD4
AN442-AD5
AN3
AC364
AN960-10StockSize
Stainless steel sheet 010
Asbestos millboard 062
Sheet, aluminum alclad 016
Sheet, aluminum alclad 091
Sheet, aluminum alclad 081
Sheet, aluminum alclad 102
Sheet, steel $90,000 \mathrm{lb} / \mathrm{sq} \mathrm{in}$. Normalized 065
Sheet, steel $90,000 \mathrm{lb} / \mathrm{sq}$ in. Normalized 083
Sheet, steel $90,000 \mathrm{lb} / \mathrm{sq} \mathrm{in}$. 095
Sheet, steel $90,000 \mathrm{lb} / \mathrm{sq}$ in. Normalized 125
Rivet, flat head 1/8
Rivet, flat head 562
Bolt
Nut
Washer

FIGURE 18-FIREWALL REPAIR

REFERENCE: SECTION II, PARAGRAPH 2b

1. GENERAL.

a. The fuselage is a semi-monocoque structure consisting of 24 ST aluminum alloy stressed skin reinforced longitudinally by formed Zee section stringers and laterally by traverse bulkhead rings. See figures 20 and 22 . In the region of the fuselage where the cargo floor exists, the bulkheads are built from two semicircular sections spliced near the floor line. Each of these semi-circular sections is built in three component parts which are spliced together. The bulkheads in the tail cone are of different constructior and are heavily reinforced. See figure 21.
b. The wing beams are continuous through the fuseiage. The wing skin ties into the fuselage skin through attach angles on the upper and lower surfaces of the wing. At the attachments of the wing beams to the fuselage, there are three stub rings that extend between the tops of the front, 30 percent, and 70 percent spars to the intercostal support that runs lengthwise in the fuselage below the windows as shown in fgure 20. These stub rings transfer the wing beam loads into the fuselage.

CAUTION

ALL THE 24SO MATERIAL MUST BE HEAT TREATED.

2. SKIN.

a. GENERAL.-The fuselage skin is supported by bulkheads and longitudinal stringers. All of the skin panels are formed from 24 ST alclad sheet and for their repair, the same or heavier skin gage must be used. Figure 22 and table 28 show the various panel gages and the riveting at all skin splices. No attempt is made to maintain flush surfaces though provisions are given to effect flush repairs. Rivets used in the repair should be of the same type as those used in the surrounding region. However, provisions are given for the use of Cherry blind rivets; reference section I, paragraph 10 g.

b. NEGLIGIBLE DAMAGE.

(1) Skin dents free from cracks, abrasions and sharp corners may be neglected. These dents should be bumped out wherever possible to prevent their developing into cracks. Care must be taken to have the skin well backed up and not to stretch or crack
the skin while this is being accomplished. Otherwise, it will be necessary to reinforce the skin with a patch of the same gage. (See paragraph 2 c . below). Inspect the rivets near the damage to see that they have not been loosened or sheared.
(2) Holes and cracks in skin of 051 or smaller gage which when cleaned up can be circumscribed by a circle whose diameter is 1.25 inches or less may be considered negligible providing it is at least 3.0 inches from the nearest skin splice. Two such holes within 10 inches of each other cannot be neglected. In all cases the holes must be cleaned up and cracks should be stopped by drilling $1 / 8$ inch diameter holes at the ends.

c. DAMAGE REPAIRABLE BY PA'TCHING.-

 Damage not considered negligible may be patched as follows:(1) Cut away the damaged area in the form of a rectangular hole, maintaining a .5 inch or greater radius in each corner. Cut it so that its longitudinal sides are parallel to the stringers and its vertical sides are parallel to the bulkheads.
(2) Refer to figures 20 and 22 to determine the location and the gage of the damaged skin.
(3) The skin is patched with a 24 ST alclad sheet of the same gage as the damaged section. Its longitudinal sides are attached with the same rivet pattern as the nearest parallel longitudinal splice; its vertical sides are attached with the same rivet pattern as the nearest vertical skin splice. The types of rivets and rivet patterns can be determined from table 28.
(a) Figure 24-a shows the application of the above procedure to a specific skin repair.
(b) Figure 24-b shows the method of making a flush skin patch.
(4) It should also be noted that the general repair given in section $I X$ and figure 229 may be satisfactorily used for skin patching.
d. DAMAGE REPAIRABLE BY INSERTION. -When effecting an extensive repair to the skin necessitating the insertion of a new panel, the fuselage in the vicinity of the damage must be so supported that the removal of the skin will not strain the adjoining structure. When removing the necessary rivets, take care not to elongate the rivet holes, see section I, paragraph 10 d .

FIGURE 20 - FUSELAGE STRUCTURE

TABLE 27-COMPONENT PARTS OF FUSELAGE

Item	Designation	Sta. No.	Part No.
1.	Bulkhead	16.0	20-210-1060
2.	Bulkhead	34.5	20-210-1061
3.	Bulkhead	50.50	20-210-1062
4.	Bulkhead	53.75	20-210-1063
5.	Bulkhead	60.5	20-210-1073
6.	Bulkhead	70.70	20-210-1082
7.	Bulkhead	88.5	*20-210-1089, -1066
8.	Bulkhead	107.0	20-210-1091
9.	Bulkhead	128.0	20-210-1092
10.	Bulkhead	150.75	20-210-1065
11.	Bulkhead	173.5	20-210-1071
12.	Bulkhead	194.0	20-210-1090
13.	Bulkhead	214.5	20-210-1113
14.	Bulkhead	235.0	20-210-1086
15.	Bulkhead	255.5	20-210-1111
16.	Bulkhead	276.0	20-210-1117
17.	Stub Ring	285	20-210-1140
18.	Bulkhead	296.5	*20-210-1139, -1164
19.	Stub Ring	312.0	20-210-1222
20.	Bulkhead	317.0	*20-210-1125, -1165
21.	Bulkhead	337.5	*20-210-1126, -1166
22.	Bulkhead	358.0	*20-210-1127, -1167
23.	Bulkhead	378.5	*20-210-1128, -1168
24.	Stub Ring	392.2	20-210-1141
25.	Bulkhead	399.0	20-210-1123
26.	Bulkhead	419.5	20-210-1114
27.	Bulkhead	440.0	20-210-1112
28.	Bulkhead	460.5	*20-210-1116, -3043
29.	Bulkhead	481.0	*20-210-1115, -3044
30.	Bulkhead	501.5	*20-210-1129, -3045
31.	Bulkhead	522.0	*20-210-1130, -3046
32.	Bulkhead	542.5	*20-210-1131, -3047
33.	Bulkhead	563.0	*20-210-1132, -3048
34.	Bulkhead	583.5	*20-210-1133, -3049
35.	Bulkhead	597.0	*20-210-1134, -3054
36.	Bulkhead	615.0	*20-210-1135, -3055
37.	Bulkhead	633.0	20-210-1118
38.	Bulkhead	651.0	20-210-1119
39.	Bulkhead	664.5	20-210-1120
40.	Bulkhead	688.5	20-210-1127
41.	Bulkhead	704.0	20-210-1136
42.	Bulkhead	720.0	20-210-1022
43.	Bulkhead	734.73	20-210-1023
44.	Bulkhead	746.5	20-210-1024
45.	Bulkhead	758.22	20-210-1025

Item Designation	Sta. No.	Part No.
46. Bulkhead	770.5	20-210-1026
47. Bulkhead	782.88	20-210-1027
48. Bulkhead	795.0	20-210-1028
49. Bulkhead	807.06	20-210-1029
50. Bulkhead	819.6	20-210-1030
51. Bulkhead	832.0	20-210-1031
52. Bulkhead	848.2	20-210-1032
53. Bulkhead	867.2	20-210-1033
54. Bulkhead	886.2	20-210-1034
55. Nose Section	0-16.0	20-210-1157
56. Nose Section		
Frame Assem.	0-128.0	20-210-1006
57. Windshield Assem.	16.0-88.5	20-250-1000
58. Floor Assem.		20-260-1000
59. Door Frame.	107-128	20-210-1095
60. Pilot's Door	107-128	20-210-1054
61. Fwd. Floor Assem.	128-150.75	20-260-1001
62. Navigation Dome	150.75-173.5	20-682-3014
Frame Assem.		
63. Center Section	128-720	20-210-1101
64. Window Instal.	194-214.5	20-210-1110
65. Window Instal.	276-296.5	20-210-1110
66. Emergency Door	317-337.5	20-210-1500-2
67. Window Instal.	358-378.5	20-210-1110
68. Center Floor Assem.	399-615	20-260-1003
69. Window Instal.	440-460.5	20-210-1110
70. Main Cargo Door	508.75-590.5	20-210-1400
71. Cargo Door Frame	508.75-590.5	20-210-1085
72. Fin Assem. Dorsal	583.5-704	20-150-1002
73. Dorsal Bulkhead	597	20-150-1012-9
74. Dorsal Bulkhead	615	20-150-1012-8
75. Dorsal Bulkhead	633	20-150-1012-7
76. Dorsal Bulkhead	651	20-150-1012-6
77. Dorsal Bulkhead	669.50	20-150-1012-5
78. Dorsal Bulkhead	668.50	20-150-1012-4
79. Dorsal Bulkhead	704	20-150-1012-2
80. Frame Assem.		
Fus. Underwing	276-399	20-210-1201
81. Accessory Door	296.5-317	
82. Tail Sec. Frame	Bet. 704 and	
Assembly	886.2	20-210-1301

[^0]

FIGURE 22 -FUSELAGE SKIN DIAGRAM SHET I OF 2

2. FOR REPAIR TO HAT SECTION

REINFORCEMENT SEE FIGURE 93
3. FOR REPAIR TO ZEE STRINGERS SEE FIGURE 25
4. STATION B19.6 AND STATION B32.0,

SEE FIGURE 58
5. STATION B48.2-SEE FIGURE 59
6. STATION 日67.2-SEE FIGURE 60
7. STATION 886.2-SEE FIGURE 61
reference: section ili, Paragraph 4 a

FIGURE 23-TAIL CONE SKIN

TABLE 28
FUSELAGE SKIN PANELS AND SKIN SPLICES

A. HORIZONTAL SKIN SPLICES

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longitudinal Overlap Wv See Fig. 24	Width of Longi- tudinal Frame For Flush Patch $2 W_{h}$ See Fig. 24	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
Top Keel	$\begin{aligned} & \text { Sta. 128-Sta. } 317 \\ & \text { Sta. 317-Sta. } 720 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 2.04 \\ & 2.04 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{r} .38 \\ . \\ \hline \end{array}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AN426-AD4 } \\ & \text { 671-D-4AD } \end{aligned}$
4 L	Sta. 481-Sta. 501.5 Sta. 501.5-Sta. 563	$\begin{aligned} & 1.25 \\ & 1.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.50 \\ & \hline \end{aligned}$	$\begin{aligned} & .025 \\ & .040 \\ & \hline \end{aligned}$	$\begin{aligned} & .040 \\ & .040 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{array}{r} 1.25 \\ .62 \end{array}$	$\begin{aligned} & \text { 671-D-4AD } \\ & 671-D-4 A D \end{aligned}$
$5 \mathrm{~L} / \mathrm{R}$	Sta. 150.75-Sta. 317 Sta. 317-Sta, 378.5 Sta. 399-Sta. 481	$\begin{aligned} & .64 \\ & .64 \\ & .64 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 1.28 \\ & 1.28 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & .62 \\ & .62 \\ & .62 \end{aligned}$		$\begin{aligned} & \text { AN426-AD4 } \\ & 671-D-4 A D \\ & 671-D-4 A D \end{aligned}$
5 R	Sta. 481-Sta, 633	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
6 L	Sta. 481-Sta. 615	1.25	2.50	. 040	. 064	2	. 61	. 62	. 62	671-D-4AD
$8 \mathrm{~L} / \mathrm{R}$	Sta. 107-Sta. 128 Sta. 150.75-Sta. 317 Sta. 317-Sta. 378.5 Sta. 399-Sta. 460	$\begin{aligned} & .64 \\ & .64 \\ & .64 \\ & .64 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 1.28 \\ & 1.28 \\ & 1.28 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \\ & .025 \end{aligned}$.025 .025 .025 .025	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$		$\begin{aligned} & \text { AN426-AD4 } \\ & \text { AN426-AD4 } \\ & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
8 L	Sta. 460-Sta. 481 Sta. 481-Sta. 501.5 Sta. 597-Sta. 615 Sta. 615-Sta. 704	$\begin{array}{r} 1.25 \\ 1.25 \\ 1.25 \\ .64 \end{array}$	$\begin{aligned} & \hline 2.50 \\ & 2.50 \\ & 2.50 \\ & 1.28 \\ & \hline \end{aligned}$	$\begin{array}{r} .025 \\ .064 \\ .064 \\ .025 \\ \hline \end{array}$	$\begin{aligned} & .040 \\ & .040 \\ & .040 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \\ & .61 \end{aligned}$	$\begin{array}{r} .62 \\ .62 \\ .62 \\ .62 \\ \hline \end{array}$	$\begin{array}{r} 1.25 \\ .62 \\ .62 \end{array}$	$\begin{aligned} & \text { 671-D-4AD } \\ & 671-D-4 A D \\ & 671-D-4 A D \\ & 671-D-4 A D \end{aligned}$
8 R	Sta. 460-Sta. 704	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
$9 \mathrm{~L} / \mathrm{R}$	Sta. 88.5-Sta. 128	. 64	1.28	. 025	. 025	1		. 62		AN426-AD4
$10 \mathrm{~L} / \mathrm{R}$	Sta. 88.5-Sta. 128 Sta. 150.75-Sta. 317 Sta. 317-Sta. 337.5	$\begin{aligned} & .64 \\ & .64 \\ & .64 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.28 \\ & 1.28 \\ & 1.28 \\ & \hline \end{aligned}$	$\begin{array}{r} .025 \\ .025 \\ .025 \\ \hline \end{array}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & .62 \\ & .62 \\ & .62 \end{aligned}$		$\begin{aligned} & \text { AN426-AD4 } \\ & \text { AN426-AD4 } \\ & 671-D-4 A D \end{aligned}$
10 R	Sta. 460.5-Sta. 563	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD

A. HORIZONTAL SKIN SPLICES

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longitudinal Overlap W_{v} See Fig. 24	Width of Longitudinal Frame For Flush Patch $2 W_{h}$ See Fig. 24	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
$11 \mathrm{~L} / \mathrm{R}$	Sta. 88.5-Sta. 128 Sta. 633-Sta. 704 Sta. 704-Sta. 720 Sta. 720 -Sta. 746.5	.64 .64 1.25 1.25	$\begin{aligned} & 1.28 \\ & 1.28 \\ & 2.50 \\ & 2.50 \end{aligned}$.025 .025 .040 .040	$\begin{aligned} & .025 \\ & .025 \\ & .032 \\ & .040 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$.61 .61	.62 .62 .62 .62	1.25 .62	$\begin{aligned} & \text { AN426-AD4 } \\ & \text { 671-D-4AD } \\ & 671-D-4 A D \\ & 671-D-4 A D \end{aligned}$
11 L	Sta. 590-Sta. 615 Sta. 615-Sta. 633	1.25 1.25	$\begin{array}{r} 2.50 \\ 2.50 \\ \hline \end{array}$	$\begin{array}{r}.040 \\ .025 \\ \hline\end{array}$	$\begin{aligned} & .040 \\ & .040 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \end{aligned}$	$\begin{array}{r}.62 \\ -.62 \\ \hline\end{array}$	$\begin{array}{r} .62 \\ 1.25 \end{array}$	$\begin{aligned} & 671-D-4 A D \\ & 671-D-4 A D \end{aligned}$
11 R	Sta. 563-Sta. 633	. 64	1.28	. 025	. 025	1 -		. 62 --		671-D-4AD
$12 \mathrm{~L} / \mathrm{R}$	Sta. 88.5-Sta. 128	. 64	1.28	. 025	. 040	1		. 62		AN426-AD4
	Sta. 128-Sta. 276	. 64	1.28	. 025	. 032	1		. 62		AN426-AD4
-	Sta. 276-Sta. 317	1.25	2.50	. 025	. 040	2	. 61	. 62	1.25	AN426-AD4
	Sta. 317-Sta. 378.5	1.25	2.50	. 025	. 040	2	. 61	. 62	1.25	671-D-4AD
	Sta. 378.5-Sta. 399	. 64	1.28	. 025	. 040	1		. 62		671-D-4AD
	Sta. 399-Sta. 460.5	. 64	1.28	. 025	. 032	1		. 62		671-D-4AD
12 L	Sta. 460.5-Sta. $\overline{481}$	1.25	2.50	. 040	. 032	2	. 61	. 62	1.25	671-D-4AD
	Sta. 481-Sta. 501.5	1.25	2.50	. 040	. 040	2.	. 61	. 62	. 62	671-D-4AD
12 R	Sta. 460.5-Sta. 542.5	. 64	1.28	. 025	. 032	1		. 62		671-D-4AD
	Sta. 542.5-Sta. 597	1.25	2.50	. 025	. 040	2	. 61	. 62	1.25	671-D-4AD
$13 \mathrm{~L} / \mathrm{R}$	Sta. 720-Sta. 807.06	1.25	2.50	. 040	. 032	2	. 61	. 62	. 62	671-D-4AD
13 L	Sta. 590-Sta. 615	1.25	2.50	. 040	. 040	2	. 61	. 62	. 62	671-D-4AD
	Sta. 615-Sta. 633	1.25	2.50	. 040	. 025	2	. 61	. 62	1.25	671-D-4AD
	Sta. 633-Sta. 704	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
13 R	Sta. 88.5-Sta. 128	. 64		. 025		1		. 62		AN426-AD 4
	Sta. 597-Sta. 669	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
	Sta. 669-Sta. 704	. 64	1.28	. 025	. 032	1		. 62		671-D-4AD

TABLE 28 (Continued)
FUSELAGE SKIN PANELS AND SKIN SPLICES

A. HORIZONTAL SKIN SPLICES

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longitudinal Overlap W_{V} See Fig. 24	Width of Longitudinal Frame For Flush Patch 2Wh See Fig. 24	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
$14 \mathrm{~L} / \mathrm{R}$	Sta. 88.5-Sta. 128 Sta. 150.75-Sta. 173 Sta. 173-Sta. 276 Sta. 276-Sta. 317 Sta. 337.5-Sta. 387.5 Sta. 339-Sta. 481	$\begin{array}{r} .64 \\ 1.25 \\ 1.25 \\ 1.25 \\ 1.25 \\ 1.25 \end{array}$	$\begin{aligned} & 1.28 \\ & 2.50 \\ & 2.50 \\ & 2.50 \\ & 2.50 \\ & 2.50 \\ & \hline \end{aligned}$	$\begin{aligned} & .032 \\ & .032 \\ & .032 \\ & .040 \\ & .040 \\ & .032 \end{aligned}$	$\begin{aligned} & .032 \\ & .032 \\ & .040 \\ & .051 \\ & .051 \\ & .040 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \\ & .61 \\ & .61 \\ & .61 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{array}{r} 1.25 \\ 1.25 \\ .62 \\ .62 \\ 1.25 \end{array}$	AN426-AD4 AN426-AD4 AN426-AD4 AN426-AD4 671-D-4AD 671.D-4AD
14 L	Sta. 481-Sta. 501.5	1.25	2.50	. 040	. 040	2	. 61	. 62	. 62	671-D-4AD
14 R	Sta. 481-Sta. 542.5 Sta. 542.5-Sta. 563 Sta. 583.5-Sta. 597	$\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.50 \\ & 2.50 \\ & \hline \end{aligned}$	$\begin{aligned} & .032 \\ & .040 \\ & .040 \\ & \hline \end{aligned}$	$\begin{array}{r} .040 \\ .040 \\ .040 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \\ & .61 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{array}{r} \hline 1.25 \\ .62 \\ .62 \\ \hline \end{array}$	$\begin{aligned} & 671-D-4 A D \\ & 671-D-4 A D \\ & 671-D-4 A D \\ & \hline \end{aligned}$
$15 \mathrm{~L} / \mathrm{R}$	Sta. 720-Sta. 746.5 Sta. 746.5-Sta. 770.5 Sta. 770.5-Sta. 782 Sta. 782-Sta. 848	$\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.50 \\ & 2.50 \\ & 2.50 \end{aligned}$	$\begin{aligned} & .032 \\ & .032 \\ & .040 \\ & .040 \end{aligned}$	$\begin{aligned} & .032 \\ & .040 \\ & .040 \\ & .032 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \\ & .61 \\ & .61 \end{aligned}$	$\begin{array}{r} .62 \\ .62 \\ .62 \\ .62 \end{array}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & \text { 671-D-4AD } \\ & 671-D-4 A D \\ & 671-D-4 A D \\ & 671-D-4 A D \end{aligned}$
15 L	Sta. 590-Sta. 615 Sta. 615-Sta. 633 Sta. 633-Sta. 669 Sta. 669-Sta. 704	$\begin{array}{r} 1.25 \\ 1.25 \\ .64 \\ .64 \\ \hline \end{array}$	$\begin{aligned} & 2.50 \\ & 2.50 \\ & 1.28 \\ & 1.28 \end{aligned}$	$\begin{aligned} & .040 \\ & .025 \\ & .025 \\ & .032 \end{aligned}$	$\begin{aligned} & .04 \overline{0} \\ & .040 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{array}{r} .62 \\ 1.25 \end{array}$	$\begin{aligned} & \text { 671-D-4AD } \\ & 671-D-4 A D \\ & 671-D-4 A D \\ & 671-D-4 A D \end{aligned}$
15 R	Sta. 88.5-Sta. 128 Sta. 583.5-Sta. 597 Sta. 597-Sta. 615 Sta. 615-Sta. 669 Sta. 669-Sta. 704	$\begin{array}{r} .64 \\ 1.25 \\ 1.25 \\ 1.25 \\ 1.25 \\ \hline \end{array}$	$\begin{aligned} & 1.28 \\ & 2.50 \\ & 2.50 \\ & 2.50 \\ & 2.50 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .025 \\ & .040 \\ & .025 \\ & .025 \\ & .032 \\ & \hline \end{aligned}$	$\begin{aligned} & .025 \\ & .040 \\ & .040 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \\ & .61 \\ & .61 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{array}{r} .62 \\ 1.25 \\ 1.25 \\ 1.25 \end{array}$	$\begin{aligned} & \text { AN426-AD4 } \\ & \text { 671-D-4AD } \end{aligned}$

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longitudinal Overlap W_{v} See Fig. 24	Width of Longitudinal Frame For Flush Patch $2 W_{h}$ See Fig. 24	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
15a L/R	Sta. 296.5-Sta. 317 Sta. 337.5-Sta. 358 Sta. 399-Sta. 440 Sta. 460.5-Sta. 522	1.25 1.25 1.25 1.25	2.50 2.50 2.50 2.50	.051 .051 .040 .040	.051 .051 .040 .040	2 2 2 2	.59 .61 .61 .61	.62 .62 .62 .62	1.25 1.25 .62 1.25	$\begin{aligned} & \text { AN426-AD5 } \\ & \text { 671-D-5AD } \\ & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
15aR	Sta. 542-Sta. 563	1.25	2.50	. 040	. 040	2	. 61	. 62	. 62	671-D-4AD
$16 \mathrm{~L} / \mathrm{R}$	Sta. 173.5-Sta. 194	1.25	2.50	. 040	. 040	2	. 61	. 62	. 62	AN426-AD4
	Sta. 214.5-Sta. 276	1.25	2.50	. 040	. 040	2	. 61	. 62	. 62	AN426-AD4
	Sta. 720-Sta. 746	1.25	2.50	. 032	. 040	2	. 61	. 62	. 62	671-D-4AD
	Sta. 746-Sta. 782	1.25	2.50	. 040	. 040	2	. 61	. 62	. 62	671-D-4AD
	Sta. 782-Sta. 848	1.25	2.50	. 032	. 040	2	. 61	. 62	. 62	671-D-4AD
	Sta. 848-Sta. 886	1.25	2.50	. 025	. 064	2	. 61	. 62	. 62	671-D-4AD
16 R	Sta. 88.5-Sta. 128	. 64	1.28	. 025	. 025	1		. 62		AN426-AD4
$17 \mathrm{~L} / \mathrm{R}$	Sta. 16-Sta. 50.5	. 64	1.28	. 025	. 025	1		. 62		AN426-AD4
	Sta. 276-Sta. 317	1.60	3.20	. 051	. 064	2	. 82	. 62	. 62	AN426-AD5
	Sta. 317-Sta. 378.5	1.60	3.20	. 051	. 051	2	. 82	. 62	. 62	671-D-5AD
	Sta. 378.5-Sta. 399	1.60	3.20	. 040	. 064	2	. 82	. 62	. 62	671-D-5AD
	Sta. 399-Sta. 522	1.25	2.50	. 040	. 040	2	. 61	. 62	. 62	671-D-4AD
	Sta. 633-Sta. 669	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
	Sta. 669-Sta. 704	. 64	1.28	. 025	. 032	1		. 62		671-D-4AD
	Sta. 704-Sta. 720	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	671-D-4AD
17 L	Sta. 590-Sta. 615	1.25	2.50	. 040	. 040	2	. 61	. 62	. 62	671-D-4AD
	Sta. 615-Sta. 633	1.25	2.50	. 040	. 025	2	. 61	. 62	. 62	671-D-4AD
17 R	Sta. 88.5-Sta. 128	. 64	1.28	. 025	. 025	1		. 62		AN426-AD4
	Sta. 522-Sta. 597	1.25	2.50	. 040	. 040	2	. 61	. 62	. 62	671-D-4AD
	Sta. 597-Sta. 615	1.25	2.50	. 040	. 025	2	. 61	. 62	. 62	671-D-4AD
	Sta. 615-Sta. 633	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD

TABLE 28 (Continued)

FUSELAGE SKIN PANELS AND SKIN SPLICES

A. HORIZONTAL SKIN SPLICES

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longitudinal Overlap W_{V} See Fig. 24	Width of Longitudinal Frame For Flush Patch $2 W_{h}$ See Fig. 24	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
$18 \mathrm{~L} / \mathrm{R}$	Sta. 16-Sta. 50.5 Sta. 88.5-Sta. 107 Sta. 128-Sta. 150 Sta. 720-Sta. 782	$\begin{array}{r} .64 \\ .64 \\ 1.25 \\ 1.25 \end{array}$	$\begin{aligned} & 1.28 \\ & 1.28 \\ & 2.50 \\ & 2.50 \end{aligned}$	$\begin{aligned} & .025 \\ & .032 \\ & .032 \\ & .040 \end{aligned}$	$\begin{aligned} & .025 \\ & .032 \\ & .032 \\ & .040 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{array}{r} 1.25 \\ .62 \end{array}$	$\begin{aligned} & \text { AN426-AD4 } \\ & \text { AN426-AD4 } \\ & \text { AN426-AD4 } \\ & \text { 671-D-4AD } \end{aligned}$
18 L	Sta. 150.75-Sta. 173 Sta. 173-Sta. 255 Sta. 255-Sta. 276	$\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.50 \\ & 2.50 \\ & \hline \end{aligned}$	$\begin{aligned} & .032 \\ & .040 \\ & .040 \\ & \hline \end{aligned}$	$\begin{aligned} & .032 \\ & .032 \\ & .040 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \\ & .61 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{array}{r} 1.25 \\ 1.25 \\ .62 \\ \hline \end{array}$	AN426-AD4 AN426-AD4 AN426-AD4
18 R	Sta. 107-Sta. 128 Sta. 150-Sta. 173 Sta. 173-Sta. 194 Sta. 194-Sta. 276	$\begin{array}{r} .64 \\ .64 \\ 1.25 \\ 1.25 \end{array}$	$\begin{aligned} & 1.28 \\ & 1.28 \\ & 2.50 \\ & 2.50 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .040 \\ & .040 \end{aligned}$	$\begin{aligned} & .032 \\ & .025 \\ & .025 \\ & .032 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \\ & \hline \end{aligned}$	AN426-AD4 AN426-AD4 AN426-AD4 AN426-AD4
$19 \mathrm{~L} / \mathrm{R}$	Sta. 16-Sta. 88.5 Sta. 317-Sta. 378 Sta. 399-Sta. 419 Sta. 419-Sta. 481	$\begin{array}{r} .64 \\ 1.25 \\ 1.25 \\ 1.25 \\ \hline \end{array}$	$\begin{aligned} & 1.28 \\ & 2.50 \\ & 2.50 \\ & 2.50 \\ & \hline \end{aligned}$	$\begin{aligned} & .025 \\ & .051 \\ & .040 \\ & .040 \end{aligned}$	$\begin{aligned} & .025 \\ & .051 \\ & .040 \\ & .032 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \\ & .61 \end{aligned}$	$\begin{array}{r} .62 \\ .62 \\ .62 \\ .62 \end{array}$	$\begin{array}{r} 1.25 \\ .62 \\ 1.25 \end{array}$	$\begin{aligned} & \text { AN426-AD4 } \\ & \text { 671-D-5AD } \\ & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
19 L	Sta. 481-Sta. 501.5 Sta. 590-Sta. 615 Sta. 615-Sta. 633 Sta. 633-Sta. 669.5	$\begin{array}{r} 1.25 \\ 1.25 \\ 1.25 \\ .64 \\ \hline \end{array}$	$\begin{aligned} & 2.50 \\ & 2.50 \\ & 2.50 \\ & 1.28 \\ & \hline \end{aligned}$	$\begin{aligned} & .040 \\ & .040 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .040 \\ & .040 \\ & .040 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \\ & .61 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{array}{r} .62 \\ .62 \\ 1.25 \end{array}$	$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
19 R	Sta. 88.5-Sta. 128 Sta. 481-Sta. 597 Sta. 597-Sta. 669.5	$\begin{array}{r} .64 \\ 1.25 \\ .64 \\ \hline \end{array}$	$\begin{aligned} & 1.28 \\ & 2.50 \\ & 1.28 \\ & \hline \end{aligned}$	$\begin{aligned} & .025 \\ & .040 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .032 \\ & .025 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \end{aligned}$. 61	$\begin{aligned} & .62 \\ & .62 \\ & .62 \end{aligned}$	1.25	AN426-AD4 671-D-4AD 671-D.4AD
$20 \mathrm{~L} / \mathrm{R}$	Sta. 16-Sta. 70.7 Sta. 720-Sta. 758 Sta. 758-Sta. 848	$\begin{array}{r} .64 \\ 1.25 \\ 1.25 \end{array}$	$\begin{array}{r} 1.28 \\ 2.50 \\ 2.50 \\ \hline \end{array}$	$\begin{array}{r} .025 \\ .040 \\ .040 \\ \hline \end{array}$	$\begin{aligned} & .025 \\ & .032 \\ & .040 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \\ & \hline \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{array}{r} .62 \\ .62 \\ \hline \end{array}$	$\begin{aligned} & \text { AN } 426-A D 4 \\ & 671-D-4 A D \\ & 671-D-4 A D \end{aligned}$

TABLE 28 (Continued)
FUSELAGE SKIN PANELS AND SKIN SPLICES
A. HORIZONTAL SKIN SPLICES

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longitudinal Overlap W_{v} See Fig. 24	Width of Longitudinal Frame For Flush Patch 2Wh See Fig. 24	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
20 L	Sta. 150.75-Sta. 235	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	AN426-AD4
	Sta. 235-Sta. 255.5	1.25	2.50	. 032	. 051	2	. 61	. 62	1.25	AN426-AD4
	Sta. 255.5-Sta. 276	1.25	2.50	. 040	. 051	2	. 61	. 62	. 62	AN426-AD4
	Sta. 70.7-Sta. 107	. 64	1.28	. 032	. 032	1		. 62		AN426-AD4
	Sta. 633-Sta. 669	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
	Sta. 669.5-Sta. 704	. 64	1.28	. 032	. 025	1		. 62		671.D-4AD
20 R	Sta. 150.75-Sta. 194	. 64	1.28	. 025	. 025	1		. 62		AN426-AD4
	Sta. 194-Sta. 235	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	AN426-AD4
	Sta. 235-Sta. 276	1.25	2.50	. 032	. 051	2	. 61	. 62	1.25	AN426-AD4
	Sta. 669-Sta. 704	1.25	2.50	. 032	. 025	2	. 61	. 62	1.25	671-D.4AD
$34 \mathrm{~L} / \mathrm{R}$	Sta. 16-Sta. 88.5	. 64	1.28	. 025	. 025	1		. 62		AN426-AD4
	Sta. 704-Sta. 720	1.25	2.50	. 032	. 040	2	. 61	. 62	1.25	671-D-4AD
35 L/R	Sta. 720-Sta. 758	1.25	2.50	. 032	. 040	2	. 61	. 62	. 62	671-D.4AD
$33 \mathrm{~L} / \mathrm{R}$	Sta. 16-Sta. 88.5	. 64	1.28	. 025	. 025	1		. 62		AN426-AD4
	Sta. 128-Sta. 150.75	. 64	1.28	. 032	. 040	1		. 62		AN426-AD4
33 L	Sta. 88.5-Sta. 128	. 64	1.28	. 032	. 025	1		. 62		AN426-AD4
	Sta. 150.75-Sta. 214	. 64	1.28	. 032	. 025	1		. 62		AN426-AD4
	Sta. 214-Sta. 235	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	AN426-AD4
	Sta. 235-Sta. 255.5	1.25	2.50	. 051	. 032	2	. 61	. 62	1.25	AN426-AD4
	Sta. 255.5-Sta. 276	1.25	2.50	. 051	. 051	2	. 61	. 62	1.25	671-D-4AD
	Sta. 419-Sta. 481	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	671-D-4AD
	Sta. 481-Sta. 583.5	1.25	2.50	. 040	. 032	2	. 61	. 62	1.25	671-D.4AD
	Sta. 583.5-Sta. 597	1.25	2.50	. 040	. 025	2	. 61	. 62	1.25	671-D.4AD
	Sta. 597.Sta. 688.5	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
	Sta. 688.5-Sta. 704	1.25	2.50	. 025	. 040	2	. 61	. 62	1.25	671-D-4AD

TABLE 28 (Continued)
FUSELAGE SKIN PANELS AND SKIN SPLICES
A. HORIZONTAL SKIN SPLICES

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longitudinal Overlap W_{v} See Fig. 24	Width of Longitudinal Frame For Flush Patch 2 W b See Fig. 24	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
33R	Sta. 150.75-Sta. 194	1.25	2.50	. 036	. 032	2	. 61	. 62	1.25	AN426-AD4
	Sta. 235-Sta. 242	1.25	2.50	. 051	. 051	2	. 59	. 62	1.25	AN426-AD5
	Sta. 242-Sta. 276	1.25	2.50	. 051	. 051	2	. 61	. 62	1.25	671-D-5AD
	Sta. 419-Sta. 460.5	1.25	2.50	. 036	. 036	2	. 61	. 62	. 62	671-D-4AD
	Sta. 501.5-Sta. 522	1.25	2.50	. 036	. 036	2	. 61	. 62	. 62	671-D-4AD
	Sta. 522-Sta. 542.5	. 64	1.28	. 025	. 036	1		. 62		671-D-4AD
	Sta. 542.5-Sta. 651	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
	Sta. 651-Sta. 688.5	. 64	1.28	. 025	. 032	1		. 62		671-D-4AD
	Sta. 688.5-Sta. 704	. 64	1.28	. 025	. 040	1		. 62		671-D-4AD
$32 \mathrm{~L} / \mathrm{R}$	Sta. 16-Sta. 128	. 64	1.28	. 025	. 025	1		. 62		AN426-AD4
$31 \mathrm{~L} / \mathrm{R}$	Sta. 16-Sta. 128	. 64	1.28	. 025	. 025	1		. 62		AN426-AD4
31 L	Sta. 150.75-Sta. 214.5	. 64	1.28	. 025	. 025	1		. 62		AN426-AD4
	Sta. 214.5-Sta. 255.5	1.25	2.50	. 032	. 051	2	. 61	. 62	1.25	AN426-AD4
	Sta. 255.5-Sta. 276	1.25	2.50	. 051	. 051	2	. 61	. 62	1.25	671-D-5AD
	Sta. 419-Sta. 460.5	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	671-D-4AD
	Sta. 460.5-Sta. 583.5	. 64	1.28	. 032	. 025	1		. 62		671-D-4AD
	Sta. 583.5-Sta. 688.5	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
	Sta. 688.5-Sta. 704	1.25	2.50	. 040	. 025	2	. 61	. 62	1.25	671-D-4AD
31 R	Sta. 150.5-Sta. 194	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	AN426-AD4
	Sta. 235-Sta. 255	1.25	2.50	. 051	. 051	2	. 61	. 62	1.25	AN426-ADS
	Sta. 255.5-Sta. 276	1.25	2.50	. 051	. 051	2	. 61	. 62	1.25	671-D-5AD
	Sta. 419.5-Sta. 460.5	1.25	2.50	. 036	. 036	2	. 61	. 62	. 62	671-D-4AD
	Sta. 501.5-Sta. 522	1.25	2.50	. 036	. 036	2	. 61	. 62	. 62	671-D-4AD
	Sta. 522-Sta. 542.5	. 64	1.28	. 036	. 025	1		. 62		671-D-4AD
	Sta. 542.5-Sta. 651	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD

TABLE 28 (Continued)
FUSELAGE SKIN PANELS AND SKIN SPLICES
A. HORIZONTAL SKIN SPLICES

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longi- tudinal Overlap W_{r} See Fig. 24	Width of Longi- tudinal Frame For Flush Patch $2 W_{h}$ See Fig. 24	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
	Sta. 651-Sta. 688.5 Sta. 688.5-Sta. 704	. 64	1.28 1.28	$\begin{aligned} & .032 \\ & .040 \end{aligned}$.025 .025	1		$\begin{array}{r}.62 \\ .62 \\ \hline\end{array}$		$\begin{aligned} & 671-D-4 A D \\ & 671-D-4 A D \end{aligned}$
$30 \mathrm{~L} / \mathrm{R}$	Sta. 34.5-Sta. 128	. 64	1.28	. 025	. 025	1		. 62		AN426-AD4
30 L	Sta. 235-Sta. 255	1.25	2.50	. 051	. 032	2	. 61	. 62	. 62	AN426-AD4
	Sta. 255-Sta. 276	1.25	2.50	. 051	. 040	2	. 61	. 62	. 62	AN426-AD4
$29 \mathrm{~L} / \mathrm{R}$	Sta. 53.75-Sta. 128	. 64	1.28	. 025	. 025	1		. 62		AN426-AD4
29 L	Sta. 150.75-Sta. 194	. 64	1.28	. 025	. 025	1		. 62		AN426-AD4
	Sta. 194-Sta. 235	. 64	1.28	. 032	. 025	1		. 62		AN426-AD4
	Sta. 399-Sta. 419.5	1.25	2.50	. 051	. 032	2	. 61	. 62	1.25	671-D-4AD
	Sta. 419.5-Sta. 440	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	671-D-4AD
	Sta. 440-Sta. 460	. 64	1.28	. 032	. 032	1		. 62		671-D-4AD
	Sta. 460-Sta. 669	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
29 R	Sta. 150.75-Sta. 194	1.25	2.50	. 032	. 036	2	. 61	. 62	1.25	AN426-AD4
	Sta. 235-Sta. 276	1.25	2.50	. 051	. 036	2	. 61	. 62	. 62	AN426-AD4
	Sta. 399-Sta. 419.5	1.25	2.50	. 051	. 036	2	. 61	. 62	. 62	671-D-4AD
	Sta. 419.5-Sta. 469.5	1.25	2.50	. 036	. 036	2	. 61	. 62	. 62	671-D-4AD
	Sta. 501.5-Sta. 522	1.25	2.50	. 036	. 036	2	. 61	. 62	. 62	671-D-4AD
	Sta. 522-Sta. 542.5	. 64	1.28	. 025	. 036	1		. 62		671-D-4AD
	Sta. 542.5-Sta. 669.5	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
$28 \mathrm{~L} / \mathrm{R}$	Sta. 60.5-Sta. 128	. 64	1.28	. 025	. 025	1		. 62		AN426-AD4
	Sta. 276-Sta. 399	1.25	2.50	. 051	. 032	2	. 61	. 62	1.25	AN426-AD4
28 L	Sta. 235-Sta. 255	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	AN426-AD4
	Sta. 255-Sta. 276	1.25	2.50	. 040	. 032	2	. 61	. 62	1.25	AN426-AD4
$27 \mathrm{~L} / \mathrm{R}$	Sta. 88.5-Sta. 128	. 64	1.28	. 025	. 025	1		. 62		AN426-AD4

TABLE 28 (Continued)

fUSELAGE SKIN PANELS AND SKIN SPLICES

A. HORIZONTAL SKIN SPLICES

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longitudinal Overlap W_{v} See Fig. 24	Width of Longitudinal Frame For Flush Patch $2 W_{b}$ See Fig. 24	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
27 L	Sta. 235-Sta. 276 Sta. 339-Sta. 440 Sta. 440-Sta. 633 Sta. 150.75-Sta. 235	$\begin{array}{r} .64 \\ .64 \\ .64 \\ .64 \end{array}$	$\begin{aligned} & 1.28 \\ & 1.28 \\ & 1.28 \\ & 1.28 \end{aligned}$	$\begin{aligned} & .032 \\ & .032 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$		$\begin{aligned} & \text { AN426-AD4 } \\ & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \\ & \text { AN426-AD4 } \end{aligned}$
27 R	Sta. 150.75-Sta. 276 Sta. 399-Sta. 542 Sta. 542-Sta. 633	$\begin{aligned} & .64 \\ & .64 \\ & .64 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 1.28 \\ & 1.28 \end{aligned}$	$\begin{aligned} & .036 \\ & .036 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & .62 \\ & .62 \\ & .62 \end{aligned}$		$\begin{aligned} & \text { AN426-AD4 } \\ & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \\ & \hline \end{aligned}$
$26 \mathrm{~L} / \mathrm{R}$	Sta. 276-Sta. 399	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	AN426-AD4
$25 \mathrm{~L} / \mathrm{R}$	Sta. 150.75-Sta. 276 Sta. 399-Sta. 583.5	$\begin{aligned} & \hline .64 \\ & .64 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 1.28 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & \hline .62 \\ & .62 \end{aligned}$		$\begin{aligned} & \text { AN426.AD4 } \\ & \text { 671-D-4AD } \end{aligned}$
$24 \mathrm{~L} / \mathrm{R}$	Sta. 276-Sta. 399	. 64	1.28	. 032	. 025	1		. 62		AN426-AD4
$23 \mathrm{~L} / \mathrm{R}$	Sta. 214.5-Sta. 276 Sta. 399-Sta. 501	$\begin{aligned} & .64 \\ & .64 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 1.28 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & .62 \\ & .62 \end{aligned}$		$\begin{aligned} & \text { AN426-AD4 } \\ & \text { 671-D-4AD } \end{aligned}$
BottomKeel	Sta. 128-Sta. 150.75 Sta. 150.75-Sta. 276 Sta. 276-Sta. 296 Sta. 296-Sta. 317 Sta. 337-Sta. 358 Sta. 358-Sta. 704	$\begin{aligned} & 1.02 \\ & 1.02 \\ & 1.02 \\ & 1.02 \\ & 1.02 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 2.04 \\ & 2.04 \\ & 2.04 \\ & 2.04 \\ & 2.04 \\ & 2.04 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \\ & .032 \\ & .032 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \\ & .032 \\ & .032 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .38 \\ & .38 \\ & .38 \\ & .38 \\ & .38 \\ & .38 \end{aligned}$	$\begin{gathered} .62 \\ .62 \\ .62 \\ .62 \\ .62 \\ .62 \end{gathered}$	$\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$	AN426-AD4 AN426-AD4 671-D-4AD 671-D-4AD 671-D-4AD 671-D-4AD

TABLE 28 (CONTINUED)
FUSELAGE SKIN PANELS AND SKIN SPLICES

B. VERTICAL SKIN SPLICES

Bulk- head StationLocating Splice	Length Between Stringers to be Spliced	Width of Vertical Overlap W_{v} See Fig. 24	$\left\|\begin{array}{c}\text { Width of } \\ \text { Vertical }\end{array}\right\|$ Frame For Flush Patch See Fig. 24	Gage of Skin Forward of Bulkhead	Gage of Skin Aft of Bulkhead	No. of Rivet Rows Through Vertical Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
16	Between All Str.	. 75	1.50	. 040	. 025	1		. 62		AN426-AD4
50.5L/R	Str. 16-Str. 19	. 75	1.50	. 025		1		. 62		AN426-AD4
70.7L/R	Str. 30-Str. 33	. 62	1.25	. 025	. 025	1		. 62		AN426-AD4
	Str. 19-Floor-Line	. 62	1.25	. 025	. 025	1		. 62		AN426-AD4
88.5	Str. 28-Str. 30	. 65	1.30	. 025	. 025	1		. 62		AN426-AD4
	Str. 33-Floor-Line	. 65	1.30	. 025	. 032	1		. 62		AN426-AD4
	Str. 13L-Str. 19L	. 65	1.30		. 032	1		. 62		AN426-AD4
	Str. 1-Str. 13	. 65	1.30		. 025	1		. 62		AN426-AD4
	Str. 13R-Str. 19R	. 65	1.30		. 025	1		. 62		AN426-AD4
107	Str. 14R-Floor-Line	. 65	1.30	. 032		1		. 62		AN426-AD4
128	Str. 1-Str. 12	1.25	2.50	. 025	. 025	2	. 61	. 62	1.25	AN426-AD4
	Str. 33-Bottom Keel	1.25	2.50	. 025	. 025	2	. 61	. 62	1.25	AN426-AD4
	Str. 12R-Str. 33R	1.25	2.50	. 025	. 032	2	. 61	. 62	1.25	AN426-AD4
	Str. 12L-Str. 33L	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	AN426-AD4
150.75	Top Keel-Str. 12	1.38	2.76	. 025	. 025	2	. 63	. 62	1.25	AN426-AD4
	Str. 27-Bottom Keel	1.38	2.76	. 025	. 025	2	. 63	. 62	1.25	AN426-AD4
	Str. 12L-Str. 33L	1.38	2.76	. 032	. 032	2	. 63	. 62	1.25	AN426-AD4
	Str. 27L-Str. 33L	1.38	2.76	. 025	. 025	2	. 63	. 62	1.25	AN426-AD4
	Str. 27R-Str. 29R	1.38	2.76	. 025	. 036	2	. 63	. 62	1.25	AN426-AD4
	Str. 29R-Str. 33R	1.38	2.76	. 025	. 032	2	. 63	. 62	1.25	AN426-AD4
	Str. 33R-Floor-Line	1.38	2.76	. 025	. 036	2	. 63	. 62	1.25	AN426-AD4
	Str. 12R-Floor-Line	1.38	2.76	. 025	. 025	2	. 63	. 62	1.25	AN426-AD4
173.5	Str. 20R-Floor-Line	1.38	2.76	. 025	. 032	2	. 74	. 62	1.88	AN426-AD4
194.0	Str. 29L-Str. 31L	1.38	2.76	. 025	. 032	2	. 74	. 62	1.25	AN426-AD4
	Str. 29R-Str. 33R	. 64	1.28	. 032		1		. 62		AN426-AD4
	Str. 25R-Str. 27R	1.38	2.76	. 025	. 025	2	. 74	. 62	1.25	AN426-AD4

TABLE 28 (CONTINUED) fuSELAGE SKIN PANELS AND SKIN SPLICES

b. VERTICAL SKIN SPLICES

Bulk- head StationLocating Splice	Length Between Stringers to be Spliced	Width of Vertical Overlap W_{v} See Fig. 24	Width of \mid Vertical Frame For Flush Patch See Fig. 24	Gage of Skin Forward of Bulkhead	Gage of Skin Aft of Bulkhead	No. of Rivet Rows Through Vertical Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
214.5	Str. 5-Str. 8	1.38	2.76	. 025	. 025	2	. 74	. 62	1.88	AN426-AD4
	Str. 25-Bottom-Keel	1.38	2.76	. 025	. 025	2	. 74	. 62	1.88	AN426-AD4
	Str. 31L-Str. 33L	1.38	2.76	. 025	. 032	2	. 74	. 62	1.88	AN426-AD4
	Str. 12L-Str. 14L			. 032	. 032					AN426-AD4
	Str. 34R-Floor-Line	1.38	2.76	. 036	. 051	2	. 74	. 62	. 62	AN426-AD4
	Str. 27R-Str. 29R	1.38	2.76	. 036	. 036	2	. 74	. 62	. 62	AN426-AD4
235.0	Str. 8-Str. 12	1.38	2.76	. 025	. 025	2	. 74	. 62	1.88	AN426-AD4
	Str. 20-Floor-Line			. 032	. 051					AN426-AD4
	Str. 33L-Floor-Line	1.38	2.76	. 032	. 051	2	. 74	. 62	. 62	AN426-AD4
	Str. 27L-Str. 29L	1.38	2.76	. 025	. 032	2	. 74	. 62	. 62	AN426-AD4
	Str. 29L-Str. 30L	1.38	2.76	. 032	. 032	2	. 74	. 62	. 62	AN426-AD4
	Str. 30L-Str. 31L	1.38	2.76	. 032	. 051	2	. 74	. 62	. 62	AN426-AD4
255.5	Str. 5-Top Keel	1.38	2.76	. 025	. 025	2	. 74	. 62	1.88	AN426-AD4
	Str. 27L-Str. 30L	1.38	2.76	. 032	. 040	2	. 74	. 62	. 62	AN426-AD4
	Str. 31L-Str. 33L	1.38	2.76	. 032	. 051	2	. 74	. 62	. 62	671-D-4AD
296.5	Str. 24-Bottom Keel	1.38	2.76	. 025	. 032	2	. 74	. 62	1.25	AN426-AD4
337.5	Str. 8-Str. 12	1.38	2.76	. 025	. 025	2	. 74	. 62	1.88	671-D-4AD
358.0	Str. 24-Bottom Keel	1.38	2.76	. 032	. 025	2	. 74	. 62	1.25	671-D-4AD
378.5	Str. 24-Str. 26	1.38	2.76	. 032	. 025	2	. 74	. 62	1.25	671-D-4AD
419.5	Str. 29L-Floor-Line	1.38	2.76	. 051	. 032	2	. 74	. 62	1.25	671-D-4AD
	Str. 29R-Floor-Line	1.38	2.76	. 051	. 036	2	. 74	. 62	1.25	671-D-4AD
440.0	Str. 27L-Str. 29L	1.38	2.76	. 032	. 025	2	. 74	. 62	1.88	671-D-4AD
460.5	Str. 8L-Str. 12L	1.38	2.76	. 025	. 040	2	. 74	. 62	1.25	671-D-4AD
	Str. 8R-Str. 12R	1.38	2.76	. 025	. 025	2	. 74	. 62	1.25	671-D-4AD
	Str. 27L-Str. 29L	1.38	2.76	. 032	. 025	2	. 74	. 62	1.25	671-D-4AD
481.0	Str. 6L-Top Keel Str. 6L-Str. 8L	$\begin{aligned} & 1.38 \\ & 1.38 \end{aligned}$	2.76 2.76	. 025	$\begin{aligned} & .040 \\ & .064 \end{aligned}$	2	$\begin{aligned} & .74 \\ & .74 \end{aligned}$. 62	1.25 1.25	$\begin{aligned} & \hline \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$

TABLE 28 (CONTINUED)
FUSELAGE SKIN PANELS AND SKIN SPLICES
b. Vertical skin splices

Bulkhead StationLocating Splice	Length Between Stringers to be Spliced	Width of Vertical Overlap W_{φ} See Fig. 24	Wiath of Vertical Frame For Flush Patch See Fig. 24	Gage of Skin Forward of Bulkhead	Gage of Skin Aft of Bulkhead	No. of Rivet Rows Through Vertical Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
	Str. 8R-Top-Keel Str. 12L-Str. 14L Str. 19L-Str. 33L Str. 27R-Str. 29R	$\begin{aligned} & 1.38 \\ & 1.38 \\ & 1.38 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \\ & 2.76 \\ & 2.76 \\ & \hline \end{aligned}$	$\begin{aligned} & .025 \\ & .032 \\ & .032 \\ & .036 \\ & \hline \end{aligned}$	$\begin{aligned} & .025 \\ & .040 \\ & .040 \\ & .036 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .74 \\ & .74 \\ & .74 \\ & .74 \end{aligned}$	$\begin{aligned} & \hline .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$	671-D-4AD 671-D-4AD 671-D-4AD 671-D-4AD
501.5	Str. 25-Bottom Keel Str. 4L-Top-Keel	$\begin{aligned} & 1.38 \\ & 1.60 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 3.20 \end{aligned}$		$\begin{aligned} & .025 \\ & .040 \end{aligned}$		$\begin{aligned} & \hline .74 \\ & .96 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.88 \\ & 1.25 \end{aligned}$	$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-5AD } \end{aligned}$
522.0	$\begin{aligned} & \hline \text { Str. 25-Str. } 27 \\ & \text { Str. 29RStr. 31R } \end{aligned}$	$\begin{aligned} & 1.38 \\ & 1.38 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \\ & \hline \end{aligned}$	$\begin{aligned} & .025 \\ & .036 \\ & \hline \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{array}{r} .74 \\ .74 \\ \hline \end{array}$. 62	$\begin{aligned} & 1.88 \\ & 1.25 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
542.5	Str. 27L-Str. 31L Str. 5R-Top-Keel Str. 27R-Str. 29R	$\begin{aligned} & 1.38 \\ & 1.38 \\ & 1.38 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \\ & 2.76 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .036 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .74 \\ & .74 \\ & .74 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.88 \\ & 1.25 \end{aligned}$	$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
563.0	$\begin{aligned} & \hline \text { Str. 6L-Top-Keel } \\ & \text { Str. 29R-Str. 31R } \end{aligned}$	$\begin{aligned} & 1.38 \\ & 1.38 \end{aligned}$			$\begin{aligned} & .040 \\ & .025 \end{aligned}$	2	$\begin{aligned} & .74 \\ & .74 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
583.5	Str. 27-Bottom Keel Str. 5R-Str. 8R	$\begin{aligned} & 1.38 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$.025$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .74 \\ & .74 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.88 \\ & 1.88 \end{aligned}$	$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
597.0	Str. 33L-Floor-Line Str. 33R-Floor-Line Str. 17R-Str. 19R Str. 11R-Str. 15R	$\begin{aligned} & 1.75 \\ & 1.75 \\ & 1.75 \\ & 1.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.50 \\ & 3.50 \\ & 3.50 \\ & 3.50 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .032 \\ & .025 \\ & .040 \\ & .040 \\ & \hline \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \\ & .025 \\ & \hline \end{aligned}$	2	$\begin{aligned} & .86 \\ & .86 \\ & .86 \\ & .86 \end{aligned}$	$\begin{gathered} .62 \\ .62 \\ .62 \\ .62 \end{gathered}$	$\begin{array}{r} .62 \\ .62 \\ .62 \\ 1.25 \end{array}$	671-D-4AD 671-D-4AD 671-D-4AD 671-D-4AD
615.0	Str. 6L-Top-Keel Str. 6L-Str. 8L Str. 8L-Str. 11L Str. 8R-Str. 11R Str. 29L-Str. 31L	$\begin{aligned} & 1.38 \\ & 1.38 \\ & 1.38 \\ & 1.38 \\ & 1.38 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \\ & 2.76 \\ & 2.76 \\ & 2.76 \end{aligned}$	$\begin{array}{r} .025 \\ .064 \\ .040 \\ .025 \\ 025 \end{array}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .74 \\ & .74 \\ & .74 \\ & .74 \\ & .74 \\ & \hline \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & \hline \end{aligned}$	671-D-4AD 671-D-4AD 671-D-4AD 671-D-4AD 671-D-4AD
633.0	Str. 29-Bottom Keel Str. 11L-Str. 13L	$\begin{aligned} & 1.38 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \end{aligned}$	$\begin{array}{r} .025 \\ .040 \end{array}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .74 \\ & .74 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 671-\mathrm{D}-4 \mathrm{AD} \\ & 671-\mathrm{D}-4 \mathrm{AD} \end{aligned}$

TABLE 28 (CONTINUED)

B. VERTICAL SKIN SPLICES

Bulk- head Station- Locating Splice	Length Between Stringers to be Spliced	Width of Vertical Overlap W_{v} See Fig. 24	$\left\|\begin{array}{c}\text { Width of } \\ \text { Vertical } \\ \text { Frame } \\ \text { For } \\ \text { Flush } \\ \text { Patch } \\ \text { See Fig. } \\ 24\end{array}\right\|$	Gage of Skin Forward of Bulkhead	Gage of Skin Aft of Bulk head	No. of Rivet Rows Through Vertical Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
	Str. 8R-Top-Keel Str. 11R-Str. 13R	$\begin{aligned} & 1.38 \\ & 1.38 \\ & \hline \end{aligned}$	2.76 2.76	.025 .025	$\begin{array}{r} .025 \\ .025 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .74 \\ & .74 \\ & \hline \end{aligned}$.62 .62	1.25 1.25	$\begin{aligned} & 671-D-4 A D \\ & 671-D-4 A D \end{aligned}$
651.0	Str. 8L-Top-Keel Str. 31R-Str. 33R	$\begin{aligned} & 1.38 \\ & 1.38 \end{aligned}$	2.76 2.76	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .032 \end{aligned}$	2	.74 .74	. 62	1.25 1.25	$\begin{aligned} & \text { 671-D-4AD } \\ & 671-D-4 A D \end{aligned}$
669.5	Str. 33-Bottom Keel	1.38	2.76	. 025	. 025	2	. 74	. 62	1.25	671-D-4AD
688.5	Str. 31-Str. 33	1.38	2.76	. 032	. 040	2	. 74	. 62	1.25	671-D-4AD
704.0	Top Keel-Str. 11	1.38	2.76	. 025	. 040	2	. 63	. 62	1.25	671-D-4AD
	Str. 11-Str. 13	1.38	2.76	. 025	. 032	2	. 63	. 62	1.25	671-D-4AD
	Str. 13-Floor-Line	1.38	2.76	. 032	. 032	2	. 63	. 62	1.25	671-D-4AD
	Str. 33-Str. 31	. 75	1.50	. 040	. 040	1		. 62		671-D-4AD
	Str. 31-Bottom Keel	. 75	1.50	. 025	. 040	1		. 62		671-D-4AD
720.0	Top Keel-Str. 11	1.38	2.76	. 040	. 040	2	. 74	. 62	1.25	671-D-4AD
	Str. 11-Str. 13	1.38	2.76	. 032	. 040	2	. 74	. 62	1.25	671-D-4AD
	Str. 13-Str. 16	1.38	2.76	. 032	. 032	2	. 74	. 62	1.25	671-D-4AD
	Str. 16-Str. 34	1.38	2.76	. 032	. 040	2	. 74	. 62	1.25	671-D-4AD
	Str. 34-Bottom Keel	1.38	2.76	. 040		2	. 74	. 62	1.25	671-D-4AD
746.5	Str. 15-Str. 16	1.25	2.50	. 032	. 040	2	. 61	. 62	1.25	671-D-4AD
758.22	Str. 16-Str. 18	1.25	2.50	. 040	. 040	2	. 61	. 62	1.25	671-D-4AD
	Str. 20-Str. 34	1.25	2.50	. 040	. 040	2	. 61	. 62	1.25	671-D-4AD
770.5	Str. 13-Str. 15	1.25	2.50	. 032	. 040	2	. 61	. 62	1.25	671-D.4AD
782.88	Str. 15-Str. 16	1.38	2.76	. 040	. 032	2	. 74	. 62	. 62	671-D-4AD
	Str. 16-Str. 20	1.38	2.76	. 040	. 040	2	. 74	. 62	. 62	671-D-4AD
819.6	Str. 20-Bottom Keel	1.25	2.50	. 040	. 032	2	. 61	. 62	1.25	671-D-4AD
848.2	Top Keel-Str. 16	1.38	2.76	. 032	. 025	2	. 74	. 62	. 62	671-D-4AD
	Str. 16-Str. 20	1.38	2.76	. 040	. 064	2	. 74	. 62	. 62	671-D-4AD
	Str. 20-Bottom Keel	1.38	2.76	. 032	. 051	2	. 74	. 62	. 62	671-D-4AD
867.2	Str. 17-Bottom Keel	1.38	2.76	. 051	. 051	2	. 74	. 62	. 62	671-D-4AD
886.2	Str. 16-Str. 19	1.25	2.50	. 064	. 025	2	. 59	. 62	1.25	AN426-AD4
	Str. 19-Bottom Keel	1.25	2.50	. 051	. 025	2	. 59	. 62	1.25	AN426-AD4

FIGURE 24-FUSELAGE SKIN REPAIR

TABLE 28A
FUSELAGE SKIN PANELS AND SKIN SPLICES
See Figure 24A
A. HORIZONTAL SKIN SPLICES

See Figure 24A

A. HORIZONTAL SKIN SPLICES

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longi- tudinal Overlap Wv See Fig. 24	Width of Longitudinal Frame For Flush Patch $2 W_{b}$ See Fig. 24	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	
11 R	Sta. 563-Sta. 704 Sta. 704-Sta. 720	$\begin{aligned} & 1.02 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 2.04 \\ & 2.50 \end{aligned}$	$\begin{aligned} & .025 \\ & .040 \end{aligned}$	$\begin{aligned} & .025 \\ & .032 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .38 \\ & .61 \end{aligned}$	$.62$	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	$\begin{array}{\|l\|} \hline 671-D-4 A D \\ 671-D-4 A D \end{array}$
$12 \mathrm{~L} / \mathrm{R}$	Sta. 88.5-Sta. 128 Sta. 128-Sta. 276 Sta. 276-Sta. 317 Sta. 317-Sta. 378.5 Sta. 378.5-Sta. 399 Sta. 399-Sta. 460.5	$\begin{array}{r} .64 \\ .64 \\ .1 .25 \\ 1.25 \\ .64 \\ .64 \end{array}$	$\begin{aligned} & 1.28 \\ & 1.28 \\ & 2.50 \\ & 2.50 \\ & 1.28 \\ & 1.28 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \\ & .025 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .040 \\ & .002 \\ & .040 \\ & .040 \\ & .040 \\ & .032 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	671-D-4AD 671-D-4AD 671-D-4AD 671-D-4AD 671-D-4AD 671-D-4AD
12 L	Sta. 460.5-Sta. 481 Sta. 481-Sta. 501.5	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.50 \end{aligned}$	$.040$	$\begin{aligned} & .032 \\ & .040 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{array}{r} 1.25 \\ .62 \end{array}$	$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
12 R	Sta. 460-Sta. 542.5 Sta. 542.5-Sta. 597	$\begin{array}{r} .64 \\ 1.25 \end{array}$	$\begin{aligned} & 1.28 \\ & 2.50 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .032 \\ & .040 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$. 61	$.62$	1.25	$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
$13 \mathrm{~L} / \mathrm{R}$	Sta. 720-Sta. 807.06	1.25	2.50	. 040	. 032	2	. 61	. 62	. 62	671-D-4AD
13 L	Sta. 597-Sta. 615 Sta. 615-Sta. 669.5 Sta. 669.5-Sta. 704	$\begin{array}{r} 1.25 \\ 1.25 \\ .64 \\ \hline \end{array}$	$\begin{aligned} & 2.50 \\ & 2.50 \\ & 1.28 \\ & \hline \end{aligned}$	$\begin{aligned} & .040 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .040 \\ & .025 \\ & .032 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \end{aligned}$	$\begin{aligned} & \hline .62 \\ & .62 \\ & .62 \\ & \hline \end{aligned}$	$\begin{array}{r} .62 \\ 1.25 \end{array}$	$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
13 R	Sta. 88.5-Sta. 128 Sta. 597-Sta. 669 Sta. 669-Sta. 704	$\begin{aligned} & .64 \\ & .64 \\ & .64 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 1.28 \\ & 1.28 \\ & \hline \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .032 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & .62 \\ & .62 \\ & .62 \end{aligned}$		$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \\ & 671-D-4 A D \end{aligned}$

TABLE 28A (Continued)

FUSELAGE SKIN PANELS AND SKIN SPLICES

See Figure 24A

A. HORIZONTAL SKIN SPLICES

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longi- tudinal Overlap W_{v} See Fig. 24	Width of Longitudinal Frame For Flush Patch $2 W_{h}$ See Fig. 24	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
$18 \mathrm{~L} / \mathrm{R}$	Sta. 16-Sta. 50.5 Sta. 88.5-Sta. 107 Sta. 720 -Sta. 782 Sta. 128-Sta. 150.75	$\begin{array}{r} .64 \\ .64 \\ 1.25 \\ 1.25 \end{array}$	$\begin{aligned} & 1.28 \\ & 1.28 \\ & 2.50 \\ & 2.50 \end{aligned}$	$\begin{aligned} & .025 \\ & .032 \\ & .040 \\ & .032 \end{aligned}$	$\begin{aligned} & .025 \\ & .032 \\ & .040 \\ & .032 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	$.61$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{array}{r} .62 \\ 1.25 \end{array}$	$\begin{aligned} & 671 \cdot \mathrm{D} \cdot 4 \mathrm{AD} \\ & 671 \cdot \mathrm{D} \cdot 4 \mathrm{AD} \\ & 671 \cdot \mathrm{D} \cdot 4 \mathrm{AD} \\ & 671 \cdot \mathrm{D} \cdot 4 \mathrm{AD} \end{aligned}$
18 R	Sta. 150.75-Sta. 2.76 Sta. 107-Sta. 128	$\begin{array}{r} 1.25 \\ .64 \end{array}$	$\begin{aligned} & 2.50 \\ & 1.28 \end{aligned}$	$\begin{array}{r} .040 \\ .025 \end{array}$	$\begin{aligned} & .032 \\ & .032 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$. 61	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	1.25	$\begin{aligned} & 671-D-4 A D \\ & 671-D-4 A D \end{aligned}$
$19 \mathrm{~L} / \mathrm{R}$	Sta. 16-Sta. 88.5 Sta. 399-Sta. 501.5	$\begin{array}{r} .64 \\ 1.25 \end{array}$	$\begin{aligned} & 1.28 \\ & 2.50 \end{aligned}$	$\begin{aligned} & .025 \\ & .040 \end{aligned}$	$\begin{aligned} & .025 \\ & .040 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$. 61	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	1.25	$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
19 L	Sta. 597-Sta. 615 Sta. 615-Sta. 633 Sta. 633-Ste. 704	$\begin{array}{r} 1.25 \\ 1.25 \\ .64 \end{array}$	$\begin{aligned} & 2.50 \\ & 2.50 \\ & 1.28 \end{aligned}$	$\begin{aligned} & .040 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .040 \\ & .040 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \end{aligned}$	$.61$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{array}{r} .62 \\ 1.25 \end{array}$	$\begin{aligned} & \text { 671-D.4AD } \\ & \text { 671-D.4AD } \\ & \text { 671-D-4AD } \end{aligned}$
19 R	Sta. 501.5-Sta. 583.5 Sta. 583.5-Sta. 597 Sta. 597-Sta. 669.5 Sta. 669.5-Sta. 704	$\begin{array}{r} \hline 1.25 \\ 1.25 \\ .64 \\ .64 \end{array}$	$\begin{aligned} & 2.50 \\ & 2.50 \\ & 1.28 \\ & 1.28 \end{aligned}$	$\begin{aligned} & .040 \\ & .040 \\ & .025 \\ & .032 \end{aligned}$	$\begin{aligned} & .032 \\ & .025 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$.61$	$\begin{array}{r} .62 \\ .62 \\ .62 \\ .62 \end{array}$	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	671-D-4AD 671-D.4AD 671-D-4AD 671-D-4AD

TABLE 28A (Continued) FUSELAGE SKIN PANELS AND SKIN SPLICES

See Figure 24A
A. HORIZONTAL SKIN SPLICES

TABLE 28A (Continued)

FUSELAGE SKIN PANELS AND SKIN SPLICES
See Figure 24A
A. HORIZONTAL SKIN SPLICES

TABLE 28A (Continued)
fuselage skin panels and skin splices
See Figure 24A
A. HORIZONTAL SKIN SPLICES

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longitudinal Overlap W_{v} See Fig. 24	Width of Longitudinal Frame For Flush Patch $2 W_{\mathrm{h}}$ See Fig. 24	Gage of Skin Above Stringer	Gage of Skin Below Stringet	No. of Rivet Rows Through Longi- tudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
27 R	Sta. 150.75-Sta. 276 Sta. 399-Sta. 542.5 Sta. 542.5-Sta. 633	$\begin{aligned} & .64 \\ & .64 \\ & .64 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 1.28 \\ & 1.28 \end{aligned}$	$\begin{aligned} & .036 \\ & .036 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & .62 \\ & .62 \\ & .62 \end{aligned}$		$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671.D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
$26 \mathrm{~L} / \mathrm{R}$	Sta. 276-Sta. 399	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	671-D-4AD
$25 \mathrm{~L} / \mathrm{R}$	Sta. 150.75-Sta. 276 Sta. 399-Sta. 583.5	$\begin{aligned} & .64 \\ & .64 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 1.28 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	1		. 62		$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
$24 \mathrm{~L} / \mathrm{R}$	Sta. 276-Sta. 399	. 64	1.28	. 032	. 025	1		. 62		671-D.4AD
$23 \mathrm{~L} / \mathrm{R}$	Sta. 214.5-Sta. 276 Sta. 399-Sta. 501.5	$\begin{aligned} & .64 \\ & .64 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 1.28 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & \hline .62 \\ & .62 \end{aligned}$		$\begin{aligned} & \text { 671-D-4AD } \\ & 671-D-4 A D \end{aligned}$
Keel	Sta. 128-Sta. 150.75 Sta. 276-Sta. 296 Sta. 296-Sta. 317 Sta. 337-Sta. 358 Sta. 358-Sta. 399	$\begin{aligned} & 1.02 \\ & 1.02 \\ & 1.02 \\ & 1.02 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 2.04 \\ & 2.04 \\ & 2.04 \\ & 2.04 \\ & 2.04 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .032 \\ & .032 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .032 \\ & .032 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .38 \\ & .38 \\ & .38 \\ & .38 \\ & .38 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$

B. VERTICAL SKIN SPLICES

Bulkhead StationLocating Splice	Length Between Stringers to be Spliced	Width of Vertical Overlap W_{v} See Fig. 24	Width of Vertical Frame For Flush Patch See Fig. 24	Gage of Skin Forward of Bulkhead	Gage of Skin Aft of Bulkhead	No. of Rivet Rows Through Vertical Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	$\begin{gathered} \text { Spacing } \\ \text { of } \\ \text { Rivets } \\ \text { in } \\ \text { Row-2 } \end{gathered}$	Type of Rivets
16	Between All Str.	. 75	1.50	. 040	. 025	1		. 62		671-D-4AD
$50.5 \mathrm{~L} / \mathrm{R}$	Str. 16-Str. 19	. 75	1.50	. 025		1		. 62		671-D-4AD
$70.7 \mathrm{~L} / \mathrm{R}$	Str. 30-Str. 33	. 62	1.25	. 025	. 025	1		. 62		671-D-4AD
	Str. 19-Floor-Line	. 62	1.25	. 025	. 025	1		. 62		671-D-4AD
88.5	Str. 28-Str. 30	. 65	1.30	. 025	. 025	1		. 62		671-D-4AD
	Str. 33-Floor-Line	. 65	1.30	. 025	. 032	1		. 62		671-D-4AD
	Str. 13L-Str. 19L	. 65	1.30		. 032	1		. 62		671-D.4AD
	Str. 1-Str. 13	. 65	1.30		. 025	1		. 62		671.D-4AD
	Str. 13R-Str. 19R	. 65	1.30		. 025	1		. 62		671-D-4AD
107	Str. 14R-Floor-Line	. 65	1.30	. 032		1		. 62		671-D-4AD
128	Str. 1-Str. 12	1.25	2.50	. 025	. 025	2	. 61	. 62	1.25	671-D-4AD
	Str. 33-Bottom Keel	1.25	2.50	. 025	. 025	2	. 61	. 62	1.25	671-D.4AD
	Str. 12R-Str. 33R	1.25	2.50	. 025	. 032	2	. 61	. 62	1.25	671-D-4AD
	Str. 12L-Str. 33L	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	671-D.4AD
150.75	Top Keel-Str. 12	1.38	2.76	. 025	. 025	2	. 63	. 62	1.25	671-D-4AD
	Str. 27-Bottom Keel	1.38	2.76	. 025	. 025	2	. 63	. 62	1.25	671-D-4AD
	Str. 12-Str. 14	1.38	2.76	. 032	. 032	2	. 63	. 62	1.25	671-D.4AD
	Str. 14L-Str. 17L	1.38	2.76	. 032	. 040	2	. 63	. 62	1.25	671-D.4AD
	Str. 17L-Str. 33L	1.38	2.76	. 032	. 032	2	. 63	. 62	1.25	$671-D-4 A D$
	Str. 33L-Str. 31L	1.38	2.76	. 025	. 025	2	. 63	. 62	1.25	671-D-4AD
	Str. 31L-Str. 27L	1.38	2.76	. 025	. 032	2	. 63	. 62	1.25	671-D-4AD
	Str. 12R-Str. 14R	1.38	2.76	. 032	. 032	2	. 63	. 62	1.25	671-D-4AD
	Str. 14R-Str. 18R	1.38	2.76	. 032	. 040	2	. 63	. 62	1.25	671-D-4AD
	Str. 18R.Floor Line	1.38	2.76	. 032	. 032	2	. 63	. 62	1.25	671-D-4AD
	Floor Line-Str. 33R	1.38	2.76	. 032	. 036	2	. 63	. 62	1.25	671-D-4AD
	Str. 33R-Str. 29R	1.38	2.76	. 025	. 032	2	. 63	. 62	1.25	671-D-4AD
	Str. 29R-Str. 27R	1.38	2.76	. 025	. 040	2	. 63	. 62	1.25	671-D-4AD

TABLE 28A (Continued)
fuselage skin panels and skin splices
See Figure 24A
B. VERTICAL SKIN SPLICES

Bulkhead StationLocating Splice	Length Between Stringers to be Spliced	Width of Vertical Overlap W_{v} See Fig. 24	Width of Vertical Frame For Flush Patch See Fig. 24	Gage of Skin Forwatd of Bulkhead	Gage of Skin Aft of Bulkhead	No. of Rivet Rows Through Vertical Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
194	Str. 27L-Str. 31L Str. 29R-Str. 34R	$\begin{array}{r} 1.38 \\ .64 \end{array}$	$\begin{aligned} & 2.76 \\ & 1.28 \end{aligned}$	$\begin{aligned} & .032 \\ & .032 \end{aligned}$. 032	$\begin{aligned} & 2 \\ & 1 \end{aligned}$. 74	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	1.25	$\begin{aligned} & \text { 671-D-4AD } \\ & 671-D-4 A D \end{aligned}$
214.5	Str. 8R-Str. 12R Str. 25L-Str. 25R Str. 31L-Str. 33L Str. 34R-Floor Line	$\begin{aligned} & 1.38 \\ & 1.38 \\ & 1.38 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \\ & 2.76 \\ & 2.76 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \\ & .036 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .032 \\ & .051 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline .74 \\ .74 \\ .74 \\ .74 \end{array}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{array}{r} 1.88 \\ 1.88 \\ 1.88 \\ .62 \end{array}$	$\begin{aligned} & \text { 671-D-4AD } \\ & 671-\mathrm{D}-4 \mathrm{AD} \\ & 671-\mathrm{D}-4 \mathrm{AD} \\ & 671-\mathrm{D}-4 \mathrm{AD} \end{aligned}$
235	Str. 8L-Str. 12L Str. 20L-Floor Line Floor Line-Str. 33L Str. 20R-Floor Line	$\begin{aligned} & 1.38 \\ & 1.38 \\ & 1.38 \\ & 1.75 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \\ & 2.76 \\ & 3.50 \end{aligned}$	$\begin{aligned} & .025 \\ & .032 \\ & .032 \\ & .032 \end{aligned}$	$\begin{aligned} & .025 \\ & .051 \\ & .051 \\ & .051 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{array}{r} .74 \\ .74 \\ .74 \\ 1.11 \end{array}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{array}{r} 1.88 \\ 1.25 \\ .62 \\ 1.25 \end{array}$	$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
255.5	$\begin{aligned} & \hline \text { Str. 5L-Str. 5R } \\ & \text { Str. 27L-Str. 33L } \end{aligned}$	$\begin{aligned} & 1.38 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \end{aligned}$	$\begin{aligned} & .025 \\ & .032 \end{aligned}$	$\begin{aligned} & .025 \\ & .051 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .74 \\ & .74 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{array}{r} 1.88 \\ .62 \end{array}$	$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
296.5	Str. 24-Bottom Keel	1.38	2.76	. 025	. 032	2	. 74	. 62	1.25	671-D-4AD
337.5	Str. 8R-Str. 12 R	1.38	2.76	. 025	. 025	2	. 74	. 62	1.88	671-D-4AD
358.0	Str. 24-Bottom Keel	1.38	2.76	. 032	. 025	2	. 74	. 62	1.25	671-D-4AD
378.5	Str. 24-Str. 26	1.38	2.76	. 032	. 025	2	. 74	. 62	1.25	671-D-4AD
419.5	Str. 29L-Floor Line Str. 29R-Floor Line	$\begin{aligned} & 1.38 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \end{aligned}$	$\begin{aligned} & .051 \\ & .051 \end{aligned}$	$\begin{aligned} & .032 \\ & .036 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .74 \\ & .74 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
440	Str. 27L-Str. 29L	1.38	2.76	. 032	. 025	2	. 74	. 62	1.88	671-D-4AD

TABLE 28A (Continued) FUSELAGE SKIN PANELS AND SKIN SPLICES

See Figure 24A
B. VERTICAL SKIN SPLICES

Bulkhead StationLocating Splice	Length Between Stringers to be Spliced	Width of Vertical Overiap W_{v} See Fig. 24	Width of Vertical Frame For Flush Patch See Fig. 24	Gage of Skin Forward of Bulkhead	Gage of Skin Aft of Bulkhead	No. of Rivet Rows Through Vertical Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
460.5	Str. 8L-Str. 12L Str. 8R-Str. 12R	$\begin{aligned} & 1.38 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .040 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .74 \\ & .74 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 671 \cdot \mathrm{D}-4 \mathrm{AD} \\ & 671-\mathrm{D}-4 \mathrm{AD} \end{aligned}$
481.0	Str. 6L-Str. 5R Str. 8L-Str. 6L Str. 5R-Str. 8R Str. 12L-Str. 14L Str. 33L-Floor Line	$\begin{aligned} & 1.38 \\ & 1.38 \\ & 1.38 \\ & 1.38 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \\ & 2.76 \\ & 2.76 \\ & 2.76 \end{aligned}$	$\begin{aligned} & \hline .025 \\ & .025 \\ & .025 \\ & .032 \\ & .032 \end{aligned}$	$\begin{aligned} & .040 \\ & .064 \\ & .025 \\ & .040 \\ & .040 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .74 \\ & .74 \\ & .74 \\ & .74 \\ & .74 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & \text { 671-D-4AD } \\ & \text { 671-D-4AD } \end{aligned}$
501.5	$\begin{aligned} & \text { Str. 27L-Str. 25L } \\ & \text { Str. 25L-Str. 25R } \\ & \text { Str. 27R-Str. 25R } \end{aligned}$	$\begin{aligned} & 1.75 \\ & 1.38 \\ & 1.75 \end{aligned}$	$\begin{aligned} & 3.50 \\ & 2.76 \\ & 3.50 \\ & \hline \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{array}{r} 1.11 \\ .74 \\ 1.11 \end{array}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 671-\mathrm{D}-4 \mathrm{AD} \\ & 671-\mathrm{D}-4 \mathrm{AD} \\ & 671-\mathrm{D}-4 \mathrm{AD} \end{aligned}$
522	Str. 14R- Str. 19R	1.38	2.76	. 040	. 040	2	. 74	. 62	. 62	671-D-4AD
	Str. 33R-Floor Line	1.38	2.76	. 036	. 025	2	. 74	. 62	1.25	671-D-4AD
542.5	$\begin{aligned} & \text { Str. 27L-Str. 29L } \\ & \text { Str. 29L-Str. 33L } \end{aligned}$	$\begin{aligned} & 1.38 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \end{aligned}$	$\begin{aligned} & .025 \\ & .032 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .74 \\ & .74 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & \text { 671-D-4AD } \\ & 671-D-4 A D \end{aligned}$
563.0	Str. 8R-Str. 12R	1.38	2.76	. 025	. 025	2	. 74	. 62	1.25	671-D-4AD
583.5	$\begin{aligned} & \text { Str. 31-Str. } 33 \\ & \text { Str. 19R-FIoor Line } \end{aligned}$	$\begin{aligned} & 1.38 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \end{aligned}$	$\begin{aligned} & .032 \\ & .025 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .74 \\ & .74 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 671-\mathrm{D}-4 \mathrm{AD} \\ & 671-\mathrm{D}-4 \mathrm{AD} \end{aligned}$
597	Str. 33L-Floor Line Str. 33R-Floor Line Str. 11R-Str. 12R Str. 12R-Str. 19R	$\begin{array}{r} 1.75 \\ 1.75 \\ 1.75 \\ 1.75 \\ \hline \end{array}$	$\begin{array}{r} 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ \hline \end{array}$	$\begin{aligned} & .032 \\ & 0.25 \\ & .025 \\ & .040 \\ & \hline \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \\ & .025 \\ & .025 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .86 \\ & .86 \\ & .86 \\ & .86 \end{aligned}$	$\begin{array}{r} .62 \\ .62 \\ .62 \\ .62 \\ \hline \end{array}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \\ & \hline \end{aligned}$	671-D-4AD 671-D-4AD 671-D-4AD 671-D-4AD

TABLE 28A (Continued)
FUSELAGE SKIN PANELS AND SKIN SPLICES
See Figure 24A
B. VERTICAL SKIN SPLICES

TABLE 28A (Continued) fuselage skin panels and skin splices

See Figure 24A
B. VERTICAL SKIN SPLICES

Bulk- head Station- Locating Splice	Length Between Stringers to be Spliced	Width of Vertical Overlap W_{v} See Fig. 24	Width of Vertical Frame For Flush Patch See Fig. 34	Gage of Skin Forward of Bulkhead	Gage of Skin Aft of Bulkhead	No of Rivet Rows Through Vertical Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row-1	Spacing of Rivets in Row-2	Type of Rivets
720.0	Top Keel-Str. 11 Str. 11-Str. 13 Str. 13-Str. 16 Str. 16-Str. 34 Str. 34-Bottom Keel	$\begin{aligned} & 1.38 \\ & 1.38 \\ & 1.38 \\ & 1.38 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \\ & 2.76 \\ & 2.76 \\ & 2.76 \end{aligned}$	$\begin{aligned} & .040 \\ & .032 \\ & .032 \\ & .032 \\ & .040 \end{aligned}$	$\begin{aligned} & .040 \\ & .040 \\ & .032 \\ & .040 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .74 \\ & .74 \\ & .74 \\ & .74 \\ & .74 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 671-D-4 A D \\ & 671 \cdot D-4 A D \end{aligned}$
746.5	Str. 15-Str. 16	1.25	2.50	. 032	. 040	2	. 61	. 62	1.25	671-D-4AD
758.22	Str. 16-Str. 18 Str. 20-Str. 34	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.50 \end{aligned}$	$\begin{aligned} & .040 \\ & .040 \end{aligned}$	$\begin{aligned} & .040 \\ & .040 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 671 \cdot \mathrm{D} \cdot 4 \mathrm{AD} \\ & 671 \cdot \mathrm{D} \cdot 4 \mathrm{AD} \end{aligned}$
770.5	Str. 13-Str. 15	1.25	2.50	. 032	. 040	2	. 61	. 62	1.25	671.D.4AD
782.88	Str. 15-Str. 16 Str. 16-Str. 20	$\begin{aligned} & 1.38 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \end{aligned}$	$\begin{aligned} & .040 \\ & .040 \end{aligned}$	$\begin{aligned} & .032 \\ & .040 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .74 \\ & .74 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 671-\mathrm{D} \cdot 4 \mathrm{AD} \\ & 671 \cdot \mathrm{D} \cdot 4 \mathrm{AD} \end{aligned}$
819.6	Str. 20-Bottom Keel	1.25	2.50	. 040	. 032	2	. 61	. 62	1.25	671-D.4AD
848.2	Top Keel-Str. 16 Str. 16-Str. 20 Str. 20-Bottom Keel	$\begin{aligned} & 1.38 \\ & 1.38 \\ & 1.38 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.76 \\ & 2.76 \\ & 2.76 \\ & \hline \end{aligned}$	$\begin{aligned} & .032 \\ & .040 \\ & .032 \end{aligned}$	$\begin{aligned} & .025 \\ & .064 \\ & .051 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .74 \\ & .74 \\ & .74 \end{aligned}$	$\begin{aligned} & \hline .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & 671 \cdot \mathrm{D}-4 \mathrm{AD} \\ & 671 \cdot \mathrm{D}-4 \mathrm{AD} \\ & 671 \cdot \mathrm{D}-4 \mathrm{AD} \end{aligned}$
867.2	Str. 17-Bottom Keel	1.38	2.76	. 051	. 051	2	. 74	. 62	. 62	671-D-4AD
886.2	Str. 16-Str. 19 Str. 19-Bottom Keel	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.50 \end{aligned}$	$\begin{aligned} & .064 \\ & .051 \end{aligned}$	$\begin{aligned} & .025 \\ & .025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{array}{r} .59 \\ .59 \end{array}$	$.62$	$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	AN426-AD4 AN426-AD4

TABLE 28B
FUSELAGE SKIN PANELS AND SKIN SPLICES

See Figure 24B

A. HORIZONTAL SKIN SPLICES

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longi- tudinal Over- lap W_{v} See Fig. $24 B$	Width of Longi- tudinal Frame For Flush Patch $2 W_{h}$ See Fig. 24B	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row 1	Spacing of Rivets in Row 2	Type of Rivets
Top Keel	Sta. 128-Sta. 150	1.02	2.04	. 025	. 025	2	. 38	. 62	1.25	671-D-4AD
	Sta. 378.5-Sta. 399	1.02	2.04	. 025	. 025	2	. 38	. 62	1.25	671-D.4AD
	Sta. 704-Sta. 720	1.02	2.04	. 040	. 040	2	. 38	. 62	1.25	671-D.4AD
$5 \mathrm{~L} / \mathrm{R}$	Sta. 150.75-Sta. 378.5	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
	Sta. 399.Sta. 481	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
5 R	Sta. 481-Sta. 597	. 64	1.28	. 040	. 025	1		. 62		671-D-4AD
	Sta. 597-Sta. 615	. 64	1.28	. 040	. 025	1		. 62		AN442-4AD
6 L	Sta. 481-Sta. 615	1.60	3.20	. 040	. 064	2	. 96	. 62	. 62	671-D-4AD
$8 \mathrm{~L} / \mathrm{R}$	Sta. 150.75-Sta. 378.5	. 64	1.28	. 025	. 025	1		. 62		671-D.4AD
8 L	Sta. 399-Sta. 460.5	. 64	1.28	. 025	. 025	1		. 62		671-D.4AD
	Sta. 460.5-Sta. 481	1.25	2.50	. 025	. 040	2	. 61	. 62	1.25	671-D.4AD
	Sta. 481-Sta. 501.5	1.25	2.50	. 064	. 040	2	. 61	. 62	1.25	671-D-4AD
	Sta. 597-Sta. 615	1.25	2.50	. 064	. 040	2	. 61	. 62	1.25	671-D-4AD
	Sta. 615-Sta. 669.5	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
	Sta. 669.5-Sta. 704	. 64	1.28	. 025	. 025	1		. 62		AN 442.4AD
8 R	Sta. 399-Sta. 688.5	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
	Sta. 688.5-Sta. 704	. 64	1.28	. 025	. 025	1		. 62		AN 442-4AD
$10 \mathrm{~L} / \mathrm{R}$	Sta. 150.75-Sta. 235	. 64	1.28	. 025	. 025	1		. 62		$671-\mathrm{D}-4 \mathrm{AD}$
	Sta. 460.5-Sta. 563	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
$\overline{11 \mathrm{~L} / \mathrm{R}}$	Sta. 88.5-Sta. 128	. 50	1.00	. 032	. 032	1		. 62		671-D-4AD
	Sta. 720 -Sta. 746.5	1.25	2.50	. 040	. 040	2	. 61	. 62	. 62	671-D-4AD
11 L	Sta. 615-Sta. 704	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
	Sta. 704-Sta. 720	1.25	2.50	. 040	. 032	2	. 61	. 62	1.25	671-D-4AD

TABLE 28B (Continued)
FUSELAGE SKIN PANELS AND SKIN SPLICES
See Figure 24B
A. HORIZONTAL SKIN SPLICES

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longi- tudinal Over- lap W_{v} See Fig. $24 B$	Width of Longitudinal Frame For Flush Patch $2 W_{\mathrm{b}}$ See Fig. 24B	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row 1	Spacing of Rivets in Row 2	Type of Rivets
11 R	Sta. 597-Sta. 704	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
	Sta. 704-Sta. 720	1.25	2.50	. 040	. 032	2	. 61	. 62	. 62	671-D.4AD
$12 \mathrm{~L} / \mathrm{R}$	Sta. 128-Sta. 276	. 64	1.28	. 025	. 032	1		. 62		671.D-4AD
	Sta. 276-Sta. 378.5	1.25	2.50	. 025	. 040	2	. 61	. 62	1.25	671.D-4AD
	Sta. 378.5-Sta. 399	. 64	1.28	. 040	. 040	1		. 62		671-D-4AD
12 L	Sta. 399-Sta. 460.5	. 64	1.28	. 025	. 032	1		. 62		671-D-4AD
	Sta. 460.5-Sta. 481	1.25	2.50	. 040	. 032	2	. 61	. 62	1.25	671-D-4AD
	Sta. 481-Sta. 501.5	1.25	2.50	. 040	. 040	2	. 61	. 62	. 62	671-D-4AD
12 R	Sta. 399-Sta. 542.5	. 64	1.28	. 025	. 032	1		. 62		671-D-4AD
13 L	Sta. 597-Sta. 615	1.25	2.50	. 040	. 040	2	. 61	. 62	1.25	671-D-4AD
	Sta. 615-Sta. 633	1.25	2.50	. 025	. 025	2	. 61	. 62	1.25	671-D-4AD
	Sta. 633-Sta. 669.5	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
	Sta. 669.5-Sta. 704	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
13 R	Sta. 583.5-Sta. 669.5	. 64	1.28	. 025	. 025	1		. 62		671-D.4AD
	Sta. 669.5-Sta. 704	. 64	1.28	. 025	. 032	1		. 62		671-D-4AD
$14 \mathrm{~L} / \mathrm{R}$	Sta. 150.75-Sta. 276	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	671-D-4AD
	Sta. 276-Sta. 317	1.25	2.50	. 040	. 051	2	. 61	. 62	1.25	671-D-4AD
	Sta. 337.5-Sta. 378.5	1.25	2.50	. 040	. 051	2	. 61	. 62	1.25	671-D-4AD
14 L	Sta. 399-Sta. 481	1.25	2.50	. 032	. 040	2	. 61	. 62	1.25	671-D-4AD
	Sta. 481-Sta. 501.5	1.25	2.50	. 040	. 040	2	. 61	. 62	1.25	671-D-4AD
14 R	Sta. 399-Sta. 440	1.25	2.50	. 032	. 040	2	. 61	. 62	1.25	671-D-4AD
	Sta. 440-Sta. 542-5	1.25	2.50	. 032	. 040	2	. 61	. 62	1.25	671.D-4AD

See Figure 24B
A. HORIZONTAL SKIN SPLICES

TABLE 28B (Continued)
 FUSELAGE SKIN PANELS AND SKIN SPLICES

See Figure 24B
A. HORIZONTAL SKIN SPLICES

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longitudinal Overlap W_{v} See Fig. 24B	Width of Longitudinal Frame For Flush Patch $2 W_{h}$ See Fig. $24 B$	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row 1	Spacing of Rivets in Row 2	Type of Rivets
19 R	Sta. 399-Sta. 501.5	1.25	2.50	. 040	. 040	2	. 61	. 62	1.25	671-D-4AD
	Sta. 501.5-Sta. 542.5	1.25	2.50	. 040	. 032	2	. 61	. 62	1.25	671-D-4AD
	Sta. 583.5-Sta. 597	1.25	2.50	. 040	. 032	2	. 61	. 62	1.25	671-D-4AD
	Sta. 597-Sta. 669.5	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
	Sta. 669.5-Sta. 704	. 64	1.28	. 032	. 025	1		. 62		671-D-4AD
$20 \mathrm{~L} / \mathrm{R}$	Sta. 150.75-Sta. 235	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	671-D-4AD
	Sta. 235-Sta. 255.5	1.25	2.50	. 032	. 051	2	. 61	. 62	1.25	671-D-4AD
	Sta. 255.5-Sta. 276	1.25	2.50	. 032	. 051	2	. 61	. 62	. 62	671-D-4AD
	Sta. 317-Sta. 378.5	1.25	2.50	. 051	. 064	2	. 61	. 62	. 62	671-D-4AD
	Sta. 782.88-Sta. 819.6	1.25	2.50	. 040	. 040	2	. 61	. 62	. 62	671-D-4AD
	Sta. 819.6-Sta. 848.2	1.25	2.50	. 040	. 032	2	. 61	. 62	1.25	671-D-4AD
$34 \mathrm{~L} / \mathrm{R}$	Sta. 704-Sta. 720	1.25	2.50	. 032	. 040	2	. 61	. 62	1.25	671-D-4AD
33 L	Sta. 150.75-Sta. 214.5	. 64	1.28	. 032	. 032	1		. 62		671-D-4AD
	Sta. 214.5-Sta. 235	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	671-D-4AD
	Sta. 235-Sta. 255.5	1.25	2.50	. 051	. 032	2	. 61	. 62	1.25	671-D-4AD
	Sta. 255.5-Sta. 276	1.25	2.50	. 051	. 051	2	. 61	. 62	1.25	671-D-4AD
	Sta. 419.5-Sta. 481	1.25	2.50	. 032	. 025	2	. 61	. 62	1.25	671-D-4AD
	Sta. 481-Sta. 583.5	1.25	2.50	. 040	. 025	2	. 61	. 62	1.25	671-D-4AD
	Sta. 583.5-Sta. 597	. 64	1.28	. 040	. 025	1		. 62		671-D-4AD
	Sta. 597-Sta. 688.5	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
	Sta. 688.5-Sta. 704	1.25	2.50	. 025	. 040	2	. 61	. 62	1.25	671-D-4AD

TABLE 28B (Continued)
FUSELAGE SKIN PANELS AND SKIN SPLICES

See Figure 24B

A. HORIZONTAL SKIN SPLICES

	Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longitudinal Overlap W_{v} See Fig. 24B	Width of Longitudinal Frame For Flush Patch $2 W_{\mathrm{h}}$ See Fig. $24 B$	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row 1	Spacing of Rivets in Row 2	Type of Rivets
	33 R	Sta. 128-Sta. 150.75	1.25	2.50	. 032	. 025	2	. 61	. 62	1.25	671-D-4AD
		Sta. 150.75-Sta. 194	1.25	2.50	. 036	. 032	2	. 61	. 62	1.25	671-D-4AD
		Sta. 235-Sta. 276	1.25	2.50	. 051	. 051	2	. 61	. 62	1.25	671-D-4AD
		Sta. 419.5-Sta. 460.5	1.25	2.50	. 036	. 036	2	. 61	. 62	. 62	671-D-4AD
		Sta. 501.5-Sta. 522	1.25	2.50	. 036	. 036	2	. 61	. 62	. 62	671-D-4AD
		Sta. 522-Sta. 542.5	. 64	1.28	. 025	. 036	1		. 62		671-D-4AD
		Sta. 542.5-Sta. 688.5	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
		Sta. 688.5-Sta. 704	. 64	1.28	. 025	. 040	1		. 62		671-D-4AD
	$32 \overline{L / R}$	Sta. 16-Sta. 128	. 50	1.00	. 032	. 032	1		. 62		$671-\mathrm{D}-4 \mathrm{AD}$
	$31 \mathrm{~L} / \mathrm{R}$	Sta. 542.5-Sta. 688.5	. 64	1.28	. 025	. 025	1		. 62		$671-\mathrm{D}-4 \mathrm{AD}$
		Sta. 688.5-Sta. 704	1.25	2.50	. 040	. 025	2	. 61	. 62	1.25	671-D-4AD
	31 L	Sta. 150.75-Sta. 194	. 64	1.28	. 032	. 032	1		. 62		671-D-4AD
㜢		Sta. 194-Sta. 255.5	1.25	2.50	. 032	. 032	2	61	. 62	1.25	671-D-4AD
		Sta. 419.5-Sta. 481	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	671-D-4AD
		Sta. 481-Sta. 542.5	1.25	2.50	032	. 032	2	. 61	. 62	1.25	671-D-4AD
	$29 \mathrm{~L} / \mathrm{R}$	Kcel-Sta. 128	. 50	1.00	. 032	. 032	1		. 62		671-D-4AD
3	29 L	Sta. 399 -Sta. 419.5	1.25	2.50	. 051	. 032	2	. 61	. 62	1.25	671-D-4AD
		Sta. 419.5-Sta. 440	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	671-D-4AD
。		Sta. 440-Sta. 542.5	. 64	1.28	. 032	. 025	1		. 62		671-D-4AD
4		Sta. 542.5-Sta. 633	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD

fuselage skin panels and skin splices

See Figure 24B

A. HORIZONTAL SKIN SPLICES

Stringer to be Spliced Through	Length Between Stations to be Spliced	Width of Longitudinal Overlap W_{v} See Fig. $24 B$	Width of Longi- tudinal Frame For Flush Patch $2 W_{h}$ See Fig. $24 B$	Gage of Skin Above Stringer	Gage of Skin Below Stringer	No. of Rivet Rows Through Longitudinal Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row 1	Spacing of Rivets in Row 2	Type of Rivets
29 R	Sta. 150.75-Sta. 194	1.25	2.50	. 032	. 036	2	. 61	. 62	1.25	671.D-4AD
	Sta. 235-Sta. 276	1.25	2.50	. 051	. 036	2	. 61	. 62	. 62	671-D-4AD
	Sta. 399.Sta. 419.5	1.25	2.50	. 051	. 036	2	. 61	. 62	. 62	671-D-4AD
	Sta. 419.5-Sta. 460.5	1.25	2.50	. 036	. 036	2	. 61	. 62	. 62	671-D-4AD
	Sta. 501.5-Sta. 542.5	1.25	2.50	. 036	. 036	2	. 61	. 62	. 62	671-D.4AD
$28 \mathrm{~L} / \mathrm{R}$	Sta. 276-Sta. 399	1.25	2.50	. 051	. 032	2	. 61	. 62	1.25	671-D.4AD
27 L	Sta. 150.75-Sta. 255.5	. 64	1.28	. 032	. 025	1		. 62		671.D-4AD
	Sta. 255.5-Sta. 276	. 64	1.28	. 051	. 025	1		. 62		671.D.4AD
	Sta. 399-Sta. 440	. 64	1.28	. 032	. 025	1		. 62		671-D.4AD
	Sta. 440-Sta. 633	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
27 R	Sta. 150.75-Sta. 276	. 64	1.28	. 036	. 025	1		. 62		671.D.4AD
	Sta. 399-Sta. 542.5	. 64	1.28	. 036	. 025	1		. 62		671.D-4AD
	Sta. 542.5-Sta. 633	. 64	1.28	. 025	. 025	1		. 62		671.D.4AD
$25 \mathrm{~L} / \mathrm{R}$	Sta. 150.75-Sta. 276	. 64	1.28	. 025	. 025	1		. 62		$671 . \mathrm{D} .4 \mathrm{AD}$
	Sta. 399-Sta. 583.5	. 64	1.28	. 025	. 025	1		. 62		671.D.4AD
$24 \mathrm{~L} / \mathrm{R}$	Sta. 378.5-Sta. 296.5	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	671-D-4AD
$23 \mathrm{~L} / \mathrm{R}$	Sta. 214.5-Sta. 276	. 64	1.28	. 025	. 025	1		. 62		671-D-4AD
	Sta. 399-Sta. 501.5	. 64	1.28	. 025	. 025	1		. 62		671-D.4AD
KEEL	Sta. 16-Sta. 128	1.75	3.50	. 032	. 032	2	1.1	. 75	. 75	671-D-4AD
	Sta. 128-Sta. 150.75	1.25	2.50	. 025	. 025	2	. 61	. 62	1.25	671-D-4AD

See Figure 24 B

B. VERTICAL SKIN SPLICES

Bulkhead StationLocating Splice	Length Between Stringers to be Spliced	Width of Vertical Over- lap W_{v} See Fig. $24 B$	Width of Vertical Frame For Flush Patch See Fig. $24 B$	Gage of Skin Forward of Bulkhead	Gage of Skin Aft of Bulkhead	No. of Rivet Rows Through Vertical Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row 1	Spacing of Rivets in Row 2	Type of Rivets
16	Between all Stringers	. 75	1.50	. 040	. 032	1		. 62		671-D-4AD
50.5	Str. $16 \mathrm{~L} / \mathrm{R}-\mathrm{Str} .19 \mathrm{~L} / \mathrm{R}$. 75	1.50	. 032		1		. 62		671-D-4AD
88.5	Str. 18 R-Floor (Left Side)) .62	1.25	. 032	. 032	1		. 62		671-D-4AD
107	Str. 14 L-Floor (Left Side)) .65	1.30	. 032		1		. 62		671-D-4AD
128	Top Keel-Str. $12 \mathrm{~L} / \mathrm{R}$	1.25	2.50	. 032	. 025	2	. 61	. 62	1.25	671-D-4AD
	Str. $12 \mathrm{~L} / \mathrm{R}$-Str. $33 \mathrm{~L} / \mathrm{R}$	1.25	2.50	. 032	. 032	2	. 61	. 62	1.25	671-D-4AD
	Str. $33 \mathrm{~L} / \mathrm{R}$-Bottom Keel	1.25	2.50	. 032	. 025	2	. 61	. 62	1.25	671.D-4AD
150.75	Top Keel-Str. $12 \mathrm{~L} / \mathrm{R}$	1.38	2.76	. 025	. 025	2	. 63	. 62	1.25	671-D-4AD
	Str. $12 \mathrm{~L} / \mathrm{R}$-Floor	1.38	2.76	. 032	. 032	2	. 63	. 62	1.25	671-D-4AD
	Floor-Str. 33 L	1.38	2.76	. 032	. 032	2	. 63	. 62	1.25	671-D-4AD
	Str. 33L-Str. 27 L	1.38	2.76	. 025	. 032	2	. 63	. 62	1.25	671-D.4AD
	Str. 27 L-Bottom Keel	1.38	2.76	. 025	. 025	2	. 63	. 62	1.25	671.D.4AD
	Floor-Str. 33 R	1.38	2.76	. 032	. 036	2	. 63	. 62	1.25	$671 . \mathrm{D} 4 \mathrm{AD}$
	Str. 33 R-Str. 29 R	1.38	2.76	. 025	. 032	2	. 63	. 62	1.25	$671 . \mathrm{D}-4 \mathrm{AD}$
	Str. 29 R-Str. 27 R	1.38	2.76	. 025	. 036	2	. 63	. 62	1.25	671-D-4AD
	Str. 27 R-Bottom Keel	1.38	2.76	. 025	. 025	2	. 63	. 62	1.25	671-D-4AD
214.5	Str. 33 L -Str. 31 L	1.38	2.76	. 032	. 032	2	. 63	. 62	1.88	$671 . D-4 A D$
	Str. 34 R-Floor	1.38	2.76	. 032	. 051	2	. 63	. 62	. 62	671-D-4AD
	Str. 28 R-Str. 27 R	1.38	2.76	. 032	. 051	2	. 63	. 62	. 62	671-D-4AD
	Str. 25 L-Str. 25 R	1.38	2.76	. 025	. 025	2	. 63	. 62	1.88	671-D-4AD
235	Str. 20 L-Floor	1.38	2.76	. 032	. 051	2	. 63	. 62	1.25	671-D-4AD
	Floor-Str. 33 L	1.38	2.76	. 032	. 051	2	. 63	. 62	. 62	671-D-4AD
	Str. $8 \mathrm{~L} / \mathrm{R}$-Str. $12 \mathrm{~L} / \mathrm{R}$	1.38	2.76	. 025	. 025	2	. 63	. 62	1.88	671-D-4AD
	Str. 20 R-Floor	1.38	2.76	. 032	. 051	2	. 63	. 62	1.25	671-D-4AD

TABLE 288 (Continued)
 FUSELAGE SKIN PANELS AND SKIN SPLICES

See Figure 24 B

B. VERTICAL SKIN SPLICES

TABLE 28B (Continued)
 FUSELAGE SKIN PANELS AND SKIN SPLICES

See Figure 24 B

B. VERTICAL SKIN SPLICES

Bulkhead Station- Locating Splice	Length Between Stringers to be Spliced	Width of Vertical Over- lap W_{v} See Fig. 24B	Width of Vertical Frame For Flush Patch See Fig, 24B	Gage of Skin Forward of Bulkhead	Gage of Skin Aft of Bulkhead	No. of Rivet Rows Through Vertical Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row 1	Spacing of Rivets in Row 2	Type of Rivets
501.5	Str. 27 L-Str. 27 R	1.38	2.76	. 025	. 025	2	. 74	. 62	1.25	671-D-4AD
	Str. 19 R-Floor	1.38	2.76	. 040	. 032	2	. 74	. 62	. 62	671-D-4AD
	Str. 8 R-Str. 12 R	1.38	2.76	. 025	. 025	2	. 74	. 62	1.25	671-D-4AD
542.5	Str. 27 R-Str. 33 R	1.38	2.76	. 036	. 025	2	. 74	. 62	1.25	671-D-4AD
	Str. 29 L-Str. 33 L	1.38	2.76	. 032	. 025	2	. 74	. 62	1.25	671-D-4AD
	Str. 29 L-Str. 27 L	1.38	2.76	. 025	. 025	2	. 74	. 62	1.25	671-D-4AD
583.5	Str. $33 \mathrm{~L} / \mathrm{R}$-Str. $31 \mathrm{~L} / \mathrm{R}$	1.38	2.76	. 025	. 025	2	. 74	. 62	1.25	671 -D.4AD
	Str. 27 L-Str. 27 R	1.38	2.76	. 025	. 025	2	. 74	. 62	1.25	671-D.4AD
	Str. 19 R-Floor	1.38	2.76	. 032	. 025	2	. 74	. 62	1.25	671-D-4AD
597	Str. 33 L-Floor	1.38	2.76	. 040	. 025	2	. 74	. 62	1.25	671-D.4AD
	Str. 33 R-Floor	1.38	2.76	. 025	. 025	2	. 74	. 62	. 62	671-D-4AD
	Str. 11 R-Str. 12 R	1.38	2.76	. 025	. 025	2	. 74	. 62	. 62	671-D-4AD
	Str. 12 R-Str. 19 R	1.38	2.76	. 040	. 025	2	. 74	. 62	. 62	671-D-4AD
615	Str. 5 R-Str. 11 R	1.38	2.76	. 025	. 025	2	. 74	. 62	1.25	671-D-4AD
	Str. 6 L -Str. 5 R	1.38	2.76	. 040	. 025	2	. 74	. 62	1.25	671-D-4AD
	Str. 8 L-Str. 6 L	1.38	2.76	. 064	. 025	2	. 74	. 62	1.25	671-D-4AD
	Str. 19 L.Str. 8 L	1.38	2.76	. 040	. 025	2	. 74	. 62	1.25	671-D-4AD
633	Str. 31 L-Str. 31 R	1.38	2.76	. 025	. 025	2	. 74	. 62	1.25	$671-\mathrm{D}-4 \mathrm{D}$
	Str. 19 L-Floor	1.38	2.76	. 040	. 025	2	. 74	. 62	1.25	671-D.4AD
	Str. 13 R-Str. 19 R	1.38	2.76	. 025	. 025	2	. 74	. 62	1.25	671-D-4AD
651	Str. 81-Str. 8R	1.38	2.76	. 025	. 025	2	. 74	. 62	1.25	$671-\mathrm{D}-4 \mathrm{AD}$

See Figure 24 B

B. VERTICAL SKIN SPLICES

Bulkhead Station- Locating Splice	Length Between Stringers to be Spliced	Width of Vertical Over- $l a p$ W_{v} See Fig. 24B	Width of Vertical Frame For Flush Patch See Fig. 24B	Gage of Skin Forward of Bulkhead	Gage of Skin Aft of Bulkhead	No. of Rivet Rows Through Vertical Overlap	Spacing Between Rivet Rows	Spacing of Rivets in Row 1	Spacing of Rivets in Row 2	Type of Rivets
$\overline{669.5}$	Str. $19 \mathrm{~L} / \mathrm{R}$-Str. $13 \mathrm{~L} / \mathrm{R}$	1.75	3.50	. 025	. 032	2	. 86	. 62	1.25	671-D-4AD
	Str. 31 L-Str. 31 R	1.38	2.76	. 025	. 025	2	. 74	. 62	1.25	671-D-4AD
688.5	Str. $31 \mathrm{~L} / \mathrm{R}-\mathrm{Str} .33 \mathrm{~L} / \mathrm{R}$	1.38	2.76	. 025	. 040	2	. 74	. 62	1.25	671-D.4AD
704	Str. 11 L-Str. 11 R	1.38	2.76	. 025	. 040	2	. 74	. 62	1.25	$671 . \mathrm{D}-4 \mathrm{AD}$
	Str. $11 \mathrm{~L} / \mathrm{R}$-Str. $13 \mathrm{~L} / \mathrm{R}$	1.38	2.76	. 025	. 032	2	. 74	. 62	1.25	671-D-4AD
	Str. $13 \mathrm{~L} / \mathrm{R}-$ Str. $19 \mathrm{~L} / \mathrm{R}$	1.38	2.76	. 032	. 032	2	. 74	. 62	1.25	671-D-4AD
	Str. 19 L/R-Str. 33 L/R	1.38	2.76	. 025	. 032	2	. 74	. 62	1.25	671-D-4AD
	Str. 31-Str. 33	1.38	2.76	0.25	. 032	2	. 74	. 62	1.25	671-D-4AD
	Str. 31 L-Str. 31 R	1.38	2.76	0.25	. 032	2	. 74	. 62	1.25	671-D-4AD
720	Str. 11 L-Str. 11 R	1.38	2.76	. 040	. 040	2	. 74	. 62	1.25	671-D-4AD
	Str. 11-Str. 32	1.38	2.76	. 032	. 040	2	. 74	. 62	1.25	671-D-4AD
	Str. 32 L-Str. 32 R	1.38	2.76	. 040	. 040	2	. 74	. 62	1.25	671-D-4AD
782.88	Str. 15-Str. 16	1.38	2.76	. 040	. 032	2	. 74	. 62	. 62	671-D-4AD
	Str. 16-Door	1.38	2.76	. 040	. 040	2	. 74	. 62	. 62	671-D-4AD
819.6	Str. 20 L-Str. 20 R	1.25	2.50	. 040	. 032	2	. 61	. 62	1.25	671-D-4AD
848.2	Str. 15-Shear Deck	1.38	2.76	. 051	. 040	2	. 74	. 62	. 62	671-D-4AD
	Str. 15-Str. 16	1.38	2.76	. 032	. 040	2	. 74	. 62	. 62	671-D-4AD
	Str. 16-Elevator	1.38	2.76	. 040	. 064	2	. 74	. 62	. 62	671-D-4AD
	Elevator-Str. 20	1.38	2.76	. 040	. 051	2	. 74	. 62	. 62	671-D-4AD
	Str. 20 L-Str. 20 R	1.38	2.76	. 032	. 051	2	. 74	. 62	. 62	671-D-4AD
867.2	Splice under Elevator	1.38	2.76	. 051	. 051	2	. 74	. 62	. 62	671-D-4AD

Determine the gage from figure 22 and form an insert from the same gage 24 ST alclad sheet. Drill the rivet holes to match the original holes in the fuselage and the fittings. Remove all burrs caused by drilling and rivet the insert in place picking up the original rivet patterns. The rivet patterns can be determined from table $28,28 \mathrm{~A}$ and 28 B .

3. STRINGERS.

a. GENERAL.-Figures 20 and 26 show the locations and the types of the stringers used on the fuselage. The fuselage stringers are spliced at several sections along the fuselage. These are of three basic types:
(1) Zee sections formed from 24 ST stock of various gages.
(2) The lower keel and upper center stringer are extrusions Alcoa Die No. K-15263.
(3) The extrusions at the floor are Alcoa Die No. L-29085.
(4) All other extrusions are to be repaired in accordance with section IX, paragraph 2.
b. ZEE SECTION STRINGERS.
(1) NEGLIGIBLE DAMAGE.-Small isolated dents, free from cracks, abrasions, and sharp corners may be neglected. Damage to the flat of the stringer that is not in contact with the skin and that can be cleaned up to a hole of .19 inch diameter may be neglected. Nicks in the edge of the leg of the stringer should not exceed .25 inch after clean-up. Clean up all nicks in the stringer with a .25 radius file until smooth.
(2) DAMAGE REPAIRABLE BY PATCH. ING. -Use the methods shown in figure $25-b$ provided that the damage is confined to one leg. Smooth out the damage with a file maintaining .13 inch corner radii. If a complete splice is required, use the same splice as the nearest forward stringer splice on the member damaged. (See figure 25-a.) Use the same gage stock for the splice plate as that of the members being repaired. For these gages, see figure 26.
(3) DAMAGE REPAIRABLE BY INSER-TION.-If the damaged area is of greater length than that required to form a splice, an insert of original
stringer stock is used and spliced in as shown in figure 25-a. Make the insertion of such a length that the maximum clearance on each end is .03 inch.

c. KEELS AND UPPER CENTERSTRINGERS.

(1) NEGLIGIBLEDAMAGE.-Thesestringers are extrusion K-15263. Smooth isolated dents free from cracks, abrasions and sharp corners may be neglected. File all nicks until smooth. Nicks in the edge of the free leg (the leg with the bulb) should not exceed .13 inch in depth after clean up. Nicks in the edge of the supported legs should not exceed .25 inch in depth after clean up. Cracks running longitudinally in the free leg, that are not more than one inch long may be stopped by drilling $1 / 8$ inch diameter holes in the ends. If two of these damages occur on one stringer within 10 inches of one another, they should not be neglected.
(2) DAMAGE RFPAIRABLE BY PATCH-ING.-If the damaged area after clean up is confined to one leg, use the methods shown in figure $27-\mathrm{b}$. If a complete splice is required, use the same splice as that at the nearest forward member splice. A typical splice is shown in figure 27-a.
(3) DAMAGE REPAIRABLE BY INSER-TION.-If the damaged area is greater in length than that required to form a splice, use an insert of original stringer making the insertion of such length that the maximum clearance at each end is .03 inch, and splice as shown in figure 27-a.

d. FLOOR MATCH EXTRUSIONS—FUSELAGE FLOOR STRINGERS.

(1) NEGLIGIBLEDAMAGE.-These stringers are extrusion Alcoa Die No. L-29085 and are used at the intersection of the upper and lower rings, see figures 20 and 26. Smooth isolated dents, free from cracks, abrasions, and sharp corners may be neglected. Nicks in the edge of any of the three legs, which when rounded off with a file do not exceed .25 inch in depth, are negligible. If two such damages occur on one stringer within 10 inches of one another, they should not be neglected.
(2) DAMAGE REPAIRABLE BY PATCHING AND BY INSERTION.-Information in this section, paragraph $3 c$ (2) and (3) applies to these extrusions. Refer to figure 28 for the repair.

REfERENCE: SECTION III, PARAGRAPH 3, b. FOR REPAIR PROCEDURE.

FIGURE 27 -UPPER CENTER AND LOWER KEEL EXTRUSION REPAIR

S73D-4AD RIVETS. 10
REQUIED EACH SIDE OF break.

67ID-4AD RIVETS. 10
required each side of
break.

RiEFERENCE: SECTION III, PARAGRAPH 3, d FOR REPAIR PROCEDURE.

FIGURE 28 -FLOOR MATCH EXTRUSION REPAIR

4. BULKHEADS.

a. GENERAL.-The fuselage bulkhead station numbers denote their respective distances in inches aft from the nose of the airplane. In the region of the fuselage where the cargo floor exists the bulkheads are built from two semi-circular sections spliced at the floor line. Each of these sections is built in three component parts which are spliced together. In the repairs to these bulkheads, the splices called for are stronger than those that already exist on the bulkhead. This is because the bulkhead is originally spliced at points where the loading is at a minimum.

WARNING

FOR SPLICES AND REPAIRS ON THESE BULKHEADS, THOSE SHOWN MUST BE USED. THE SPLICES THAT ALREADY EXIST ON THE BULKHEADS CANNOT BE USED AS PATTERNS UNLESS THE DAMAGE OCCURS AT THE ORIGINAL SPLICE. IF IT IS NECESSARY TO REPLACE A SECTION OF THE BULKHEAD, IT IS PERMISSIBLE TO USE THE ORIGINAL RIVET PATTERN AT THE SPLICE.
(1) If a replacement of a frame is required, a duplicate part should be utilized. Table 27 contains the part numbers for the bulkheads used in the original airplane. Where replacement is necessary and a spare part is not available, replacernent sections may be fabricated from 24 SO alclad stock, heat treated after forming. The damaged frame may be used as a template.
(2) A number of the bulkhead frames have similar physical characteristics such that they may be divided into groups. These groups are designated "A", " B ", " C " and " D " and are shown in table 29. From each of these groups are selected individual bulkheads and sections as being typical, and their respective repairs are shown. Locate the damaged bulkhead by referring to figure 20 . Having determined its location, refer to table 29 to determine its type and physical characteristics. Having determined its type, refer to the following pages which describe in detail the repairs for the various types of bulkheads.
(3) With the exception of those in the tail cone, all bulkheads are accessible. However, in some cases the location of the damage may necessitate dismantling of the fittings and the stripping of the struc-
ture. In the tail cone, it may be necessary to cut away skin to effect a repair. When effecting these repairs, the fuselage must be so supported that the removal of a section does not seriously strain the adjoining members or cause deflections.
(4) All damaged fittings, clips, gussets, etc., must be replaced.
b. GENERAL REPAIRS.-Figure 62 shows the means of repair for damages of minor nature to bulkheads, such as damages that are confined to the web or to the flange. The procedure is to locate the damaged bulkhead on the fuselage skeleton, figure 20 , and then from the layout of the bulkheads (figures 29 to 61) and table 29, to determine the gage or extrusion die number of the damaged part. The repair is then made in accordance with the general repair, refer to section IX.
c. GROUP "A" BULKHEADS STATION 276, 296.5, 378.5, 399.
(1) GENERAL.-These bulkheads are located above the wing center section. The upper sections of these buikheads are essentially the same, see figures 42 and 44. There are variations on the lower halves as shown in these figures.
(2) NEGLIGIBLE DAMAGE.
(a) Dents which when restored to shape are free from cracks, abrasions, and sharp corners may be neglected. The dents must be restored to shape to prevent their developing into cracks.
(b) Nicks in the edge of the outstanding legs of flanges which, when rounded off to a .25 inch radius with a file, are less than $1 / 5$ the depth of the leg, are negligible. All sharp corners must be rounded off.
(3) DAMAGE REPAIRABLE BY PATCHING.
(a) UPPER RINGS.-The upper halves of these bulkheads have an L-29088 extrusion for an inner flange. The outstanding leg of this extrusion varies in thickness along the bulkheads. The bulkheads are, for the sake of convenience, split into two zones-zone A and zone B (see figures 63 to 66). For each of these sections a splice is shown. For repair to the extrusions alone see figures 65 and 66 (details A and B).
(b) LOWER RINGS.-With the exception of stations 296.5, and 378.5 the lower rings consist of an . 064 formed sheet with an L-29088 extrusion for an
inner flange, see table 29. These lower rings may be repaired as shown in figure 64. The lower rings of stations 296.5 and 378.5 are formed channel sections and are patched as shown in figure 67. Use fillers where required.
(4) DAMAGE REPAIRABLE BY REPLACEMENT.
(a) Since the upper and lower half rings are each built in three sections, it is advised that if a section is extensively damaged to replace the section picking up the original rivet attachments to the skin and employing the original bulkhead splices. Replace all damaged gussets and clips.
d. GROUP "B"-BULKHEADS.-Stations 128255.5, 317, 337. 5, 358, 419.5-688.5.

(1) GENERAL.

(a) This group includes all the continuous rings subject to either floor or baggage compartment loads or both. Rings 615 to 688.5 are aft of the cargo door. Bulkhead 128 serves to separate the pilots' compartment from the cargo compartment and is treated separately in paragraph $4 d$ (6).
(2) NEGLIGIBLE DAMAGE.
(a) Dents which when restored to shape are free from cracks and sharp corners may be negelcted. The dents must be restored to shape to prevent their developing into cracks.
(b) Nicks in the edges of the outstanding legs of flanges which, when cleaned up with a file, maintaining .25 inch corner radii, are less than $1 / 5$ the length of the leg in question are negligible. All sharp corners must be rounded off.
(3) DAMAGE REPAIRABLE BY PATCH-ING.-Damage not considered negligible must be patched as follows:
(a) If the bulkhead suffers a major damage, that is, if more than one-half the cross sectional area of the bulkhead is destroyed:

1. Locate the damaged bulkhead on figure 20 (fuselage skeleton).
2. Having located the bulkhead on the fuselage skeleton, refer to table 29. By means of this table, the figure which shows the bulkhead layout is determined.
3. There are typical sections located on these bulkheads and they are designated as detail A, B, C, D, etc.
4. Determine the detail that corresponds to the location of the damage on the bulkhead.
5. Repair the bulkhead as shown in the detail (figures 65-67, 69-71) which has been determined in step (4).
(b) If the bulkhead suffers damage of a minor nature:
6. Locate the damaged bulkhead on figure 20 (fuselage skeleton).
7. Having located the bulkhead on the fuselage skeleton, refer to table 29. By means of this table, the figure which shows the bulkhead layout is determined.
8. Locate the damage on the layout of the bulkhead. Determine what part (that is, (-1), (-2), (-3), etc.) of the bulkhead is damaged.
9. By referring back to table 29 the gage or extrusion die number of the damaged part is determined.
10. Having determined the characteristics, (that is, its gage, or die number if an extrusion) and the extent of the damage, refer to section IX for its repair.
11. Use fillers where required.
(4) DAMAGE REPAIRABLE BY INSERTION.
(a) If the extent of the damage after clean-up is greater than twice the length of a full splice at each end, splice in an insert using the rivet pattern determined by the method described in paragraph d (3) (a) above.
(5) DAMAGE REPAIRABLE BY REPLACEMENT.
(a) Since the upper and lower halves of these rings are each built in three sections, it is advised that if extensive damage occurs to one of these, to replace the section picking up the original splices.
(6) BULKHEAD STATION NO. 128.-This bulkhead serves to separate the pilots' compartment from the main cabin and embodies the frame for the connecting door, see figure 37. The bulkhead wall is
.032 gage 24 ST alclad reinforced by angle stiffeners. Damage to fittings or attachments requires their replacement.

Holes in the flat of the .032 web which when cleaned up, can be circumscribed by a circle whose diameter is two inches or less and whose edge is not within two inches of a flange, stiffener, or edge of sheet, may be neglected. If the damage to the . 032 wall is not negligible, refer to the general repair. Figure 229. Damage to the extrusions may be repaired by referring to figures 231 and 232. The bulkhead itself is made up of an .040 formed channel and repaired as shown in figure 67 (detail C repair). Rer $?$ to the door frame may be made in accordance with figure 68 (detail D). In this repair, the splice for the channel serves as a filler for the angle repair. The channel surface in contact with the door must be maintained flush.
e. GROUP "C’’ BULKHEADS-STATIONS 16.0 THRU 107.0.
(1) GENERAL.-These bulkheads consist essentially of formed channels of 24 ST alclad. Some of these bulkheads are reinforced locally with formed angles. Refer to figures 29 through 36.
(2) NEGLIGIBLE DAMAGE.
(a) Dents which when restored to shape are free from cracks, abrasions, and sharp corners may be neglected. The dents must be restored to shape.
(b) Nicks in the edges of the outstanding legs of the flanges, which when cleaned up with a file, maintaining .25 inch comer radii, are less than .19 inch deep may be neglected.
(3) DAMAGE REPAIRABLE BY PATCHING.
(a) The method employed for repairing these bulkheads is the same as that for Group "B" bulkheads, see paragraph 4., d. above.
f. GROUP 'D' BULKHEADS-STATIONS 704 -886.2

(1) GENERAL.

(a) This group includes all the bulkheads in the tail cone; refer to figures 53 to 61 . These bulkheads are in general inaccessible and in most cases it will be necessary to peel away the skin to effect the repairs. These bulkheads receive heavy tail wheel
loads and support the channels holding the fin and rudder torque tubes. It is, therefore, imperative to inspect the damages in these regions very thoroughly. Replace all damaged clips, brackets, and fittings.

(2) NEGLIGIBLE DAMAGE.

(a) Small holes or cracks through the flats of bulkheads cannot be neglected. Bumps and dents must be restored to shape carefully and may be considered negligible if, after having been restored to shape, they are free from holes or cracks.
(b) Nicks in the edges of the outstanding legs of flanges which, when cleaned up with a file, maintaining .25 inch corner radii, are less than $1 / 5$ the length of the leg in question, are negligible. All sharp corners must be rounded off.
(3) DAMAGE REPAIRABLE BY PATCHING.
(a) Damage not considered negligible must be patched as follows:

1. Locate the damaged bulkhead on figure 31 (fuselage skeleton).
2. Having located the bulkhead on the fuselage skeleton, refer to table 29. By means of this table, the figure that shows the bulkhead layout is determined.
3. Locate the damage on the layout of the bulkhead. Determine which part (that is $(-1),(-2)$, or (-3), etc.) of the bulkhead is damaged.
4. By referring back to table 29, the gage or extrusion die number of the damaged part is determined.
5. Having determined the characteristics (that is, its gage, or its die number if an extrusion) and the extent of the damage, refer to section IX for its repair.
6. A typical repair, making use of the general repair procedure is shown in the figure 76.
(4) DAMAGE REPAIRABLE BY INSERTION.
(a) If the extent of the damaged section after cleanup is greater than twice the length of the full splice at each end, splice in an insert using the rivet pattern determined in paragraph $4 f$ (3) above.

g. STUB RINGS

(1) GENERAL.-The stub rings occur at the attachments of the front, 30 percent, and 70 percent wing spars to the fuselage. They extend between the tops of the spars and the intercostal support running longitudinally below the windows. Figure 20. These stub rings transfer the wing beam loads into the fuselage and are highly stressed.
(2) NEGLIGIBLE DAMAGE,
(a) Dents, which when restored to shape, are free from cracks, abrasions, and sharp corners, may be neglected. These dents must be bumped out, and care must be taken that no stretching or cracking takes place.
(b) Nicks in the edges of the outstanding legs of angles which when cleaned up with a file, maintaining .25 inch corner radii, are less than $1 / 5$ the length of the leg may be neglected. It must be emphasized that no sharp corners may exist.
(3) DAMAGE REPAIRABLE BY PATCHING.
(a) Damage to the extrusions alone may be repaired by referring to figure 231.
(b) Figure 77 shows a repair to the web alone and a repair to the stub ring if completely broken
through. The fore and aft webs of the stub rings at the 30 percent and 70 percent spars are .064 and the fore and aft webs of the stub ring at the front spar are .081. The repairs shown in figure 77 are for the stub ring at the front spar. The notes on this figure indicate the differences in the repairs that are allowed for the .064 webs. In repairs to the webs alone when either or both of the extrusions are not damaged, AN 442AD6 rivets may be used, in place of the AN-23 bolts shown. For combined repairs to the angles and frames, the AN- 23 bolts shown must be used.
(4) DAMAGE REPAIRABLE BY INSERTION.
(a) Insertions are not recommended for extensive repairs. The splice plates extend across the damaged area and an insert is not necessary. Use fillers wherever required.
(5) DAMAGE REPAIRABLE BY REPLACEMENT.
(a) If the stub ring is extensively damaged, replace it. If the inside web (see figure 77) has a damage that extends more than half its length replace this web picking up the original rivet pattern.

FIGURE 28A - SEMI-STANDARD STIFFENER

FIGURE 29—FUSELAGE BULKHEAD DIAGRAM

FOR DETAIL REPAIR, SEE FIGURE 73

BULKHEAD NO. 3
STATION 50.5

FIGURE 31—FUSELAGE BULKHEAD DIAGRAM

FOR DETAIL REPAIR, SEE FGURE 73

BULKHEAD NO. 2 STATION 34.5

FIGURE 30—FUSELAGE BULKHEAD DIAGRAM

BULKHEAD NO. 5

STATION 60.5
FIGURE 33-FUSELAGE BULKHEAD DIAGRAM

FOR DETAIL REFARR, SEE FIGURE 73

buIKHEAD NO. 4

$$
\text { STATION. } 53.5
$$

FIGURE 32—FUSELAGE BULKHEAD DIAGRAM

FOR DETAL REPAR, SEE FGURE 73

BUUKHEAD NO. 6

STATION 70.7

FIGURE 34—FUSELAGE BULKHEAD DIAGRAM
for detall repalr, 5ee hgure 73

BULKHEAD NO. 8
SEATION 107.0

FIGURE 36—FUSELAGE BULKHEAD DIAGRAM

FOR DETALL REPAR, SEE FIGURES 69, 73 and 74

BULKHEAD NO. 7
STATION 8 Ba .5

FIGURE 35—FUSELAGE BULKHEAD DIAGRAM

FOR DEJALL REPAIR, SEE FIGURES 67 AND 68

buLKHEAD NO. 9
STATION 12 B. 0

FIGURE 37—FUSELAGE BULKHEAD DIAGRAM

AN 01-25LA-3

FOR DETAIL REPAIR SEE FIGURES 67 and 69

BULKHEAD NO. 10, 11, 15 ,
$26,27,37,38,39,40$

$$
\frac{\text { STAYION } 150.8,173.5,255.5,419.5}{440.0,633.0,651.0,664.5,688.5}
$$

FOR DETAIL REPAIR SEE FIGURES 67, 69 and 70

STATION 194.0

FIGURE 38-FUSELAGE BULKHEAD DIAGRAM FIGURE 39 -FUSELAGE BULKHEAD DIAGRAM

FOR DETAIL REPAIR SEE FIGURES 67 and 69

BUIKHEAD NO. 13

STATION 214.5

FOR DETAIL REPAIR SEE FIGURES 67 and 69

BULKHEAD NO. 14, 28
STATION 235, 460.5

FIGURE 40 -FUSELAGE BULKHEAD DIAGRAM|FIGURE 41-FUSELAGE BULKHEAD DIAGRAM

FOR detall repalk set fgure 64 and 65

BULKHEAD NO. 16, 25
STATION 276, 399.0
FIGURE 42-fUSELAGE BULKHEAD DIAGRAM

FOR DETAIL REPAIR SEE FGGURES 65, 66, 67, and 69

BULKHEAD MO. 18, 20, 23

$$
\text { STATION 296.5, } 378.5
$$

FIGURE 44-FUSELAGE BULKHEAD DIAGRAM

FOR DETALL REPAIR SEE FIEURE 77

BULKHEAD NO. 17

STATION 285.0
FIGURE 43-fuSELAGE BULKHEAD DIAGRAM

ROR DETALL REPAR SEE FIGURES 67 and 69

BULKHEAD NO. 21, 22

STATION 317, 337,5, 358,0
FIGURE 45-FUSELAGE BULKHEAD DIAGRAM
FOR DETAIL REPAIR SEE FIGURE 77

AN 01-25LA-3

STATION 819.6, 832.0

BULKHEAD NO. 52

FIGURE 58-FUSELAGE BULKHEAD DIAGRAM FIGURE 59—FUSELAGE BULKHEAD DIAGRAM

FOR DEFAIL REPAIR SEE FIGURE 76

BULKHEAD NO. 53

STATION 667. 2

BULKHEAD NO. 54

FIGURE 60 -FUSELAGE BULKHEAD DIAGRAM|FIGURE 61 -FUSELAGE BULKHEAD DIAGRAM

FOR DETAIL REPAIR, SEE FIGURES 626770 AND 71

BULKHEAD NO. 32
STATION 542.5
FOR AIRPLANES AF 44-77445 AND SUBSEOUENT
FIGURE 61A-FUSELAGE BULKHEAD DIAGRAM

FOR DETAIL REPAIR, SEE FIGURE 62 AND 67

BULKHEAD NO. 33,

FOR AIRPLANES AF 44-77445 AND SUBSEOUENT FIGURE 61B-FUSELAGE BULKHEAD DIAGRAM

FOR DETAIL REPAIR, SEE FIGURE 62 67, 70 AND 71
(-1)

FOR AIRPLANES AF 44-77445 AND SUBSEOUENT
FIGURE 61C-FUSELAGE BULKHEAD DIAGRAM

TABLE 29

BULKHEAD GROUPING AND COMPONENT PARTS
This table gives the physical characteristics of the fuselage bulkheads. Their various component parts are called out such as (-1), (-2), etc. and their locations shown on the bulkhead diagrams (figures 29-61). The group under which each bulkhead is classified is indicated.

	2	34.5
	3	50.5
	4	53.5
	5	60.5
	6	70.7
	7	88.5
	8	107.0
	9	128.0
	10	150.75
	11	173.50
	12	194.0
	13	214.5
	14	235.0
	15	255.5
	16	276.0
	17	285.0
	18	296.5
	19	312.0
	20	317.0
	21	337.5
	22	358.0
	23	378.5
	24	392.2
	25	399.0
	26	419.5
	27	440.0
	28	460.5
	29	481.0
$\boldsymbol{⿴ 囗}$	30	501.5

Group	For Layout of Bulkhead See Figure
C	29
C	30
C	31
C	32
C	33
C	34
C	35
C	36
B	37
B	38
B	38
B	39
B	40
B	41
B	38
A	42
Stub Ring	43
A	44
Stub Ring	46
A	45
B	45
B	45
A	44
Stub Ring	46
A	42
B	38
B	38
B	41
B	47
B	48

NOTES:

1. THE COMPONENT PARTS OF A GULKHEAD ARE DETRRMNED by referring to table 29 AND TO THE designated FIGURE
2. FOR A SPLICE TO a COMPLETE break that is not WITHIN 5 INCHES OF THE ORIGHNAL SPLCE, DETERMINE THE DETAIL REPARR FROM THE DHAGRAM OF THE BuLKHEAD (RGURES 29 TO S1) AND repar as shown in the deskgnated detall
3. If a bulkhead is broken at a point within 3 inches of THE ORIGINAL SPLICE, THIS ORIGENAL FATEERN MAY XE USED for repalr at the greak
4. When replacing a section, pick up the original spleces AND ATTACHMENTS.
5. THE APPLICATION AS SHOWN IS TO THE . 064 PraHR SECTION OF BUKKHEAD STAION 194.
6. 24ST STOCK FOR REPAIR ANGIES MAY BE USED MF DESIRED. SEE TABLE Y FOR gEND RADI.

FIGURE 62 - GENERAL BULKHEAD REPAIR FOR MINOR DAMAGE

REFERENCE SECTION III, PARAGRAPH 4., C
FIGURE 63-REPAIR TO GROUP "A" BULKHEADS—DAMAGE CONFINED TO WEB

FIGURE 64—REPAIR TO GROUP "A" BULKHEADS 276 AND 399 LOWER RING

FIGURE 65 - DETAIL A REPAIR

TYPICAL BULKHEAD REPAIR IN ZONE B FOR BULKHEAD STATMON 296.5

NOTES:

1. FOR REPAIR OF THE UPPER RING, ZONE 0-30', SEE FIGURE 65.
2. MATERIAL IS 2450 AICLAD heat treat to 56,000 Lb/5O IN. AFTER FORMING.
3. 24 SI AlCLAD STOCK FOR REPAIR angles MAY be USED IF DESIRED. SEE TABLE 7 FOR BEND RADII.

REFERENCE: 1. SECTION III, PARAGRAPH Ac
2. FIGURE 39 AND 44

FIGURE 66 - DETAIL B REPAIR

FIGURE 68 - DETAIL D REPAIR

FIGURE 69 - DETAIL E REPAIR

FIGURE 70 - DETAII F REPAIR

FIGURE 71 - DETAIL G REPAIR

FIGURE 72 - DETAIL H REPAIR

FIGURE 73 - DETAIL I REPAIR

FIGURE 74 - DETAIL J REPAIR

FIGURE 75 - DETAIL K REPAIR
 MINIMUM BEND RADII.
3. MINIMUM EDGE DISTANCE

FOR 5/32 RIVETS IS . 32 INCHES,
FOR $3 / 16$ RIVETS, .38 INCHES.
4. 24ST ALCLAD STOCK FOR REPAIR ANGLES AND

CHANNELS MAY BE USED IF DESIRED. SEE
TABLE 7 FOR BEND RADII.

REFERENCE: 1. SECTION III, PARAGRAPH If 2. FOR BULKHEAD, SEE FIGURE 61

FIGURE 77 - REPAIR OF STUB RINGS

FIGURE 78-MAIN CARGO DOOR DIAGRAM

s. CARGO, TROOP, AND JUMP DOORS.

a. GENERAL.-The main cargo door is built in two sections-one forward and one aft, both of which open outward. The troop door, hinged at the top and opening inward is built into the forward half of the main cargo door, see figure 78. Two jump doors, adided at airplane number AF44-77445 are of the same general type of construction but are designed to be quickly removable, see figures 83A and 83B. The left hand jump door is located within the aft seetion of the main cargo door, and the right hand jump door is located directly opposite. Each supporting structure is composed of webs, channels, and bulkheads. The frame is stiffened and the skin supported by pans formed from .032 sheet. The right hand jump door frame is reinforced by external fuselage doublers, see figure 92A, and by external
hat section stiffeners, see figure 93 .
The main cargo door frame is composed of webs and bulkheads, see figure 80. The sill consists essentially of an .081 angle, a .064 zee section, and an angle extrusion. There is a .019 stainless steel scuff guard on the sill.
b. NEGLIGIBLE DAMAGE.-Smooth isolated dents, free from cracks, abrasions, and sharp corners are negligible. Small holes and cracks in the pans that can be circumscribed by a .5 diameter circle may be neglected. Nicks in the edges of the flanges of the bulkheads, lightening holes, and sill members that do not exceed a depth of 19 inch when cleaned up with a file, may be neglected.
c. DAMAGE REPAIRABLE BYPATCHING.Small holes and cracks in the .032 skin and in the flats of the bulkheads and webs should be patched as

FOR REPAIR TO VIEW A, SEE FIGURE 83.
FOR REPARR TO VIEW B, SEE FIGURE 82,
FOR REPAIR TO VIEW $C_{\text {g }}$ SEE FGURE B1.

REFRENCA StCION Mi, PARAGRAFH 5

FIGURE 80 -MAIN CARGO DOOR FRAME DIAGRAM
shown in the general repair, figure 229. Stop all cracks with a $1 / 8$ inch hole at each end. Damage to the pans may be repaired as shown in figure 79. Use a . 032 patch with two rows of LS-1127-5 blind rivets at . 75 inch spacing. Other damages to sections of the doors and door frames may be patched as shown in figures 79 and 81. The sill is built from a formed angle, a zee section and an angle extrusion. These sections may be patched according to figure 82.
d. DAMAGE REPAIRABLE BY INSERTION.

It is not necessary to splice the stainless steel guard on the sill-see figure 82. If the guard is extensively damaged insert a new section. Damages to areas which cannot be effectively patched due either to their extent or to their locations may be repaired by use of inserts, see figure 83.

e. DAMAGE REQUIRING REPLACEMENT.-

 Replace all damaged clips, gussets and short channels. If the transverse stiffening ribs are extensively damaged, they should be replaced.

FIGURE 82-MAIN CARGO DOOR SILL SPLICE

NOTESt

1. sex fgure to for location of vew A ON THE DOOR FRAME
2. MATERIAL IS 2450 ALCLAD HEAT TREATED TO $56,000 \mathrm{~L} / \mathrm{SQ} \operatorname{IN}$.
3. RIVET PATIERNS FOR ALL SPLUCES to be the same as existing rivet patterns

reffrenceit section ili, paragraph s vew \mathbf{B}

FIGURE 83 -MAIN CARGO DOOR HINGE INSERT

FIGURE 83A - RIGHT HAND JUMP DOOR

FIGURE 838 - LEFT HAND JUMP DOOR

NOTE

Early C-46D airplanes (see airplane designation chart following Table of Contents) incorporate formed plywood panel jump doors in lieu of the later allmetal doors. Damage to these doors is structurally negligible since the adjacent fuselage structure is designed to carry all loads; however, maintenance of a smooth outside contour by standard woodworking methods is essential.

FIGURE 84-FUSELAGE FLOORING DIAGRAM

Item No	Part No.	Item No.	Part No.	Item No.	Part No.
1	20-260-1060-2R	30	20-210-1065-3	59	20-260-1002-86
2	20-260-1059-1	31	20-210-1071-3	60	20-260-1002-85
3	20-260-1062	32	20-210-1090-3	61	20-260-1002-84
4	20-260-1135-1	33	20-210-1113-3	62	20-260-1073-1
5	20-260-1057-2R	34	20-210-1086-3	63	20-260-1041-2
6	20-260-1057-2L	35	20-210-1111-3	64	20-260-1042-2L
7	20-260-1056-2R	36	20-210-1117-3	65	20-260-1042-2L
8	20-260-1055-1	37	20-260-1002-83	66	20-260-1041-2
9	20-260-1178-1	38	20-260-1002-83	67	20-260-1074-1
10	20-260-1049-1R	39	20-210-1128-3	68	20-260-1072-3
11	20-260-1040-2R	40	20-210-1123-3	69	20-260-1072-2
12	20-260-1039-2R	41	20-210-1114-3	70	20-260-1038-2
13	20-260-1183-1	42	20-210-1112-3	71	20-260-1051-1
14	20-260-1147-2	43	20-210-1116-3	72	20-260-1052-2L
15	20-260-1052-2R	44	20-210-1115-3	73	20-260-1053-1
16	20-260-1182-1	45	20-210-1129-3	74	20-260-1034-2L
17	20-260-1134-2R	46	20-210-1130-3	75	20-260-1147-2
18	20-260-1038-2	47	20-210-1131-3	76	20-260-1148-1L
19	20-260-1045-1	48	20-210-1132-3	77	20-260-1039-2L
20	20-260-1041-3	49	20-210-1133-3	78	20-260-1040-2L
21	20-260-1037-2	50	20-210-1134-3	79	20-260-1049-1L
22	20-260-1144-2R	51	20-210-1135-3	80	20-260-1050-1
23	20-260-1043-1	52	20-210-1118-3	81	20-260-1056-2L
24	20-260-1042-3	53	20-210-1119-3	82	20-260-1057-2R
25	20-260-1144-2L	54	20-210-1120-3	83	20-260-1057-2L
26	20-260-1036-2	55	20-210-1121-3	84	20-260-1058-1
27	20-260-1036-2	56	20-260-1002-83	85	20-260-1061-2
28	20-260-1042-5	57	20-260-1002-84	86	20-260-1060-2L
29	20-260-1042-4	58	20-260-1002-85		

6. FLOOR.

a. GENERAL.-The fuselage floor consists of longitudinal and transverse beams covered with a .032 24ST alclad sheet. The transverse beams are spaced about every 20 inches apart and are continuous. There are six longitudinal beams spaced approximately 16 inches apart. The flanges of the longitudinal beams are continuous and the webs are spliced at each intersection. In addition the floor is stiffened by means of longitudinal tee sections spaced about every 5.25 inches. Figure 84.
b. SKIN AND TRACKS.-Holes in the floor skin should not be neglected. The floor skin that is inaccessible in the region of the wing should be patched with .032 sheet with two rows of LS1127-4 rivets, spaced at one inch. For repair of the floor skin in the vicinity of the corrugations see figure 85 .

Figure 86 shows a combined repair to the floor
skin and track in a region in which the skin is accessible. The skin is patched with .032 24ST alclad and a single row of AN442 AD4 rivets at one inch. This skin patch is typical for all of the floor skin that is accessible. The damaged track is repaired by an insertion, end plugs being used to align the track sections. The original rivet pattern is used.

c. REPAIR OF LONGITUDINAL AND TRANSVERSE BEAMS.

(1) GENERAL.-The webs of the longitudinal beams are . 036 except for the bays where the tie down fittings are located. At these bays the gages are .051 . See figure 84. The vertical stiffeners are formed $.5 \times .5$ x . 040 angles, except:- the stiffeners on bays with tie down fittings and the two stiffeners under the litter post. These are extrusions, Alcoa Die No. 29084. If the formed angles are damaged extensively they should

FIGURE 85-REPAIR TO FUSELAGE FLOOR IN REGION OF CORRUGATIONS

REFERENCE: SECTION III,
REPAIR OF TRACK ALONE

TABLE 31-FLOOR BEAM RIVETING

This table shows the required rivet patterns for the repair of the webs of the floor beams. The patch must be of sufficient size to cover the cleaned up damage and pick up the required rivet pattern, maintaining an edge distance of two rivet diameters on all rivets.

Gage of Beam

.025

AN442 AD4
2 rows at 1 in. 2 rows at 1 in.
2 rows at .75 in .
2 rows at .75 in .
*The rows must be staggered

Required Rivet Patterns* AN442 AD5

AN442 AD6

$$
\begin{aligned}
& 2 \text { rows at } 1 \quad \text { in. } \\
& 2 \text { rows at } 1 \\
& 3 \text { rows at } .88 \mathrm{in} .
\end{aligned}
$$

2 rows at .88 in .
be replaced picking up original rivet holes using AN442 AD4 rivets. See figure 87 for the repair of these stiffeners.

The webs of the transverse beams are made of .040 alclad sheet with extruded bulb angles, Alcoa Die No. 29090 as spar caps. The vertical stiffeners are .051 formed sections. Treat the stiffeners in the same fashion as mentioned above.
(2) CAPSTRIPS,
(a) NEGLIGIBLE DAMAGE.-Smooth isolated dents, free from cracks, abrasions, and sharp corners may be neglected. Small cracks running longitudinally and not more than one inch long should have is inch diameter holes drilled at each end to prevent spreading. File all nicks on the legs of the stringer until smooth. These nicks in the edges of the legs of the capstrips are not negligible if their depth exceeds .25 inch after clean-up.
(b) DAMAGE REPAIRABLE BY PATCH-ING.-When the damage is so localized that the cleaned up area is confined to one leg, use the methods shown in figure 90 . Clean up the damage with a file, maintaining .13 inch minimum corner radii. Remove interfering rivets and pick up these holes in the patch. A filler plate is unnecessary unless the damage after clean up exceeds two inches in length.
(c) DAMAGE REPAIRABLE BY INSER-TION.-If the damage to a longitudinal beam oceurs at a transverse beam or destroys more than one leg of the extrusion, remove the rivets that attach the damaged section of the member. Remove the damaged portion of the member by cutting it off at each end at a point midway between two of the existing rivet holes and splice in a new section picking up the rivet
pattern shown in figure 87. The length of the insert should be such that the maximum clearance at each end is .03 inch.
(3) WEBS.
(a) NEGLIGIBLE DAMAGE,-Smooth isolated dents free from cracks, abrasions and sharp corners may be neglected providing no adjacent rivets or bolts are disturbed. No holes or cracks through the webs can be neglected.
(b) DAMAGE REPAIRABLE BY PATCH-ING.-Damage to the web which after clean up is at least 2.0 inches from the edge of the web may be patched with a 24 ST alclad sheet of the same gage. Table 31 gives the required rivets and rivet spacing for the beams. If the damage is within 2.0 inches of the edge of the web the patch must be altered to pick up additional rivets. See figures 87,88 and 89 . If the damage runs across the web stiffener, the patch is placed on the opposite side of the web from the stiffener, using a filler as required.
(c) DAMAGE REPAIRABLE BY INSER-TION.-If the damage occurs in the region of a fitting or near the intersection of a transverse and longitudinal beam, an insert should be made and spliced to the web on either side. The damaged portion of the web must be cut away, such that the splice can be made with no interference. The insert and the splice plates are to be of the same gage as the damaged web. The rivet pattern is given in figures 88 and 89.
(d) DAMAGE REPAIRABLE BY RE-PLACEMENT.-If the web of a longitudinal beam is damaged extensively the intercostal web between the transverse beams should be replaced.

FIGURE 89 -REPAIR TO INTERMEDIATE FLOOR BEAM

$129103=S K-221$

$\mathbf{L 2 9 1 0 2}=\mathbf{\$ K}-220$
NOTES:

1. THESE EXTRUSIONS ARE THE CAPSTRIPS OF TME FLOOR BEAMS
2. SPLICES HERE SHOWN ARE FULL STRENGTM AND MAY BE USED INSTEAD OF THOSE IN figure $\mathbf{E} 7$

7. DOUBLERS.

a. GENERAL.-Figure 91 shows the location and gages of the various doublers. Table 32 contains the sizes of the doublers located on figure 91. In general, the doublers are accessible for repair purposes and repair is made to their outside surfaces. These doublers are heavily loaded and in many cases serve as splices. If damage occurs in the region of any doublers they must be carefully inspected to ascertain any possibility of damage to them.
b. NEGLIGIBLE DAMAGE.-Dents free from cracks, abrasions, and sharp corners may be neglected. These dents should be restored to shape whenever possible to prevent their developing into cracks. Care must be taken not to stretch or crack the doubler in the process. Inspect all rivets in the vicinity of the damage to be sure that they have not been sheared or loosened. See section I, paragraph $10 i$.

c. DAMAGE REPAIRABLE BY PATCH-

INC.-Holes through the doubler cannot be neglected. Damage not considered negligible may in general be cleaned up and patched as follows:

1. Where the doubler is on the outside of the fuselage, it may be patched by cleaning up the damage, putting in a filler of the same gage 24 ST alclad sheet and laying on an exterior patch of 24ST alclad sheet that is long enough to pick up the required number of rivets each side of the break. To determine the required number of rivets and the dimensions of the patch plate, refer to figure 91 which locates the doubler and to table 32 which gives their various gages and the required number of rivets each side of the break. In all cases, the original rivet pattern must be used.
2.Damage to a doubler that lies between the skin and a bulkhead may be patched as shown in figure 92. The doubler is located and its gage and size determined by referring to figure 91 and table 32. The skin is cut away and the damaged doubler cleaned up. A filler of the same gage as the doubler is used, and a patch is laid over the filler and over sufficient length of the doubler (on each side of the break) so that the required number of rivets can be picked up. Refer to table 32 to determine the number of rivets required each side of the break. Pick up the original rivet pattern along the doubler. The skin is repaired by the method described in the skin repairs, see paragraph 2 of this section.

8. REPAIR AT WING INTERSECTION.

Figure 95 shows a combined repair for a damage in the region of the wing-fuselage intersection and
gives repairs to the wing skin and stringers and the fuselage skin, doubler, floor, bulkhead, attach angle, and match angle. The repair procedure is as follows:
a. Clean up all damaged areas as shown, in figure
95. The skin cut-outs are made using the inserts as templates, maintaining 5 inch minimum corner radii.
b. Repair wing hat section stringer as per figure 107.
c. Repair fuselage bulkhead as shown by splicing in a new section.
d. Repair floor beam as shown in Section B-B. A new section of web is inserted and spliced to the original web. The outboard end is riveted to the bulkhead. The extrusion splice is carried to the end using filiers as required. The splice size is found in figure 95.
e. Cut out the wing skin patch and rivet as shown, using fillers in the region of the hat section. The skin and attach angle must be cut at the same point.
f. The match angle, fuselage skin splice, and doubler must be riveted at the same time.
8. Refer to figure 95 for match angle repair.
h. The fuselage doubler splice should have a filler between it and the skin patch. Thus, for an .064 skin patch, and .020 filler should be used since the doubler is .081 .
i. Fillers in the region of the attach angle are used to bring the total thickness to approximately .094. In the case shown, .032 fillers together with the .064 patches give a thickness of .096 .
j. A formed .094 angle is spliced with 25 AN442 AD5 rivets for the attach angle repair.
k. Rivets inside the structure are type AN442, those through the skins are 671D-AD except those which go through the skin in the region of the hat sections. These are LS1127-6 Cherry blind rivets.

1. The floor is repaired in accordance with figure 86 and paragraph $6 b$ of this section.

9. MISCELLANEOUS.

a. Figure 93 shows a repair to the glider tow support, that has suffered a complete break.
b. Figure 94 shows a repair to the torque tube support in the aft end of the fuselage.
c. There are other miscellaneous items (such as the-frame for the navigation dome) not treated specifically in the text. These may be repaired in accordance with section IX.

NOTE,

1. REFER TO SECTION III, PARAGRAFH 7

AND TO FIGURE 92 FOR THE DOUBLER REPAIR PROCEDURE.

IEGEND

.016 पाँm
 .032 区. MTM .040 सापा]IIT .0648 .067 NESEy

TABLE 32
SIZES, LOCATIONS, AND SPLICES OF FUSELAGE DOUBlerS
(AIRPLANES UP TO AF44-78545)
VERTICAL DOUBEER LOCATIONS
(See Figures 91A and 92A)

Bulkhead Station	Extent of Doubler	Doubler Type	Bulkhead Station	Extent of Doubler	Doubler Type
Sta. 70.7	Str. 19-Floor	v	Sta. 399	Str. 10.Floor Line	H
	Str. 30-Str. 32	V		Floor Line-Str. 26	M
Sta. 88.5	Top Keel-Str. 14	U		Str. 26-Bottom Keel	E
	Floor Line-Str. 33	V		Top Keel-Str. 10	H
Sta. 107	Str. 28-Str. 30	V	Sta. 522	Floor Line-Str. 33	A
	Str. 9.Top Keel	v		Str. 11R-Str, 33R	A
Sta. 150.75	Str. 14-Str. 18	0	Sta. 542.5	Floor Line-Str. 33	A
Sta. 173.5	Str. 14-Str. 18	A			A
Sta. 194	Str. 14L-Str. 18L	A	Sta. 563	Floor Line-Str. 33L	A
	Str. 12R-Str. 20R	A			B
Sta. 214.5	Str. 13L-Str. 18L	A	Sta. 583.5	Floor Line-Str. 33	A
	Str. 12R-Str. 20R	A		Str. 10R-Str. 33R	B
Sta. 235	Str. 14L-Str. 18L	A	Sta. 597	Top Keel-Str. 9	C
	Str. 12R-Str. 20R	A		Str. 9-Str. 29	J
Sta. 255.5	Str. 14-Str. 20	A		Str. 29-Bottom Keel	C
Sta. 276	Top Keel-Floor Line	I	Sta. 615	Str. 13-Floor Line	A
	Floor Line-Str. 26	L	Sta. 633	Str. 14-Floor Line	A
	Str. 26-Bottom Keel	D	Sta. 651	Str. 14-Str. 20	A
Sta. 296.5	Top Keel-Str. 11	G	Sta. 669.5	Str. 14-Str. 20	A
	Str. 11-Floor Line	G	Sta. 688.5	Str. 14-Str. 20	A
Sta. 317	Top Keel-Str. 11	H	Sta. 782	Str. 12-Str. 16	W
	Str. 11-Floor Line	H		Str. 36-Bottom Keel	w
Sta. 378.5	Top Keel-Str. 10	H	Sta. 795	Str. 12-Str. 16	W
	Str. 10-Floor Line	H	Sta. 807	Str. 13-Str. 16	W
	Floor Line-Str. 34	F	Sta. 819	Str. 13-Str. 16	W
			Sta. 832	Str. 14-Str. 16	W

horizontal doubler locations

(See Figures 91A and 92A)

Location	Extent of Doubler	Doubler Type
Floor Line	Sta. 150-Sta. 276	K
	Sta. 317-Sta. 399	N
	Sta. 399-Sta. 704	K

TABLE 32 (Continued)
SIZES, LOCATIONS, AND SPLICES OF FUSELAGE DOUBLERS
(AIRPLANES UP TO NO. AF44-78545)
This table includes the types and locations of the various doublers. Because many of the doublers are dentical they are classified as types. The number and the type of rivets required for the splices of these respective types are given. It is necessary to maintain a minimum edge distance of two rivet diameters on all rivets.

$\begin{gathered} \text { Doubler } \\ \text { Type } \end{gathered}$	Gauge	Width	Number Rivet Rows	Total Number of Rivets Required Each Side of Break	Type of Rivets*
A	. 032	2	2	8	AN442AD-4
B	. 032	3	2	10	AN442AD-4
C	. 040	2	2	8	AN442AD. 5
D	. 040	2.20	1	8	AN442AD-5
E	. 040	2.32	1	8	AN442AD-5
F	. 040	3.20	4	12	AN442AD-5
G	. 040	3.30	4	12	AN442AD-5
H	. 040	4.16	4	16	AN442AD-5
I	. 040	4.26	4	16	AN442AD. 5
J	. 064	2	2	10	AN442AD.5
K	. 064	7.50	8	24	AN442AD-5
L	. 081	2.20	1	10	AN442AD-5
M	. 031	2.32	1	12	AN442AD-5
N	. 081	10.50	8	34	AN442AD-5
0	. 032	1.38	2	6	AN442AD-4
P	. 091	14			
Q	. 051	15			
R	. 051	42			
S	. 051	16			
T	. 051	17			
U	. 016	1.30	1	3	AN442AD-4
v	. 032	1.25	2	4	AN442AD-4
w	. 032	1.50	2	6	AN442AD-4
X	. 040	3	2	10	AN442AD-5

* Rivets may be 671D, or AN456 Rivets of the same size.
eXternal fuselage doublers in region of right hand jump door
(See Figures 91A, 92A, 229 and Refer to Section III, Paragraph 5. a.)

Location	Extent of Doubler	Doubler Type
Str. 9-Str. 12	Sta. 597-Sta. 516	P
Str. 12-Str. 19	Sta. 597-Sta. 583	Q
Str. 12-Str. 19	Sta. 542-Sta. 501.5	R
Str. 19-Floor Line	Sta. 597-Sta. 506	S
Floor Line-Str. 33	Sta. 597-Sta. 511	T

FIGUPE 92 - FUSELAGE DOUBLER REPAIR

FIGURE 93 - GLIDER TOW LONGERON AND JUMP DOOR STIFFENER

FIGURE 94 - EMPENNAGE TORQUE TUBE SUPPORT REPAIR

LEGEND TO FIGURE 95

1. FUSELAGE SKIN ABOVE FLOOR LINE
2. FUSELAGE SKIN BELOW FLOOR LINE
3. WING SKIN
4. WING SKIN PATCH-SAME GAGE AS SKIN24ST ALCLAD
5. FUSELAGE INSERT-24ST ALCLAD, SAME GAGE AS SKIN
6. FUSELAGE SKIN PATCH-24ST ALCLAD-SAME GAGE AS SKIN
7. FUSELAGE DOUBLER-. 081
8. FUSELAGE DOUBLER SPLICE . 08124 ST ALCLAD
9. FILLER PLATE BETWEEN DOUBLER SPLICE, 8, AND SKIN PATCH, 6, 24ST ALCLAD
10. WING-FUSELAGE ATTACH ANGLE
11. ATTACH ANGLE SPLICE-24SO ALCLAD, HEAT TREAT TO $56,000 \mathrm{LB} / \mathrm{SQ}$ IN. AFTER FORMING
12. FILLER PLATES BETWEEN ANGLE SPLICE
13. AND SKIN SPLICES-245T ALCLAD
14. MATCH ANGLE EXTRUSION L-29085
15.
16. SPLICE FOR MATCH ANGLE EXTRUSION-SEE FIGURE 28 17.
17. FLOOR SKIN
18. CLEANED UP AREA OF FUSELAGE
19. CLEANED UP AREA OF WING
20. WING AT STRINGER SPLICE, SEE FIGURE 107
21. FLOOR BEAM INSERT-SAME GAGE AS WEB
22. FLOOR BEAM SPLICE-24SO ALCLAD HEAT TREAT TO 56,000 LB/SQ IN. AFTER FORMING GAGE SAME AS WEB.
23. FLOOR BEAM BULB ANGLE UPPER-EXTRUSION ALCOA DIE NO. 29097
24. FLOOR BEAM BULB ANGLE SPLICE, UPPER. SEE FIGURE 232 FOR REPAIR
25. FLOOR BEAM BULB ANGLE, LOWER-EXTRUSION ALCOA DIE NO. 29097
26. FLOOR BEAM BULB ANGLE SPLICE, LOWER. SEE FIGURE 232 FOR REPAIR
27. ANGLE, SIMILAR TO ORIGINAL
28. BULKHEAD INSERT-FORM TO SAME CONTOUR AS ORIGINAL
29. BULKHEAD SPLICE-SAME AS ORIGINAL

LEGEND TO FIGURE 95

1. FUSELAGE SKIN ABOVE FLOOR LINE
2. FUSELAGE SKIN BELOW FLOOR LINE
3. WING SKIN
4. WING SKIN PATCH --SAME GAGE AS SKIN 24ST ALCLAD
5. FUSELAGE INSERT-24ST ALCLAD, SAME GAGE AS SKIN
6. FUSELAGE SKIN PATCH-24ST ALCLAD-SAME GAGE AS SKIN
7. FUSELAGE DOUBLER-.081
8. FUSELAGE DOUBLER SPIICE 08124 ST ALCLAD
9. FILLER PLATE BETWEEN DOUBLER SPLICE, 8, AND SKIN PATCH, 6, 24ST ALCLAD
10. WING-FUSELAGE ATTACH ANGLE
11. ATTACH ANGLE SPLICE-24SO ALCLAD, HEAT TREAT TO 56,000 LB/SQ IN. AFTER FORMING
12. filler plates between angle splice
13. AND SKIN SPLICES-24ST ALCLAD
14. MATCH ANGLE EXTRUSION L-29085
15.)
15. SPLICE FOR MATCH ANGLE EXTRUSION-SEE FIGURE 28
16.
17. FLOOR SKIN
18. CLEANED UP area of fuselage
19. CLEANED UP AREA OF WING
20. WING at Stringer splice, SEe figure 107
21. FLOOR BEAM INSERT-SAME GAGE AS WEB
22. FLOOR BEAM SPLICE-24SO ALCLAD HEAT TREAT TO 56,000 LB/SQ IN. AFTER FORMING GaGE SAME AS WEB.
23. FLOOR BEAM BULB ANGLE UPPER-EXTRUSION ALCOA DIE NO. 29097
24. FLOOR BEAM BULB ANGLE SPLICE, UPPER. SEE FIGURE 232 FOR REPAIR
25. FLOOR BEAM BULB ANGLE, LOWER-EXTRUSION ALCOA DIE NO. 29097
26. FLOOR BEAM BULB ANGLE SPLICE, LOWER. SEE FIGURE 232 FOR REPAIR
27. ANGLE, SIMILAR TO ORIGINAL
28. BULKHEAD INSERT-FORM TO SAME CONTOUR aS ORIGINAL
29. BULKHEAD SPLICE-SAME AS ORIGINAL

REFERENCE:
FIGURE 93 GLIDER TOW SUPPORT

FIGURE 2θ FLOOR MATCH EXTRUSGON REPAIR

FIGURE 27 UPPER CENTER AND LOWER KEEL EXTRUSION REPAIR

FIGURE 96 - SPECIAL FUSELAGE EXTRUSIONS SHEET 1 OF 2

NOTE: Where thickness varies along extrusion, this variation is uniform.

FIGURE 96 -SPECIAL FUSELAGE EXTRUSIONS SHEET 2 OF 2 Sheets

Spec. No.	Stock	Size
24 ST	Sheet, aluminum alclad	.020
24 ST	Sheet, aluminum alclad	.025
24 ST	Sheet, aluminum alclad	.032
24 ST	Shect, aluminum alclad	.036
24 ST	Sheet, aluminum alclad	.040
24 ST	Sheet, aluminum alclad	.051
24 ST	Sheet, aluminum alclad	.064
$24 S T$	Sheet, aluminum alclad	.081
24ST	Sheet, aluminum alclad	.091
AN426-AD3	Rivet, countersunk head	$3 / 32$
AN426-AD4	Rivet, countersunk head	$1 / 6$
AN426-AD5	Rivet, countersunk head	$5 / 3 / 8$
$671-D-4 A D$	Rivet, brazier head	$1 / 8$
$671-D-5 A D$	Rivet, brazier head	$5 / 32$
AN442-AD4	Rivet, flathead	$1 / 8$
AN442-AD5	Rivet, flathead	$5 / 32$
AN442-AD6	Rivet, flathead	$3 / 15$
LS1127-4	Blind rivet, cherry	$1 / 8$
LS1127-5	Blind rivet, cherry	$5 / 32$
AN525-10	Screw washer head	
AN365-1032	Nut	
AN960-10	Washer	

FUSELAGE EXTRUSION LIST

$78-\mathrm{A}$	$77-\mathrm{A}$	15262	29083	29096	29107
$78 \cdot \mathrm{~F}$	$77-\mathrm{Q}$	15276	29084	29097	29193
$78-\mathrm{K}$	472	4200	29085	29102	3094
$78-\mathrm{M}$	5263	12224	29088	29103	29387
$78-\mathrm{U}$	1288	14256	29092	29105	29388

SECTION IV
 LANDING GEAR REPAIR

J. GENERAL.

The landing gear on the C. 46 series airplane is a fully retractable, hydraulically operated conventional type installation. The main gear consists of two separate but identical left and right components, each equipped with an air-oil shock strut and mounted in the engine nacelle. The oleo struts are braced fore and aft by tubular drag struts which are aligned by forged upper and lower drag links. Extension and retraction are accomplished by hydraulic struts which actuate the linkage system. Latches lock the landing gear units in the retracted or extended position. Hydraulically operated fairing doors installed at the bottom of each nacelle fully enclose the landing gear in the retracted position. On airplanes AF44-78345 and subsequent, the landing gear doors are operated by mechanical linkage. The tail wheel assembly incorporates a swiveling shimmy-dampened shock strut suspended by a linkage mechanism. Two mechanically operated fairing doors completely enclose the retracted gear.

2. NEGLIGIBLE DAMAGE.

Due to unpredictable loading conditions applied to the landing gear, there is no basis upon which to design repairs that will guarantee maintenance of the original strength. All components are highly stressed and are heat treated to tensile strengths as high as 190,000 pounds per square inch, prohibiting subsequent welding.

Damage which in a certain area might be considered negligible under certain conditions might, in case of a change in those conditions, (cargo overload, poor runways) lead to failure. In brief, no damage may be considered negligible.

3. MINOR REPAIRS.

a. ABRASION.-Abrasions or fine scratches caused by sand or grit on surfaces subject to friction may be removed by the following method. Smear the surface with a fine grade of diluted lapping compound. Initial lapping may be done with Clover A, diluted in the ratio of two parts of kerosene to one
part of compound followed by Clover 2A similarly diluted for finish lapping. The lapping may be accomplished by use of a soft cloth wrapped once around the member and pulled alternately at the ends causing the cloth to rotate. When the lapping has been completed, remove the compound and polish with crocus cloth and oil. This operation may be used on shock strut and retracting strut cylinders to prevent deeper scoring, but must not reduce the diameter of the member by more than three onethousandths of an inch. Care must be exercised to prevent out of roundness. Dust covers should be kept in position and in good repair.
b. NICKS AND DENTS.-Repair of landing gear forgings or tubular structure is not recommended. Repair suggestions are given on the basis that, if the airplane MUST be flown with any landing gear damage, it is better that the resultant stresses be reduced by some degree than allowed to exist. These suggestions are not to be construed as repairs of more than emergency nature. Further use of the repaired airplane will be at the discretion of the officer in charge on the basis of frequent inspection.
(1) Nicks and dents may be relieved by careful filing and polishing. The abrupt change in contour at the edge of a dent must be removed by filing or scraping to attain a smooth filletting. The area should then be polished with a fine grade of emery cloth.
(2) To insure that no crack exists which would further weaken the structure, the following method of crack detection should be employed. Coat the area thinly with paraffin and allow it to dry thoroughly. The application of a whiting water or whiting methylated spirit paste to the paraffin surface will, on drying, show the presence of a crack by a discolored mark. If these materials are not available, clear varnish or other transparent solution should be applied after cleaning as an aid in detecting any subsequent development of the discontinuity.
(3) Marking dimensions on repair stock or on new part replacements should be done with crayon or pencil rather than a scriber, as the scratches may develop into cracks when subjected to vibration.

TABLE 34

COMPONENT PARTS OF LANDING GEAR

Axle
Axle Elbow
Fork Tube
Top Socket
Oleo Strut Assembly
Torque Arms Assembly
Lower Drag Link Assembly
Inboard Side Brace Strut Assembly
Outboard Side Brace Strut Assembly
Rear Drag Strut Assembly
Upper Drag Link Assembly

20-311-1000-4
20-311-1000-4
20-311-1000-4
20-311-1000-4
20-311-1000-4
20-311-1000-4
20-310-1024-1
20-310-1029-1
20-310-1028-1
20-310-1017-1
20-310-1015-1

FIGURE 98 - TAIL WHEEL ASSEMBLY

TABLE 35
COMPONENT PARTS OF TAIL WHEEL

1
2
3
4
5

Pin
Link
Axle
Pin
Shock Strut
Knuckle
Front Support
Caster Spindle
Disc
Damper
Rear Support
Retracting Strut
Pin
Socket
Strut
Hinge
Hinge
Strut
Clevis

20-360-1078-1
20-360-1011-1
20-360-1042-2
20-360-1077-2
20-361-1000-1
20-360-1063-1
20-360-1041-1
20-360-1055-2
20-360-1127-1
20-360-1168-1
20-360-1040-1
20-363-1000-1
20-360-1070-1
20-360-1061-1
20-360-1064-1
20-360-1025-2
20-360-1049-2
20-360-1065-1
20-360-1044-1

SECTION V

WING REPAIR

1. GENERAL.

The wing consists of the following assemblies which are bolted together at station 192 (inches from center line of airplane) and at station 412 (inches from station 192) as shown in figures 1 and 2.

2. CENTER AND OUTER PANELS.

CENTER PANEL.-The center panel, extending 192 inches either side of the airplane center line, is of constant section throughout with no dihedral or twist. It is composed of three spars (front, 30 percent and 70 percent), diagonally trussed ribs, and hat section stringers. The metal skin is of highly stressed aluminum alloy construction. The wing-fuselage attachment is effected by upper and lower attach angles and fittings on each of the three beams. (See figure 95).

OUTER PANEL.-The outer panels extending from station 192 to 412 are of varying section and have both dihedral and twist built into them. Only the 30 percent and 70 percent spars continue into the outer panel. The ribs are of two types: those in the region of the fuel tanks have large reinforced cut-outs to receive the tanks; and those outboard have full bulkheads with flanged lightening holes. The hat section stringers and the skin are similar in design to those of the center panel. A bolted attachment to the center panel is made by match angles around the contour of the wing. (See figure 157).
a. SKIN.
(1) GENERAL.-The wing skins are supported by the spars and spanwise stiffeners. Figures 103, 104 and 105 show the various wing skins and stringers. The riveting for all skin splices is given in table 38. No attempt is made to maintain a flush surface except in the nose region forward of the 30 percent spar. Aft of this flush portion of the wing, skins are lapped and brazier head rivets are used. On the flush portion, the skins are lapped in a chordwise direction and buttjoined spanwise, attachments being made with 100 degree countersunk rivets. Rivets used for repair should be, as far as possible, of the same type as those used in the surrounding region. In many cases, however, in order to eliminate the construction of access doors, brazier head Cherry blind rivets are used.
(a) Between beams, the stringers are so close together that any appreciable damage to the skin will also affect the stringers. Therefore, such repairs should be combined with stringer repairs.
(b) In general, all patches and splices are made on the outside of the skin. In certain regions, this is not possible. In such cases, at the panel ends and at the fuselage, modifications are made as shown in figures 95 and 157. Alternate spar cap repairs designed to avoid interference of repair material with outside contour are shown in figures 119A, 122A and 122B.
(c) Semi-structural doors may be formed in the wing skin to facilitate repair to both the skin and the stringers. Such a door is shown in figure 99. This requires a frame around the hole. The frame is cut so that its inside dimensions are . 44 inch greater all around than the skin cut-out and is placed on the outer surface of the wing. For a center panel access door, the spanwise width of the frame should be equal to $1 / 2$ the width of the hole; and the chordwise width should be such as to take the required number of rivets given in table 38. The outer panel access door frames will have a spanwise width the same as above. The chordwise width should be sufficient to take three rows of rivets. The gage of the frame is given in table 36. Self-locking anchor nut plates at approximately three inch spacing, are attached to the underside of the skin between the edge of the sheet and the edge of the frame. These nut plates are attached with

TABLE 36
SEMI-STRUCTURAL DOOR FRAME GAGES

Gage of Skin	Gage of Frame
.020	.032
.025	.032
.032	.040
.036	.051
.040	.051
.045	.064
.051	.064
.064	.081
.072	.081

AN426AD3 rivets which require countersinking of the skin. See section I, paragraph 10, for countersink riveting procedure. When dimpling is used, the nut plate spacer $1088-\mathrm{D}-2$ should be placed between the skin and the nut plate. Use 1179-D-2 nut plates. The washer head type of bolt AN525-10 which is not countersunk, fastens the door to the skin. The door itself is an unreinforced sheet of the same gage as the frame. The maximum width of cut-out is the distance between three adjacent stringers as shown

NOTES:

1. SEE TABLE 38 FOR REQUIRED NUMBER OF RIVETS FOR SPANWISE AND CHORDWISE SPLICES
2. SEE TABLE 36 FOR FRAME AND DOOR GAGE.
3. FOR REPAIR TO STRINGER, SEE FIGURE 107
4. THE RIVET PATTERN SHOWN IS THAT FOR THE CENTER PANEL USING SOLID RIVETS. CHERRY BLIND RIVETS, LS1127, MAY BE USED PROVIDED THE NEXT LARGER SIZE IS USED AND AN EXTRA ROW IS ADDED IN THE CHORDWISE DIRECTION. OUTER PANEL RIVET PATTERN IS SIMILAR EXCEPT FOR RIVETS BETWEEN STRINGERS. MAINTAIN EQUAL SPACING OF RIVETS AT APPROXIMATELY THAT GIVEN IN TABLE 38.

FIGURE 99 -SEMI-STRUCTURAL DOOR-WING SKIN

FIGURE 100 - WING CENTER PANEL STRUCTURE

figure 101-CROSS-SECTION OF WING-CENTER PANEL

AN Oi-25LA-3
TABLE 37
COMPONENT PARTS OF WING OUTER PANEL

Item	Designation	Station No.	Part No.
1.	Tank Rib Assembly	22	20-030-455
2.	Tank Rib Assembly	52	20-030-456
3.	Tank Rib Assembly	82	20-030-457
4.	Tank Rib Assembly	112	20-030-458
5.	Rib Assembly	142	20-030-459
6.	Rib Assembly	172	20-030-460
7.	Rib Assembly	202	20-030-461
8.	Rib Assembly	232	20-030-462
9.	Rib Assembly	262	20-030-463
10.	Rib Assembly	292	20-030-464
11.	Rib Assembly	322	20-030-465
12.	Rib Assembly	352	20-030-466
13.	Rib Assembly	382	20-030-467
14.	Rib Assembly	412	20-030-487
15.	Nose Rib	22	20-030-622
15A.	Nose Rib	22	20-030-609
16.	Nose Rib	52	20-030-623
16 A .	Nose Rib	52	20-030-610
17.	Nose Rib	82	20-030.624
17A.	Nose Rib	82	20-030-611
18.	Nose Rib	112	20-030-625
18A.	Nose Rib	112	20-030-612
19.	Nose Rib	142	20-030-626
19A.	Nose Rib	142	20-030-613
20.	Nose Rib	172	20-030-627
20A.	Nose Rib	172	20-030-614
21.	Nose Rib	202	20-030-628
21 A .	Nose Rib	202	20-030-615
22.	Nose Rib	232	20-030-629
22A.	Nose Rib	232	20-030-616
23.	Nose Rib	262	20-030-630
23A.	Nose Rib	262	20-030-617
24.	Nose Rib	292	20-030-631
24A.	Nose Rib	292	20-030-618
25.	Nose Rib	322	20-030-632
25 A .	Nose Rib	322	20-030-619
26.	Nose Rib	352	20-030-633
26A.	Nose Rib	352	20-030-620
27.	Nose Rib	382	20-030-634
27A.	Nose Rib	382	20-030-621
28.	Intermediate Nose Rib	11	20-030-500
29.	Intermediate Nose Rib	37	20-030-500
30.	Intermediate Nose Rib	67	20-030-500
31.	Intermediate Nose Rib	97	20-030-593
32.	Intermediate Nose Rib	127	20-030-500

Revised 15 January 1945

TABLE 37 (CONTINUED) COMPONENT PARTS OF WING OUTER PANEL

Item	Designation	Station No.	Part No.
33.	Intermediate Nose Rib	157	20-030-592
34.	Intermediate Nose Rib	187	20-030-500
35.	Intermediate Nose Rib	217	20-030-500
36.	Intermediate Nose Rib	247	20-030-500
37.	Intermediate Nose Rib	277	20-030-500
38.	Intermediate Nose Rib	307	20-030-500
39.	Intermediate Nose Rib	337	20-030-500
40.	Intermediate Nose Rib	367	20-030-500
41.	Intermediate Nose Rib	397	20-030-500
42.	Closure Rib	382	20-030-522
43.	Closure Rib	352	20-030-516
44.	Closure Rib	322	20-030-515
45.	Closure Rib	292	20-030-514
46.	Closure Rib	262	20-030-513
47.	Closure Rib	232	20-030-512
48.	Closure Rib	202	20-030-511
49.	Closure Rib	172	20-030-510
50.	Closure Rib	148.95	20-030-584
51.	Closure Rib	137.75	20-030-509
52.	Closure Rib	112	20-030-508
53.	Closure Rib	82	20-030-507
54.	Closure Rib	52	20-030-506
55.	Closure Rib	26.25	20-030-505
56.	Closure Rib	14.40	20-030-584
57.	Closure Rib	0	20-030-554
58.	$\mathbf{3 0 \%} \text { Spar }$		20-030-410
59.	70% Spar		$20-030-411$
60.	Stringer Hat Section (Typical)		SS112 \& SS113

in figure 105. These doors should not be used on the leading edge forward of the front spar on the center panel or the front spar extension on the outer panel.
(2) NEGLIGIBLE DAMAGE.
(a) SKIN DENTS.-Skin dents, free from cracks, abrasions, and sharp corners may be neglected. These dents should be restored to shape wherever possible to prevent their developing into cracks. Care must be taken, however, not to stretch or crack the skin in the process. Inspect all rivets near the damage to see that they have not been loosened or sheared.
(b) HOLES AND CRACKS.-Holes and cracks which can be cleaned up to a $3 / 4$ inch diameter circle may be considered negligible if:

1. Occurring in a sheet of 040 or lighter.
2. Edge of hole is at least 1 inch from any rivet or cut-out.
3. Occurring at least 2 inches from any skin splice rivet.
4. Not closer than 10 inches chordwise or 5 inches spanwise to another such hole.
5. Negligible holes must be cleaned up to prevent the spread of cracks and should be patched with a sheet of .020 gage and attached with four LS1127-4 rivets spaced equally around the hole. See figure 106.
(3) DAMAGE REPAIRABLE BY PATCH-ING.-Damage not considered negligible may in general be cleaned up and patched by placing a 24 ST alclad sheet of the same gage as the skin on the outer surface, using the required number of rivets and rivet spacing as given in table 38. Fillers of a gage equal to that of original skin in this region should be placed between the patch and any stringers over which the patch lies. Such a repair is shown in figure 107. In the region of flush riveting on the nose, patches must lie on the inner surface of the skin provided the patch can be made in a region between ribs and stringers. For aerodynamic reasons, the damaged skin which was

WING SKIN RIVETING
CHORDWISE SKIN CONNECTIONS—OUTER PANEL

Location	Extent	Gage of Inb'd	Gage of Outb'd	Type of Rivet	Rivet Spacing	Rivet Rows	Rivet Row Spacing
Sta. 112-Nose Section	Str. U-18 to Str. L-14	. 040	. 036	AN426AD	. 12	3	. 75
Sta. 262-Nose Section	Str. U-18 to Str. L-14	. 036	. 032	AN426AD	. 90	3	. 75
Sta. 202-Top	Str. U-18 to Str. U-15	. 040	. 032	AN426AD	. 68	3	. 75
Sta. 202-Top	Str. U-15 to 30\% Spar	. 045	. 036	AN426AD	. 66	2	. 74
Sta. 202-Top	30\% Spar to Str. U-6	. 045	. 036	671D	. 70	2	. 74
Sta. 202-Top	Str. U-6 to Str. U-4	. 040	. 036	671 D	. 70	2	. 74
Sta. 202-Top	Str. U-4 to 70\% Spar	. 040	. 032	671 D	. 70	2	. 74
Sta. 172-Top	70\% Spar to T.E.	. 032	. 032	671 D	. 50	1	-.
Sta. 292-Top	70\% Spar to T.E.	. 032	. 028	671 D	. 50	1	--
Sta. 112-Bottom	Str. L-14 to Str. L-9	. 040	. 036	AN426AD	. 90	3	. 75
Sta. 232-Bottom	Str. L-14 to Str. L-9	. 036	. 032	AN426AD	1.00	3	. 75
Sta. 172-Bottom	Str. L-9 to 30\% Spar	. 051	. 040	AN426AD	. 66	2	. 52
Sta. 292-Bottom	Str. L-9 to 30\% Spar	. 040	. 032	AN426AD	. 70	2	. 60
Sta. 112-Bottom	30\% Spar to Str. L-4	. 051	. 040	671 D	. 80	3	. 75
Sta. 262-Bottom	30\% Spar to Str. L-4	. 040	. 028	671 D	. 54	2	. 60
Sta. 142-Bottom	Str. L-4 to Str. L-2	. 040	. 036	AN426AD	. 60	2	. 75
Sta. 262-Bottom	Str. L-4 to Str. L-2	. 036	. 028	AN426AD	. 50	2	. 65
Sta. 112-Bottom	Str. L-2 to 70% Spar	. 032	. 032	AN426AD	. 50	2	. 70
Sta. 232-Bottom	Str. L-2 to 70% Spar	. 032	. 028	AN426AD	. 60	2	. 65
Sta. 172-Bottom	70% Spar to T.E.	. 032	. 032	AN426AD	. 50	1	--
Sta. 292-Bottom	70% Spar to T.E.	. 032	. 028	AN426AD	. 50	1	- -

CHORDWISE SKIN CONNECTIONS—CENTER PANEL

Location	Extent	Gage of Inb'd	Gage of Outb'd	Type of Rivet	Rivet Spacing	Rivet Rows	Rivet Row Spacing
Sta. 41.5-Top	F. Spar to Str. 9	. 051	. 064	AN442AD-5	1.15	4	. 32
Sta. 41.5-Top	Str. 9 to Str. 4	. 051	. 051	AN442AD-5	1.15	4	. 32
Sta. 41.5-Top	Str. 4 to 70% Spar	. 051	. 064	AN442AD-5	1.15	4	. 32
Sta. 32 -Bottom	F. Spar to Str. 9	. 051	. 064	AN442AD-5	. 75	4	. 32
Sta. 25.5-Bottom	Str. 9 to Str. 4	. 051	. 064	AN442AD-5	. 75	4	. 32
Sta. 25.5-Bottom	Str. 4 to 70\% Spar	. 051	. 064	AN442AD-5	. 75	4	. 32

TABLE 38 (Continued) WING SKIN RIVETING SPANWISE SKIN CONNECTIONS-OUTER PANEL

Location	Exterit	Gage of $F w^{\prime} d$	Gage of Aft	Type of Rivet	Rivet Spacing	Rivet Rows	Rivet Row Spacing
Str. U-18-Top	Sta. 0 to Sta. 112	. 040	***	AN426AD	. 90	2	. 23
Str. U-18-Top	Sta. 112 to Sta. 262	. 036	---	AN426AD	. 90	2	. 23
Str. U-18-Top	Sta. 262 to Sta. 412	. 032	---	AN426AD	1.00	2	. 23
Str. U-18-Top	Sta. 0 to Sta. 202	---	. 040	AN426AD	1.00	2	. 23
Str. U-18-Top	Sta. 202 to Sta. 412	---	. 032	AN426AD	1.50	2	. 23
Str. U-15-Top	Sta. 0 to Sta. 202	. 040	---	AN426AD	1.00	2	. 40
Str. U-15-Top	Sta. 202 to Sta. 412	. 032	---	AN426AD	1.25	2	. 20
Str. U-15-Top	Sta. 0 to Sta. 202	---	. 045	AN426AD	1.00	2	. 40
Str. U-15-Top	Sta. 202 to Sta. 412	--7	. 036	AN426AD	1.00	2	. 20
30\% Spar-Top	Sta. 0 to Sta. 202	. 045	---	AN426AD	1.00	2	. 36
30\% Spar-Top	Sta. 202 to Sta. 412	. 036	-*	AN426AD	1.20	2	. 36
30\% Spar-Top	Sta. 0 to Sta. 202	---	. 045	671 D	1.00	2	. 36
30\% Spar-Top	Sta. 202 to Sta. 412	---	. 036	671 D	1.25	2	. 36
Str. U-6-Top	Sta. 0 to Sta. 202	. 045	. 040	671 D	1.00	2	. 70
Str. U-4-Top	Sta. 0 to Sta. 202	. 040	. 040	671 D	1.00	2	. 70
Str. U-4-Top	Sta. 202 to Sta. 412	. 036	. 032	671 D	1.00	1	--
70\% Spar-Top	Sta. 0 to Sta. 202	. 040	---	671 D	1.25	2	. 54
70\% Spar-Top	Sta. 202 to Sta. 412	. 032	--	671 D	1.25	2	. 54
70\% Spar-Top	Sta. 0 to Sta. 172	---	. 032	671 D	1.25	2	. 60
70\% Spar-Top	Sta. 172 to Sta. 292	---	. 032	671 D	1.25	2	. 60
70\% Spar-Top	Sta. 292 to Sta. 412	---	. 028	671 D	1.25	2	. 60
Str. L-14-Bottom	Sta. 0 to Sta. 112	. 040	---	AN426AD	. 90	2	. 23
Str. L-14-Bottom	Sta. 112 to Sta. 262	. 036	---	AN426AD	. 90	2	. 23
Str. L-14-Bottom	Sta. 262 to Sta. 412	. 032	---	AN426AD	1.00	2	. 23
Str. L-14-Bottom	Sta. 0 to Sta. 112	---	. 040	AN426AD	1.10	2	. 23
Str. L-14-Bottom	Sta. 112 to Sta. 232	---	. 036	AN426AD	1.10	2	. 23
Str. L-14-Bottom	Sta. 232 to Sta. 412	\cdots	. 032	AN426AD	1.52	2	. 23
Str. L-9.Bottom	Sta. 0 to Sta. 112	. 040	---	AN426AD	1.25	2	. 40
Str. L-9-Bottom	Sta. 112 to Sta. 232	. 036	---	AN426AD	1.50	2	. 40
Str. L-9-Bottom	Sta. 232 to Sta. 412	. 032	-*-	AN426AD	1.50	2	. 20
Str. L-9-Bottom	Sta. 0 to Sta. 172	---	. 051	AN426AD	1.00	2	. 40
Str. L-9-Bottom	Sta. 172 to Sta. 292	---	. 040	NA426AD	1.25	2	. 40
Str. L-9-Bottom	Sta. 292 to Sta. 412	---	. 032	AN426AD	1.25	2	. 20
30\% Spar-Bottom	Sta. 0 to Sta. 172	. 051	---	AN426AD	1.00	2	. 35
30\% Spar-Bottom	Sta. 172 to Sta. 292	. 040	-..	AN426AD	1.25	2	. 35
30\% Spar-Bottom	Sta. 292 to Sta. 412	. 032	---	AN426AD	1.25	2	. 35
30\% Spar-Bottom	Sta. 0 to Sta. 112 051	671 D	1.00	2	. 35
30\% Spar-Bottom	Sta. 112 to Sta. 262	---	. 040	671 D	1.25	2	. 35
30\% Spar-Bottom	Sta. 262 to Sta. 412	---	. 028	671 D	1.25	2	. 45
Str. L-4-Bottorn	Sta. 0 to Sta. 112	. 051	. 040	671 D	. 62	1	--
Str. L-4-Bottom	Sta. 112 to Sta. 262	. 040	. 036	6710	. 75	1	--
Str. L-2-Bottom	Star. 0 to Sta. 142	. 040	. 032	671 D	. 62	1	--
Str. L-2-Bottom	Sta. 142 to Sta. 262	. 036	. 032	671 D	. 62	1	--
Str. L-2-Bottom	Sta. 262 to Sta. 412	. 028	. 028	671 D	. 75	1	--
70\% Spar-Bottom	Sta. 0 to Sta. 112	. 032	---	671 D	1.25	2	. 58
70\% Spar-Bottom	Sta. 112 to Sta. 232	. 032	---	671 D	1.25	2	. 58
70\% Spar-Bottom	Sta. 232 to Sta. 412	. 028	---	671 D	1.50	2	. 58
70\% Spar-Bottom	Sta. 0 to Sta. 172	***	. 032	671 D	1.25	2	. 60
70% Spar-Bottom	Sta. 172 to Sta. 292	---	. 032	671 D	1.50	2	. 60
70\% Spar-Bottom	Sta. 292 to Sta. 412	---	. 028	671 D	1.50	2	. 60

TABLE 38 (Continued)
WING SKIN RIVETING
SPANWISE SKIN CONNECTIONS-CENTER PANEL

Location	Extent	$F w^{\prime}{ }^{\text {d }}$	Aft	Type of Rivet	Rivet Spacing	Rivet Rows	Rivet Row Spacing
Str. U-17-Top	Sta. 57.2 to Sta. 124	. 040	---	AN426AD	1.20	2	. 25
Str. U-17-Top	Sta. 57.2 to Sta. 124	---	. 036	AN426AD	1.20	2	. 25
F. Spar-Top	Sta. 57.2 to Sta. 140	. 036	---	AN426AD	. 80	1	--
F. Spar-Top	Sta. 169 to Sta. 192	. 040	---	AN426AD	1.00	1	
F. Spar-Top	Sta. 0 to Sta. 41.5	---	. 051	AN442AD	. 60	3	. 30
F. Spar-Top	Sta. 41.5 to Sta. 192	---	. 064	AN426AD	1.00	3	. 30
Str. U-9-Top	Sta. 0 to Sta. 41.5	. 051	. 051	AN442AD	1.00	2	. 40
Str. U-9-Top	Sta. 41.5 to Sta. 192	. 064	. 051	671D	. 75	2	. 40
Str. U-4-Top	Sta. 0 to Sta. 41.5	. 051	. 051	AN442AD	1.00	2	. 70
Str. U-4-Top	Sta. 41.5 to Sta. 192	. 051	. 064	671D	. 75	2	. 70
70% Spar-Top	Sta. 0 to Sta. 41.5	. 051	---	AN442AD	1.00	3	. 60
70\% Spar-Top	Sta. 41.5 to Sta. 57	. 064	--.	671 D	1.15	3	. 60
70\% Spar-Top	Sta. 57 to Sta. 192	. 064	. 025	671 D	1.00	3	. 60
Str. L-15-Bottom	Sta. 57.2 to Sta. 124	. 040	---	AN426AD	1.20	2	. 25
Str. L-15-Bottom	Sta. 57.2 to Sta. 124	---	. 036	AN426AD	1.20	2	. 25
F. Spar-Bottom	Sta. 57.2 to Sta. 124	. 036	---	AN426AD	. 80	,	--
F. Spar-Bottom	Sta. 184 to Sta. 192	. 040	---	AN426AD	1.00	1	--
F. Spar-Bottom	Sta. 0 to Sta. 32	---	. 051	AN426AD	1.00	3	. 75
F. Spar-Bottom	Sta. 32 to Sta. 192	---	. 064	AN442AD and AN426AD	1.00	3	. 75
Str. L-9-Bottom	Sta. 0 to Sta. 32	. 051	. 051	AN442AD	. 75	2	. 65
Str. L-9-Bottom	Sta. 32 to Sta. 192	. 064	. 064	AN442AD and 671D	. 75	2	. 65
Str. L-4-Bottom	Sta. 0 to Sta. 25.5	. 051	. 051	AN442AD	. 75	2	. 65
Str. L-4-Bottom	Sta. 25.5 to Sta. 192	. 064	. 064	AN442AD and 671D	. 75	2	. 65
70\% Spar-Bottom	Sta. 0 to Sta. 25.5	. 051	- .-	AN442AD	1.00	3	. 60
70\% Spar-Bottom	Sta. 25.5 to Sta. 57	. 064	---	AN442AD	1.00	3	. 60
70\% Spar-Bottom	Sta. 57 to Sta. 192	. 064	. 032	AN442AD	1.00	3	. 60

TABLE 39 (See figure 100) COMPONENT PARTS OF WING CENTER PANEL

Item	Designation	Station	Part No.	Ref. Fig. No.
1	Rib Assembly	178.5	20-020-1065-2L/R	131-137
2	Rib Assembly	155.5	20-020-1073-2L/R	131-137
3	Rib Assembly	132.5	20-020-1065-3L/R	131-137
4	Rib Assembly	107.5	20-020-1008-2L/R	131.137
5	Rib Assembly	82.5	20-020-1061-2L/R	131-137
6	Rib Assembly	Canted	20-020-1068-2L/R	131-137
7	Rib Assembly	41.5	20-020-1060-2L/R	131-137
8	Rib Assembly	25.5	20-020-1059-2L/R	131-137
9	Rib Assembly	9.5	20-020-1060-4L/R	131-137
10	Nose Rib	124.0	20-020-1020-2L/R	150-154
11	Nose Rib	115.75	20-020-1021-1L/R	150-154
12	Nose Rib	107.5	20-020-1020-7L/R	150-154
13	Nose Rib	95.0	20-020-1020-8L/R	150-154
14	Nose Rib	82.5	20-020-1020-7L/R	150-154
15	Nose Rib	70.75	20-020-1180-1L/R	150-154
16	Nose Rib	57.22	20-020-1020-6L/R	150-154
17	Closure Rib	185.95	20-020-1128-11L/R	156
18	Closure Rib	174.25	20-020-1134-1L/R	156
19	Closure Rib	155.5	20-020-1128-9L/R	156
20	Closure Rib	132.5	20-020-1128.7L/R	156
21	Closure Rib	107.5	20-020-1128-2L/R	156
22	Closure Rib	86.75	20-020-1126-1L/R	156
23	Closure Rib	70.75	20-020-1128-5L/R	156
24	Stringer		L29097	88
25	Closure Rib	190.8	20-020-3042-1L/R	156
26	Floor Beam Flange		L29102	95
27	Floor Beam Flange		L29103	95
28	Front Spar		20-020-1005	119
29	30\% Spar		20-020-1004	120
30	70\% Spar		20-020-1006	121

FIGURE 106-COVER PLATE FOR NEGLIGIBLE DAMAGE
cleaned away should be replaced with a filler sheet to preserve the original contour. See figure 110. Existing rivets which interfere with the attachment of a patch should be carefully drilled out and the resulting holes used in arranging the new required rivet pattern.
(4) DAMAGE REPAIRABLE BY INSERTION.
(a) SPECIAL REPAIRS.-Damages to areas which cannot effectively be patched due either to their extent or their location may be repaired by the use of inserts. The required insert should be cut from 24ST alclad stock of the same gage as the skin. The insert should be sufficiently large to extend to the edges of the damaged sheet or to areas in which the necessary splice plates or frames may be used and its corners should be rounded off to a half inch or larger radius. (See figures 95 and 157). Use the insert as a template in cutting away the damaged material. Make up the necessary splice plates or frames and rivet
these to the skin using the data in figure 105.
(b) LOCATION OF SPECIAL REPAIRS. -Such inserts are to be used in the region of the wing splice, the wing fuselage intersection, under the cabin floor and the flush portion of the wing nose. The splice plates or frames are of the same gage as the skin. Spanwise splice plates should be placed on the inner surface of the skin at all times. Chordwise plates, except on the flush portion of the nose, may be either on the inner or outer surface depending on the relative ease of installation. In the nose section, the chordwise splice plates are on the inner surface of the skin and are made discontinuous at the stringers. (See figure 110).

Although large areas other than those in the preceding paragraph, may be repaired by patching as discussed in paragraph 2., a., (3) above, inserts may also be used if the cleaned up damage is greater than 15 inches spanwise and 12 inches chordwise.
 LSI127 MAY BE USED INSTEAD PROVIDED the next larger size is used. outer panel rivet pattern is simlar
EXCEPTFOR RIVETS BETWEEN STRINGERS.
maintain equal spacing of rivets at approximately that given in table 38

FIGURE 107 -HAT SECTION REPAIR AND SKIN PATCH

Section \mathbf{V}

TABLE 40
STANDARD HAT SECTION STRINGERS

Dash No.	$\begin{aligned} & \text { Thickness } \\ & T \end{aligned}$	SS112 Developed Width	SSII3 Developed Width	Bend Rad. R_{1}	$\begin{gathered} \text { SSII2 } \\ C \end{gathered}$	$\begin{aligned} & \text { SS113 } \\ & C \end{aligned}$
25	. 025	5.062	6.500	. $050 \pm .015$. 224	. 265
32	. 032	5.062	6.500	. $064 \pm .015$. 255	. 297
40	. 040	5.062	6.500	$.080 \pm .015$. 283	. 329
51	. 051	5.062	6.500	. $102 \pm .015$. 326	. 376
64	. 064	5.062	6.500	. $128 \pm .015$. 377	. 423
72	. 072	5.062	6.500	. $144 \pm .015$. 408	. 455

FIGURE 108-_STANDARD WING HAT SECTION STRINGERS

FIGURE 109 - REPAIR AT SKIN INTERSECTION — LOWER CENTER PANEL

(c) TYPE OF ATTACHING RIVETS. All splice plates placed on the inner surface of the skin should be attached with either $671-\mathrm{D}$ or AN426 rivets depending on the region of the skin being refaired. Inner surface chordwise plates should be attached with the same type of rivets. The insert Froper and outer surface chordwise plates should be attached with LS-1127 Cherry blind rivets unless the damage can be reached from an existing hole in the Wring, in which case standard rivets should be used.
(5) DAMAGE NECESSITATING RE-PLACEMENT.-Damaged reinforcing plates and gussets except those in figure 157 should be replaced.

Use care in drilling out existing rivets and use new rivets of the same type and size.

b. STRINGERS.

(1) GENERAL.-There are several types of \$tringers used in reinforcing the wing skin. Those between spars are all of a curved hat cross-section as shown in figure 108. In the nose and trailing edge portions of the wing, bulb angle extrusions are used almost exclusively. The only deviation from this is the front spar extension and the de-icer tee (both in
the outer panel) which are bulb tee-section extrusions. All center panel stringers are continuous for the entire length, whereas some outer panel stringers are spliced.

(2) HAT SECTION STRINGERS.

(a) NEGLIGIBLE DAMAGE.-Small isolated dents, free from cracks, abrasions, and sharp corners, may be neglected provided no two adjacent stringers are damaged at the same chordwise station and that the skin to which the stringers are attached is not affected.

Holes, which when cleaned up to a maximum diameter of .38 inch and which are a minimum of .5 inch from any flange, may be neglected. Such holes should not occur within 10 inches of each other.
(b) DAMAGE REPAIRABLE BY PATCHING.

1. Damage covering a greater area than that specified above must be patched. Figure 107 gives the required splice and the accompanying table (table 41) contains the necessary gage, riveting, etc., for full strength patches.

TABIE 41-WING STRINGER SPLICES

Stringer No.	Gage	No. Solid Rivets Required Each Side of Splice			No. Cherry Blind Rivets Requir Each Side of Break	
		1/8	5/32	3/16	LS1127-5	LS1127-6
SS.112-25	. 025	28	23		37	32
SS.112.32	. 032	30	23	19	38	32
SS-112-40	. 040	35	23	19	38	32
SS-112-51	. 051	44	28	20	40	33
SS-112-64	. 064	55	35	25	42	34
SS-112-72	. 072	-	40	28	44	35
SS-113-25	. 025	36	29	-	48	41
SS-113-32	. 032	36	29	19	48	41
SS-113-40	. 040	44	29	19	49	41
SS-113-51	. 051	56	36	25	50	42
SS-113-64	. 064	70	45	32	53	43
SS-113-72	. 072	79	51	36	56	44

Wote: To Locate Stringer Number, See Figure 103-105.
2. The damaged area is cleaned up with . 5 inch minimum corner radii. If the damage requires cutting through the complete stringer, this cut should be made perpendicular to the stringer axis.
3. Flatten out the lips of the hat section on either side of the damage for a distance necessary to obtain the attachment for the splice.
4. Form a patch to the same section as the original stringer of a length necessary to obtain the required attachment on either side of the damaged area. This may be formed from flat sheet or from a piece of stock stringer of the same section as the damaged member.
5. Depending upon whether or not the inside of the stringer is accessible for bucking, standard rivets or Cherry blind rivets should be used. The number and size of rivets is specified in table 41
6. Where a skin damage occurs in the same region, repair as in figure 107 or 109.
7. Fillers between stringer and skin are to be used as necessary.
(c) DAMAGE REPAIRABLE BY INSERTION. - If the damaged area is greater in length than that required to form a splice, an insert of original stringer stock is used and spliced into the undamaged stringer as per figure 107.

Modified stringers as in the outer panel in the region of the fuel tank access doors should, if damaged, be cut out back to an unmodified section. A new modified portion of the stringer is inserted and spliced to the undamaged stringer using the same number of rivets on each side of the splice as given in table 41.
(d) DAMAGE REQUIRING REPLACE-MENT.-Stringer end fittings on the outer panel should be replaced if damaged.
(3) EXTRUDED STRINGERS.

(a) NEGLIGIBLE DAMAGE.

1. Small isolated dents, free from cracks, abrasions and sharp corners, may be neglected provided no two adjacent stringers are damaged at the same chordwise station and that the skin to which the stringers are attached is not affected.
2. Nicks, which when cleaned up with a round file have a maximum depth of $1 / 10$ the length of the leg, may be neglected provided such nicks do
not occur within 32 inch from any rivet and no two adjacent stringers are damaged at the same spanwise station. Such nicks should not be considered negligible if they occur less than 10 inches apart.

(b) DAMAGE REPAIRABLE BY

PATCHING.-Local damage to a leg of the stringer may be patched by a plate or bent up section as shown in figures 231-233 which give the gage and the required rivets. Small cracks of 1 inch maximum length running along the length of the stringer are repaired by stopping the crack with a $1 / 8$ inch diameter hole at either end and then patching the member as above. Use fillers as necessary.
(c) DAMAGE REPAIRABLE BY IN-SERTION.-Damage covering more than one leg will be repaired by an insert. The damaged area is cut out and a new piece of extrusion is fitted in. The splice is as per figures 231-233 for the particular member.

Existing rivets in the region of the splice are carefully drilled out and the holes used in the new rivet pattern. If the length of damage after clean up does not exceed the length of the splice as determined by the number of rivets and rivet spacing, a single splice may be used. If, however, the length of damage is greater, a separate splice should be used at each end.
(4) FRONT SPAR EXTENSION.-The required repairs are similar to those of the spar capstrips and are shown in figure 128. (See paragraph c. (2) of this section.)

c. SPARS.

(1) GENERAL. - The spars of the C-46 are built up of heavy extruded captstrips and shear webs. Vertical stiffeners, placed at intervals along the web, break up the size of the panels. Although repairs are given for each component of the spars, limitations are imposed as to where these repairs may be made. These limitations are based on the locations of various fittings and brackets whose exact position must be maintained. For example, the landing gear forgings on the front spar must be kept at their exact location. If a break occurs in this region, it will be necessary to insert a new piece of capstrip in the region of the fitting and splice on either side. Figures 111 to 115 give the component parts of all spars.
(2) CAPSTRIPS.
(a) GENERAL.-The capstrips are spliced with X4130 steel heat treated to $\mathbf{1 2 5 , 0 0 0}$ pounds per
square inch and bolted to the capstrip with AN23 bolts. If there are any fittings or brackets tying into the capstrip in the region of the damage, a section of the capstrip should be cut away and a new splice inserted. This insertion is to be of such a length that splices may be made at either end to the existing capstrip flange.

1. Care must be exercised to use the correct drill sizes when enlarging rivet holes to take the required bolts. Any looseness of the bolts will throw excessive loads on the nearby rivets, thus loosening the rivets and making them ineffective. All bolt and rivet patterns should be arranged to make use of the original holes. Do not drill new holes or change the pattern except as specifically noted.
2. Due to the fact that reinforcements bolted to a capstrip cannot be made as efficient as the original continuous material, any partially damaged section will take its ultimate allowable load before the splices are loaded up. This action will inevitably cause complete failure of the capstrip at the damaged section during service. To avoid a failure of this nature, al capstrip reinforcements and their attachments at each end of the damage must, therefore, be made equal to the strength of the original undamaged section.
(b) NEGLIGIBLE DAMAGE.-Nicks and cracks which, when cleaned up with a spherical radius cutter, do not have a depth greater than one quarter the thickness of the damaged leg and which do not interfere with any rivets, may be neglected. It is necessary that the damage be free from all sharp corners and that a one quarter inch radius be the smallest used.
(c) DAMAGE REPAIRABLE BY

PATCHING.-Because of the nature of the capstrip cress-sections and the high axial loads that are carried, repair by patching will not be adequate.
(d) DAMAGE REPAIRABLE BY IN. SERTION.

1. The splicing of the various spar capstrips is shown in figures 119 through 123. Any damage not considered negligible should be repaired in this manner. It is necessary that great care be taken in effecting these repairs in order that the original strength be fully realized.
2. Clean up the region by cutting out the damaged material on a line normal to the axis of the
capstrip. If the damage is so localized that the cleaned up area is confined to one leg, figure 124, merely clean up this region using a round file. If the damage goes beyond that point, the entire capstrip should be cut through. Again it is emphasized that the cleaned up surface be 90 degrees to the beam axis.
3. Insert a new piece of capstrip of the same cross-section as the original. This insertion should preferably be cut from extrusion stock but may be machined from 24ST bar. Maintain a tolerance on the length of the insert of $+0,-.005$ inch. Shim if necessary to give a butt joint.
4. Remove all existing rivets and bolts from capstrip in the region that will be covered by the splice plates.
5. Cut splice plates (X4130 steel or 24 ST as noted in the above figures) to length necessary to pick up the required number of bolts or rivets on either side of the insertion and machine to the crosssections shown in the figures. The plates are then heat treated to 125,000 pounds per square inch in the case of the steel splices. Using the existing rivet holes in the capstrip as a template, drill holes in the splice plates. Holes in the insertion and splice plates should have the same spacing as existed originally. In those capstrips which are spliced by bolts, the holes must be reamed on assembly. (See table 3).
(e) DAMAGE REPAIRABLE BY WELDING.
(Ref. figures 119, 119A, 122A and 122B) - Repairs to spar cap (Ref. figure 119) should have reinforcing plates on the inner side of spar cap and the spar cap web flanges welded together forming nesting angles. Flanges should extend the depth of the spar cap web flange on both faces of spar. The principle of nesting angles should apply, where possible, to all spar cap repairs. Figures 119A, 122A and 122B, which do not give gage of material used, should have following notes inserted: Ccmpute area of spar cap body. Compute area of reinforcement and multiply by the tensile strength of the material used. Select gages of material such that this figure is 25% greater than that arrived at in computing tension load in cap. If heat-treated steel is used, then $150,000 \cdot 180,000 \mathrm{psi}$ heat-treat range is more desirable than the $125,000 \mathrm{psi}$ range. The method of determining the proper gage is simple and adequately accurate for field repair purposes. The $\mathbf{2 5 \%}$ increase in strength required is adequate to compensate for the inaccuracies inherent in this type of simple computation.

TABLE 42
FRONT SPAR CENTER PANEL-COMPONENT PARTS

No.	Alcoa Die No.	No.	Alcoa Die No.
1.	K-77-L	26.	K-77-A
2.	K-5920	27.	K-77-F
3.	29096	28.	K-77-A
4.	K-78-Y	29.	K-77-A
5.	29096	30.	K-78-J
6.	K-5920	31.	K-15276
7.	29096	32.	K-15276
8.	K-77-V	33.	K-15276
9.	K-77-V	34.	K-15276
10.	29089	35.	K-77-W
11.	29089	36.	K-77-W
12.	29089	37.	29091
13.	29089	38.	29091
14.	29089	39.	K-78-K
15.	29089	40.	K-78-K
16.	29089	41.	29091
17.	K-77-L	42.	K-77-F
18.	K-15623	43.	K-77-F
19.	K-77-L	44.	K-77-W
20.	29089	45.	K-77-W
21.	29390	46.	K-77-L
22.	K-78-J	47.	K-77-L
33.	K-78-J		
24.	K-77-L		
25.	K-77-L		

TABLE 43
30\% SPAR, CENTER PANEL-COMPONENT PARTS

No.	Alcoa Die No.	No.	Alcoa Die No.
1.	K-1288	31.	29089
2.	K-77-F	32.	29089
3.	K-77-F	33.	K-77-F
4.	K-1288	34.	K-77-F
3.	K-77.F	35.	29089
6.	K-77-F	36.	K-77-F
7.	K-77-F	37.	K-77-F
8.	K-1288	38.	K-77-F
9.	K-77-F	39.	K-77-F
10.	K-77-F	40.	K-77-F
11.	K-1288	41.	K-1288
12.	K-78-J	42.	K-1288
13.	K-77-R	43.	K-77-R
14.	K-77-R	44.	K-77-R
15.	29089	45.	K-77-R
16.	29089	46.	K-77-R
17.	K-1288	47.	K-77-E
18.	K-1288	48.	K-77-E
19.	29089	49.	K-77-E
20.	29089	50.	K-77-E
21.	K-77-F	51.	K-78-F
22.	K-77-F	52.	K-78-F
23.	29089	53.	K-78-F
24.	29089	54.	K-78-F
25.	K-77-F	55.	K-77-E
26.	K-77-F	56.	K-77-E
27.	29089	57.	K-78-F
28.	29089	58. and 59.	K-78-F
29.	K-78-F	60.	K-78-F
30.	K-78-J	61.	K-77-F

TABLE 44 70\% SPAR-CENTER PANEL

REFERENCE: (3) SECTION V PARAGRAPH $2 c$ (2) TABLE 45

FIGURE 114-WING SPAR ASSEMBLY-OUTER PANEL $\mathbf{3 0 \%}$

TABLE 45 30\% SPAR-OUTER PANEL

No.	Alcoa Die No.	No.	Alcoa Die No.	
1.	K-78-F	31.	29095	
2.	29095	32.	29083	
3.	29095	33.	29083	
4.	29095	34.	29083	
5.	29095	35.	29083	
6.	29095	36.	29083	
7.	29095	37.	29083	
8.	29095	38.	29083	
9.	29095	39.	29083	
10.	29095	40.	29083	
11.	29095	41.	29083	
12.	29095	42.	29083	
13.	29095	43.	29083	
14.	29095	44.	29083	
15.	29095	45.	29083	
16.	29095	46.	29083	
17.	29095	47.	29083	
18.	29095	48.	29083	
19.	29095	49.	29083	
20.	29095	50.	29083	
21.	29095	51.	29083	
22.	29095	52.	29083	
23.	29095	53.	29083	
24.	29095	54.	29083	
25.	29095	55.	29083	
26.	29095	56.	K-78-F	29095
27.	29095	57.	29095	
28.	29095	58.	29095	
29.	29095	59.	$\mathrm{~K}-12037$	
30.	29095			

TABLE 46
70\% SPAR-OUTER PANEL

No.	Alcoa Die No.	No.	Alcoa Die No.
1.	K-78-F	26.	29571
2.	15643	27.	13641
3.	15643	28.	L-29095
4.	L. 29095	29.	L-29095
5.	L-29095	30.	13641
6.	L-29095	31.	29571
7.	L-29095	32.	L-29095
8.	L. 29095	33.	L-29095
9.	L-29095	34.	L-29095
10.	L-29095	35.	L-29095
11.	L-29095	36.	L-29095
12.	L-29095	37.	L-29095
13.	L-29095	38.	L-29095
14.	L-29095	39.	L-29095
15.	L-29095	40.	L-29095
16.	734-L.L	41.	L-29095
17.	L-29095	42.	L-29095
18.	L-29095	43.	L-29095
19.	L-29095	44.	K-78-F
20.	L-29095	45.	L-29095
21.	L-29095	46.	K-77-L
22.	L-29095	47.	K-77-L
23.	L-29095	48.	L-29095
24.	L-29095	49.	L-29095
25.	L-29095	50.	L-29095
		51.	L-29095

FIGURE 116 (SHEET 1 of 2 SHEETS) - WING SPAR CAPSTRIP EXTRUSIONS

ALCOA DIE NO. 29184

OUTER PANEL - 30% SPAR

ALCOA DE NO. 29190
ALCOA DIE NO. 29189

OUTER PANEL -70% SPAR

FIGURE 116-WING SPAR CAPSTRIP EXTRUSIONS SHEET 2 OF 2

FIGURE 119 - FRONT SPAR CAPSTRIP SPLICE - CENTER PANEL

Section V

T.0. 1C-46A-3

TABLE 46 A

CENTER AND OUTER PANEL SPAR
CAPSTRIP ALCOA DIE NUMBERS

SPAR	PANEL	POSITION	SPAR CAP DIE NO.	FIGURE
30 Per cent	Outer	Upper	29184	114
30 Per cent	Outer	Lower	29183	114
70 Per cent	Outer	Upper	29190	115
70 Per cent	Outer	Lower	29189	115
Front	Outer	Upper	29187	$118-128$
Front	Outer	Lower	29187	$118-128$
30 Per cent	Center	Upper	29188	$112-117$
30 Per cent	Center	Lower	29188	$112-117$
70 Percent	Center	Upper	29192	113
70 Per cent	Center	Lower	29191	113
Front	Center	Upper	29186	111
Front	Center		29185	111

TABLE 47
30\% SPAR CAP SPLICE - CENTER PANEL

Distance From Centerline	$0-80$	$80-100$	$100-120$	$120-140$	$140-160$	$160-184$	$184-192$
Airplane							
T_{1}	.318	.259	.220	.180	.140	.100	.081
$\mathrm{~T}_{2}$.381	.376	.326	.274	.224	.173	.173
$\left.\begin{array}{l}\text { Number of } \\ \text { Bolts Through } \\ \text { Horizontal Leg }\end{array}\right\}$	24	22	19	15	12	9	5

Number of bolts are for each side of splice for each flange. Thus, the total number of bolts through the horizontal flange each side of splice is double that given in the table.

1. ALI SPLICE MATERIAL TO EE 24ST ALCLAD
2. CAPSTRIP FILLER TO BE MADE FROM ORIGINAL EXTRUSTION SJOCK OR MACHINED FROM 24ST BAR. SEE FIGURE 116
3. USE OF ORIGINAL RIVET PATTERN IN LOCATING

REFERENCE: SECTION V, PARAGRAPH 2 c
FIGURE 121-70\% SPAR CAPSTRIP SPLICE—CENTER OR OUTER PANEL

REFERENCE, SECTION V, PARAGRAPH 2 c
FIGURE 122-70\% SPAR CAPSTRIP SPLICE—CENTER OR OUTER PANEL

FIGURE 122B - LOWER 70\% SPAR CAPSTRIP SPLICE - CENTER PANEL

NOTES:

1. IF DAMAGE OCCURS IN VICINITY OF RIBS, INSERY NEW PIECE OF CAPSTRAP OF SUCH LENGTH THAT THE VERTICAL SPLIGE PLATES AT ETHER END OF THE ENSERT WILL NOT INTERFERE WITH THE RIB ATTACHMENT
2. ALL SPLICES TO BE X4130 STEEL HEAT TREATED TO 125,000 LB/SQ IN.
3. IF NO ORIGINAL EXTRUSION IS AVAILABLE SPAR CAP INSERTS MAY BE MACHINED FROM $245 T$ bar STOCK
4. ALL STEEL PARTS TO HAVE PROTECTIVE COATING APPLIED AS PER SECTION I, PARAGRAPH 11
5. DRILI AND REAM FOR BOLT HOLES AS PER TABLE 3

PLUG UPPER ROW

 OF RIVET HOLES USING FLUSH RIVETS ON THE SIDE OF THE SPLICE PLATE. DRILL NEW HOLES DRILL NEW HOLES.38 MINIMUM FROM THE EDGE, SAME SPACING AS ORIGINAL RIVETS. FOR ALL OTHER, USE EXISTING RIVET HOLES

Cassub Exnsuon
L29184 UPPER L29183 LOWER

IF SPLICE PLATE INTERFERES WITH
RIVETS, REMOVE INTERFERING RIVETS AND REPLACE WITH COUNTERSINK RIVETS OF SAME SIZE. BOTH ENDS OF RIVETS TO BE FLUSH.

FIGURE 124—REPAIR TO ONE LEG OF CAPSTRIP
6. See section I for corrosion resistance coating for steel and aluminum alloy. All bolts are to be AN23 cadmium plated. Where the taper of the flange legs are such as to interfere with the seating of the bolts, it is necessary to use a tapered shim. (See figure 119).
7. Plates used on the outer contour of the wing for splicing the spar flanges should be chamfered or filletted with a cement to smooth the sharp spanwise break.
8. Damage to front spar capstrip in region of fuselage floor is repaired as in figure 125. This drawing is self-explanatory.
9. Damage in the region of the fuselage floor to the 30 percent spar capstrip is repaired as in figure 126. The floor is so close to the wing that a reparr cannot be made to the spar cap without modifying the floor. The rib tie to the beam is such as to make a splice to the vertical leg in the region of the rib impractical. Therefore, any upper capstrip insertion should be so placed that the vertical leg splices fall between floor beams. The splice plates of X4130 steel
heat treated to 125,000 pounds per square inch are cut as shown in the cross sections, the length being dependent on the extent and position of the damage. In the region of the four bolts through the floor skin, a tapered shim is added to give proper seating for these bolts.

PROCEDURE FOR REPAIR

a. Roll back the floor skin and clean up the damaged area.
b. Remove the necessary rivets and bolts in the region of the capstrip splice.
c. Cut the aft vertical stiffener down to take only the lower capstrip bolt; cut the forward vertical stiffener to clear the bolts.
d. Cut the bulb angle on the rib web as shown to clear the splice bolts.
e. Cut the floor beam spacer blocks (10) to allow for the upper splice plate. (Remove .381 inches.).

FIGURE 126—REPAIR TO 30 PERCENT SPAR CAPSTRIP IN REGION OF FUSELAGE FLOOR
f. Cut away the web and lower capstrip of the fioor beam in the region of the spacer blocks to clear the upper splice plate.
g. Cut away the floor hat section forward of the beam for 4.5 to 5 inches. Form a new hat (6) that will rest on the splice plate, and use a .318 inch aluminum alloy filler (5) forward of the splice plate.
h. Form two 081 clips to support the floor beam, one running from the floor beam to the lower edge of the rib web, picking up the existing row of rivets (9) and the other fitting between the lower capstrip of the floor beam and the bulb angle rib capstrip (8). Rivets through these clips are AN442AD5, and the flanges are .75 inch wide.
i. Repair beam as above and make any other necessary repairs.
(3) WEBS.
(a) GENERAL.-The spar webs are made of 24 ST alclad with vertical stiffeners at close intervals to break up the panel size. All rivets through the web are AN442; but in the repairs, the required number of Cherry blind LS 1127 rivets is also given. In regions where ribs or fittings tie into the spar web, insertions must be used. It is most satisfactory in all cases to make the web splices between stiffeners.
(b) NEGLIGIBLE DAMAGE. - Small holes in webs whose gage is .051 or less which can be circumscribed by a .75 inch diameter circle, need not be patched provided the edge of the circle is not less than 2 inches from any capstrip, web splice, or fitting. The hole should be cleaned up by filing or reaming to make the edge smooth.

(c) DAMAGE REPAIRABLE BY

PATCHING.

1. Damage to the web, which when cleaned up is included between two adjacent ribs with the edge at least 3 inches from the center line of rib, may be patched with 24 ST alclad sheet of the same gage as the damaged web. (See figure 127). Table 48 gives the required rivets and spacing for various zones on each beam. Table 48 B and D gives the additional rivets required on each side of the splice through the capstrips. If existing rivets interfere with the patch, they should be carefully drilled out and the holes used in laying out the new rivet pattern. If the patch ties into the capstrip, a filler of the same gage as the web should be inserted in the

AN 01-25LA-3

FIGURE 127 -WING SPAR WEB REPAIR

TABLE 48

WING SPAR WEB SPLICES

A. ATTACHMENT OF PATCHES TO SPAR BETWEEN CAPSTRIPS-CENTER PANEL

	Station	0.57		57:132.5		132.5-192	
Spar	Rivet Type	Rivet Spacing	No. of Rows	Rivet Spacing	No. of Rows	Rivet Spacing	No. of Rows
Center	Gage of Splice	. 032		. 064		. 091	
Panel	AN442AD5	1.5	2	. 88	2	-	-
Front	AN442AD6	-	-	1	2	1	3
	LSI127-6	1.0	2	. 88	2	-	-
Center	Gage of Splice	. 032		. 036		. 051	
Panel	AN442AD5	1.5	2	1	2	. 75	2
30\%	AN442AD6	-	-	-	-	1	2
	LS1127-6	1.0	2	. 63	2	1	3
Center	Gage of Splice	. 032		. 064		. 051	
Panel	AN442AD5	1.5	2	. 75	2	1	2
70\%	AN442AD6	-	-	1	2	. 75	2
	LS1127-6	1	2	. 75	2	. 63	2

B. ATTACHMENT OF PATCHES OR SPLICE PLATES TO CAPSTRIPS-NUMBER OF RIVETS REQUIRED AT EACH SIDE OF DAMAGE. USE SAME SPACING AS IN CAPSTRIP-CENTER PANEL.

TABLE 48 (Continued) WING SPAR WEB SPLICES

C. ATTACHMENT OF PATCHES TO SPAR BETWEEN CAPSTRIPS-OUTER PANEL

	Station	0-52		52-136		136-177		177-232		232-292		292-412	
Spar	Gage and Rivet Type	Rivet Spacing	No. of Rows										
Outer	Gage of Splice	. 036		. 036		. 032		. 028		. 028		. 025	
Panel	AN442AD4	. 88	2	88	2	. 88	2	. 88	2	1	2	1	2
30\%	AN442AD5	1	2	1	2	1	2	.					-
	LS1127-5	. 75	2	. 75	2	. 75	2	. 75	2	. 88	2	. 88	2
Outer	Gage of Splice	. 032		. 032		.032*		.025*		. 025		. 025	
Panel	AN442AD4	. 88	2	. 88	2	. 88	2	. 88	2	. 88	2	1	2
70%	AN442AD5	1	2	1	2	1	2					.	-
	LS1127-5	. 75	2	. 75	2	. 75	2	. 63	2	. 63	2	. 875	2

*. 032 to be used to station $210 ; .025$ to be used from station 210 outboard
D. ATTACHMENT OF PATCHES OR SPLICE TO CAPSTRIPS- NUMBER OF RIVETS REQUIRED AT EACH SIDE OF DAMAGE. USE SAME SPACING AS IN CAPSTRIP --OUTER PANEL

	Station	0-52	52-136	136-177	177-232	232-292	292-412
Spar	Rivet Type	No. of Rivets					
Outer	AN442AD4	5	5	4	4	3	3
Pancl	AN442AD5	4	4	4	3	3	3
30\%	LSI127-5	6	6	5	5	4	4
Outer	AN442AD4	4	4	4	4	4	4
Panel	AN442AD5	3	3	3	3	3	3
70\%	LS1127-5	5	5	5	5	5	5

NOTE: Vertical rivet rows to be spaced at $7 / 8 \pm 1 / 8$

NOTES:

1. ALL BOLTS TO BE AN23
 STEEL, HEAT TREATED TO $125,000 \mathrm{LB} / \mathrm{SQ}$ IN.
2. BOLTS THROUGH SKIN TO USE EXISTING RIVET PATTERN.
3. BOLTS THROUGH LEG TO HAVE . 3 MINIMUM EDGE DISTANCE FROM EDGE OF PLATE OR EXTRUSION, AND . 38 MINIMUM EDGE DISTANCE FROM ENDS.
4. If THE DOUBLE ROW SPACING GIVEN CANNOT日E OBTAINED, A SINGLE ROW MUST BE USED.
5. USE SAME BOLT PATTERN IN INSERT.
6. ALL STEEL PLATES TO HAVE PROTECTIVE COATING APPLLED AS PER SECTION 1, PARAGRAPH 11.

¢-SPLICE WTTH EXTERNAL PLATE

FIGURE 128-FRONT SPAR CAPSTRIP EXTENSION SPLICE—OUTER PANEL

TABLE 49

OUTER PANEL FRONT SPAR EXTENSION REPAIR

UPPER FRONT SPAR EXTENSION (U-15)

Distance In Inches From Inboard End of Outer Panel

	0.25	25	$64-$	$90-$	128	$139-$	207.5	$230-$
		64	90	128	139	207.5	230	412
W	1.72	1.72	1.34	1.34	.97	.97	.62	.62
H_{1}	1.50	1.50	1.50	1.321	.32	.87	.87	.62
H_{2}	2.12	1.87	1.87	1.321	.32	.87	.87	.62
$\mathrm{~T}_{1}$.125	.125	1.25	.125	.125	.125	.125	.125
$\mathrm{~T}_{2}$.156	.156	.156	.156	.156	.156	$.156^{1}$	$.156^{1}$
$\mathrm{~A}^{2}$	11	11	9	9	7	7	5	5
$\mathrm{~B}^{3}$	11	9	9	6	6	4	4	3

(1) If external plate is used in " C " above, T 2 should be . 125 .

LOWER FRONT SPAR EXTENSION (L-9)

Distance In Inches From Inboard End of Outer Panel

	0-64	$\begin{aligned} & 64 \\ & 90 \end{aligned}$	$\begin{aligned} & 90- \\ & 128 \end{aligned}$	$\left\|\begin{array}{\|c\|} 128- \\ 140.5 \end{array}\right\|$	$\left\{\left.\begin{array}{l} 140.5 \\ 200 \end{array} \right\rvert\,\right.$	$\begin{aligned} & 200 \\ & 232.8 \end{aligned}$		$\begin{aligned} & 260- \\ & 384 \end{aligned}$	$\begin{gathered} 384- \\ 412 \end{gathered}$
W	1.72	1.34	1.34	. 97	\|. 97	. 97	. 62	. 62	. 62
$\mathrm{H}_{1} \mathrm{H}$	$2=1.52$	1.52	1.22	1.22	. 87	. 62	. 62		
T ${ }_{1}$. 093	. 093	. 093	. 093	. 093	. 093	. 093		
T_{2}	. 156	. 156	. 156	. 156	. 156	. 156	.1561	156^{1}	56^{1}
	11	9	9	9	7	7	5	8	6
B^{3}	7	7	6	6	4	4	4		

(2) No. of AN23 bolts required each side of splice for each horizontal leg.
(3) No. of AN23 bolts required each side of splice for each vertical leg.
region of the capstrip. If the patch extends across a spar stiffener, and the stiffener is not damaged, the stiffener may be removed by drilling out all the rivets and replaced on top of the splice using the necessary fillers or joggling.
2. When damage occurs near the center of the web, use a patch plate the same gage as the web. The horizontal and vertical rivet patterns are given in table 48. If the damage runs across a web stiffener the patch is placed on the opposite side of the web from the stiffener and the stiffener sivets are picked up. Fillers should be used under the stiffener as required. If a stiffener exists on either side of the web at this point, it is necessary to remove one and replace it over the patch using fillers under the remainder of the member.
3. Web damage occurring near a capstrip, thus preventing placing the required rivet pattern around the damage, requires a patch as shown in figure 127. The patch is extended to the edge of the web and the required number of rivets as given in table 48 B and D are used for the attachment of the patch to the capstrip on either side of the damage. Run the required rivet pattern around the damage and up to the capstrip. This figure shows the relation between the capstrip and web repairs.
(d) DAMAGE REPAIRABLE BY INSERTION. If the damage occurs in the region of any fittings, brackets, or rib connections, an insert should be spliced to the existing web on either side. The damaged portion of the web should be cut away sufficiently to make the splice at points where no interference will be found. The insert and the splice plates are to be of the same gage as the damaged web. The rivet pattern is given in table 48.
(e) STIFFENER REPAIR.-Figures 231 through 233 give complete information for the repair or replacement of all extrusion type of stiffeners. If only one leg of a stiffener is damaged, the repair by use of splice plates may be made being careful to use the splice given for the damaged leg. Nicks which, when cleaned up with a round file, have a maximum depth of $1 / 10$ the length of the leg may be neglected provided such nicks do not occur adjacent to a rivet, and are not less than 6 inches apart. Various repairs are given for each extrusion: the use of any specific one being dependent on available materials, clearances rivet locations, etc. Repair of bent up angle stiffeners is given in figure 229.
(4) MISCELLANEOUS. - Damaged fittings, gussets, brackets, and reinforcements should be replaced.

d. RIBS.

(1) GENERAL.-There are three types of ribs used in the center panel, the ribs of which figure 129 is typical, are diagonally trussed; in the other panel, all ribs are of the full web type except the tank ribs which have large reinforced cut-outs. These are shown in figures 138, 139, and 144. The nose and trailing edge ribs are full reinforced webs with or without flanged lightening holes. Typical repairs are given for all regions of the various kinds of ribs. A repair given for any part of a rib may be used for all ribs of the same group. All riveting, except through the skin, is to be done with AN442 type rivets. In the outer panel, however, if there is access to only one side of the rib, Cherry blind rivets may be used. (See section I, paragraph 10g. for rivet substitution).

(2) CENTER PANEL RIBS.

(a) GENERAL.-All diagonals are made up of one or two curved hat sections of the same type as the shin stringers. These diagonals tie into the capstrip webs at points where the web increases in depth to give sufficient attachment area. The capstrips are made up of one or more rxtruded angles and a scalloped sheet web. Rib ties to the skin between stringers are made either with an extra scalloped sheet or with the main web cut and flanged to meet the skin.

(b) DIAGONALS.

1. NEGLIGIBLE DAMAGE.-Small isolated dents, free from cracks, abrasions and sharp corners may be neglected. Holes, which when cleaned up to a maximum diameter of .5 inch and which are a minimum of .5 inch from any flange, may be neglected. Such holes should be a minimum of 6 inches apart.

2. DAMAGE REPAIRABLE
 BY

PATCHING.

a. Damage covering a greater area than that specified above must be patched. Figure 130 gives the required splice and the accompanying table contains all necessary gage, riveting, etc., for the patches of all diagonals.
b. Items 2., 3., and 4. under paragraph b. (2) (b) of this section also pertain to diagonal repair.

Item	Member	Sta. 9.5	Sta. 25.5	Sta. 41.5	$\begin{gathered} \text { Canted } \\ \text { Rib } \\ \hline \end{gathered}$	Sta. 82.5	Sta. 107.5	Sta. 132.5 Sta. 155.5		Sta. 178.5
1	Cap Strip Web	. 081	.081	. 081	. 064	. 040	. 060	. 072	. 040	. 072
		24ST-ALC	24SO-ALC	24ST-ALC	24ST-ALC	24ST-ALC	24SO-ALC	24ST-ALC	24ST-ALC	24ST-ALC
2	Cap Strip Web	. 036	. 051	. 036	. 064	. 040	. 064	. 032	. 040	. 032
	S	24ST-ALC	24ST-ALC	24ST-ALC	24ST-ALC	24ST-ALC	24SO-ALC	24ST-ALC	24ST-ALC	24ST-ALC
4	Diagonals	SS-112-32	SS-112-32	SS-112-32	SS-112-32	SS-112-32	SS-112-40	SS-112-40	SS-112-40	SS-112-40
		SS-112-40	SS-112-40	SS-112-40					SS-112-51	
5	Cap Strip Web	.051STT T.	. 051	.051ST T.	. 064	. 064	. 064	. 072	. 072	. 072
		.040SO B.	24SO-ALC	.040SO B.	24SO-ALC	24SO-ALC	24SO-ALC	24SO-ALC	24SO-ALC	24SO-ALC
6	Cap	29388	29388	29388	29387	K-78-F	L-29083	K-78-F	K-78-F	K-78-F
7	Cap	29388	29388	29388	29387	K-78-F	K-778	K-78-F	K-78-F	K-78-F
8	Cap	29388	29388	29388	29387	K-78-C	K-77-L	K-78-A	K-78-J	K-78-A
9	Cap	K12224	K-78-A	K12224	29387	K-78-C	--..	K-78-M	K-78-J	K-78-M
10	Cap	-...-	----	--. -	-...	----	K-78-Y	K-78-F	----	K-78-F
11	Cap	-.	----	----	---	----	K-78-Y	K-78-A		K-78-A

NOTE

ALL BENT UP SHEET IS 245T ALCLAD HEAT TREATED
TO $56,000 \mathrm{LB} / \mathrm{SQ}$ IN. AFTER FORMING

SINGLE HAT SECTION

SPACE EQUALLY, PICKING UP EXISTING RIVET HOLES AT .75 INCH. TOTAL NUMBER OF RIVETS THROUGH EACH FLANGE EACH SIDE OF SPLICE EQUALS ONE HALF THE NUMBER GIVEN IN ABOVE TABLE

REGION OF
DAMAGE

SPLICE MAY BE EITHER

 LIPPED AS IN ORIGINAL SECTION, OR FIAT AS SHOWN
repalk shown for double hat section diagonal SINGLE HAT SECTION DIAGONAL MAY BE REPAIRED IN A SIMILAR MANNER WITH NO FLLLER REGUIRED

REFERENCE1 SECTION Y, PARAGRAPH 2d(2)(b)
FIGURE 130-CENTER PANEL RIB REPAIR—DIAGONALS

TABLE 51—CENTER PANEL RIB REPAIR — DIAGONALS

Station	A				B			
	No. of Members	Stock	$\frac{\text { No. Rivets }}{} \begin{gathered} A N 442 \\ A D 5 \end{gathered}$	Side AN442 AD6	No. of Members	Stock	$\left\lvert\, \begin{gathered} \text { No. Rivets } \\ \hline A N 442 \\ A D 5 \end{gathered}\right.$	Side
								AN442
								AD6
9.5	1	SS-112-40	6	6	2	SS-112-32	6	6
25.5	2	SS-112-32	6	4	2	SS-112-40	10	8
41.5	1	SS-112-40	6	6	2	SS-112-32	6	6
Canted	2	SS-112-32	6	6	2	SS-112-32	6	6
82.5	1	SS-112-32	4	4	1	SS-112-32	4	4
107.5					2	SS-112-40	8	8
132.5					2	SS-112-40	12	10
155.5	2	SS-112-32	4	4	2	SS-112-51	18	12
178.5					2	SS-112-40	12	10

	C				D			
9.5	1	SS-112-32	6	6	1	SS-112-32	6	6
25.5	2	SS-112-32	8	6	2	SS-112-32	10	8
41.5	1	SS-112-32	6	6	1	SS-112-32	6	6
Canted	2	SS-112-32	6	6	2	SS-112-32	6	6
82.5	1	SS-112-32	4	4	2	SS-112-32	4	4
107.5	2	SS-112-32	8	8	2	SS-112-40	8	8
132.5	2	SS-112-40	10	8	2	SS-112-40	12	10
155.5	2	SS-112-40	14	12	2	SS-112-51	18	12
178.5	2	SS-112-40	10	8	2	SS-112-40	12	10

	E				F			
9.5	1	SS-112-32	6	4	1	SS-112-32	6	6
25.5	2	SS-112-32	6	6	2	SS-112-32	6	6
41.5	1	SS-112-32	6	4	1	SS-112-32	6	6
Canted	2	SS-112-32	8	6	2	SS-112-32	8	6
82.5	2	SS-112-32	4	4	2	SS-112-32	4	4
107.5	2	SS-112-32	10	10	2	SS-112-40	10	8
132.5	2	SS-112-40	6	6	2	SS-112-40	8	6
155.5	2	SS-112-32	16	12	2	SS-112-40	6	6
178.5	2	SS-112-40	6	6	2	SS-112-40	8	6

	G			
9.5	1	SS-112-40	6	6
25.5	2	SS-112-32	8	8
41.5	1	SS-112-40	6	6
Canted	2	SS-112-40	12	10
82.5	2	SS-112-32	4	4
107.5	2	SS-112-40	14	12
132.5	2	SS-112-40	10	8
155.5	2	SS-112-40	10	8
178.5	2	SS-112-40	10	8

c. When the hat sections occur in pairs, fillers are used as required between the flanges in the region of the cutaway material, as shown in figure $130-\mathrm{a}$. When hat sections occur singly, as in figure $130-\mathrm{b}$, no filler is required.
d. Pick up original rivet holes through diagonals and equally space additional rivets to give a spacing of $.75 \pm .13$ inch.
e. Flatten out the lips of the hat section on either side of the damage for a distance necessary to obtain the attachment for the splice.
3. DAMAGE REPAIRABLE BY INSERTION. -If the damage occurs close to the end in such a manner that, when cleaned up, there is insufficient distance between the end attachment and the edge of the cleaned up area for the required splice rivets, it will be necessary to remove the short end of the diagonal and insert a new piece sufficiently long to take the splice to the remaining original diagonal. Splice the insert to the diagonal as per figure 130.

(c) CAPSTRIPS.

1. GENERAL.-The capstrip is taken to include all angles and webs running fore and aft along the upper and lower contours of the rib. These members, being riveted to each other, act as a single unit in carrying load.

2. NEGLIGIBLE DAMAGE.

a. Small isolated dents, free from cracks, abrasions or sharp corners may be neglected.
b. Holes in webs which, when cleaned up, are 1 inch or less in diameter and are a minimum of .38 inch from any edge, flange or rivet, need not be patched provided these holes do not occur in the region between capstrip angles.

3. DAMAGE REPAIRABLE

PATCHING.

a. Webs between angles may be patched as shown in figures 131 and 132. The first of these figures gives a riveted attachment for the upper capstrip web which may be used on ribs at station 9.5, 25 , and 41.5 except in the region between the front and 30 percent spars at station 25.5. This latter is shown in figure 132. Drill out existing rivets which interfere with patch and use the resulting holes in arranging the new pattern. Rivets should be carefully drilled out in order not to enlarge the holes. See
section I, paragraph 10.i. for methods of repair for enlarged or elongated holes. Shim stringer clips, etc., if necessary.
b. When the main webs tie into the wing skin, they may be patched as shown in figure 133. The damaged portion is cleaned up with .5 inch minimum corner radii and a patch cut to extend along the capstrip between the center lines of adjacent stringers. If a sheet cut in this manner gives less than a . 32 inch edge distance on the last rivet, or if the total number of rivets required on one side of the cleaned up area requires a greater length, the shect should be extended to obtain a .32 inch minimum edge distance on the end rivets. Existing rivets in the region of the patch should be carefully drilled out in order not to enlarge the holes. Filler plates should be placed between the patch and the angles in the area of the cleaned up damage. If the damage is between the skin and the first angle, it may be repaired as in figure $133-\mathrm{b}$, cleaning up the damage so that the web remains continuous between angles.

If the damage goes beyond the first angle, it should be repaired as in figure $133-a$, using the number of rivets specified in column 6 of table 52 .
c. Local damage to a leg of the angles may be patched by a plate or bent up section. The gage of the patch and the required rivets are given in figures 231 through 233 . It is necessary in referring to these figures to be certain of the correct die number for the damaged member. This may be found in figure 129 and table 50 . Small cracks of 1 inch maximum length running along the length of the angle, are repaired by rounding out sharp corners and stopping the cracks with a $1 / 8$ inch diameter hole at either end and then patch as above. Use fillers as necessary.
d. Webs of capstrips which have only one angle may be patched as in figure 134. Clean up damage with .5 inch minimum corner radii. Riveting is similar for all like ribs. Gages and flange widths are given in table 53. Figure 135 shows a complete break.

4. DAMAGE REPAIRABLE BY IN.

SERTION.

a. See paragraph 2. d. (2) (c) 3. c. above for angle repair.
b. If the web is damaged near its end in the region of a fitting, or in the flared portion to which the diagonals attach, a new piece of web should be inserted and spliced as per figure 136. Also, if the length of damage after clean up is greater than 7 inches, a repair should be made in a similar manner.

FIGURE 131-CENTER PANEL RIB REPAIR—UPPER CAPSTRIP (STA. 9.5, 25.5, 41.5 BETWEEN 30% AND 70% SPARS AND STA. 9.5 AND 41.5 BETWEEN FRONT AND 30% SPARS)

FIGURE 133 - CENTER PANEL RIB REPAIR - MAIN WE8 TO SKIN

TABLE 52

 CENTER PANEL RIB REPAIR - MAIN WEB TO SKIN| | | M | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 20-020-1060 | 9.5 | Lower | . 040 | 29388 | 5 |
| 20-020-1059 | 25.5 | Lower | . 051 | 29388 | 8 |
| 20.020-1060 | 41.5 | Lower | . 040 | 29388 | 5 |
| | | Upper | | K78F | |
| 20.020-1061 | 82.5 | Lower | . 064 | K78F | 10 |
| | | Upper | | L-29083 | |
| 20-020-1008 | 107.5 | Lower | . 064 | K-778 | 10 |
| 20-020-1065 | 132.5 | Lower | . 072 | K78F | 14 |
| | | Upper | | K78F | |
| 20-020-1073 | 155.5 | Lower | . 072 | K78F | 14 |
| 20-020-1065 | 178.5 | Lower | . 072 | K78F | 14 |

c. In the case where the web tying into the wing skin is separate from the main web, any damage may be repaired by cutting away the web at or beyond the center lines of adjacent stringers and inserting a new piece. This insert should pick up the original rivet holes through the rib and wing skin. Every attempt should be made not to enlarge the holes when drilling out the rivets and to replace all rivets with the same size as the original. (See figure 137).

5. DAMAGE REQUIRING REPLACE-

MENT.-Because of the relatively short distance between the front and 30 percent spars, the damaged capstrip members in this region may be replaced. However, the upper capstrip angles on rib station 25.5 and the lower capstrip angles on rib stations 132.5 and 178.5 between the above two spars, should be replaced if damaged.
(3) OUTER PANEL TANK RIBS.
(a) GENERAL.-The tank ribs have heavy sheet webs which are cut out and reinforced with tee-section extrusions to support the fuel tanks. Heavy extruded angles whose legs are machined off along their length form the rib capstrips. An added sheet scalloped to clear the stringers serves to tie the wing skin to the rib. Figures 140 through 143 show individual splices for each member except the scalloped skin tie which was treated in paragraph 2. d. (2) (c) 4. c. of this section. These individual repairs may be combined
in any manner required by the damage. It should be observed that the tee-section splice given is of greater strength than the one existing. This is because the original splice is made where the loads are least.
(b) NEGLIGIBLE DAMAGE. Small isolated dents, free from cracks, abrasions, and sharp corners may be neglected. Holes in webs, which when cleaned up to a maximum diameter of I inch and which are a minimum of .5 inch from the edge of any other member, may be neglected. Such holes should be a minimum of 5 inches apart. Nicks in extrusions which, when cleaned up with a round file, have a maximum depth of $1 / 10$ the length of the leg may be neglected, provided such nicks do not occur within .38 inch from any rivet.
(c) DAMAGE REPAIRABLE BY

PATCHING.

1. The web may be patched as shown in figure 140 using a double row of AN442AD5 rivets. Web patching should not be used in any region where there is less than 3 inches of clear web vertically between the tee and the angle extrusions. The edge of the cleaned up area should not come closer than 1.5 inches from any vertical member.
2. For the patching of one leg of the extrusions, see paragraph 2. d. (2) (c) 3. c. of this section.

FIGURE 135 - CENTER PANEL RIB REPAIR - WEB WITH SINGLE ANGLE (COMPLETE BREAK)

(d) DAMAGE REPAIRABLE BY INSERTICN.

1. Damage more extensive than that discussed under paragraph (c) 1. immediately above requires an insertion. Such parts of the web must be removed so that vertical splices may be made in the above region and horizontal splices across the center stiffener and at the ends as shown in figures 142 and 143.
2. Tee and angle damage when more than one leg is affected may be repaired as shown in figures 140 and 141 . Inserts of the same material as the damaged member are used and the splice plates attached with AN23 and AN 3 bolts.
3. Splices at the beams should be made as per figure 143. Original rivets in the region of the
splice should be drilled out and the holes used for the new rivet pattern which employs AN442AD6 rivets. Splice angles on the tee section should be similar to the original ones but extended to pick up an additional rivet in each leg at both ends. The overlap of splices must be carefully followed, using a minimum of six rivets each side of splice in the plane of the web and five rivets each side of splice along the beam tie.
(4) OUTER PANEL FLANGED WEB RIBS.
(a) GENERAL.
4. These ribs are used outboard of the tank ribs and start at station 142 (inches from the inboard end of the outer panel). See figure 144.
5. Rib 142 has a full web with no holes in it and capstrips of Alcoa K77 type extrusion whose

FORWARD OF 30\% SPAR STATION 132.5 AND 178.5

REFERENCE: SECIION V, PARAGRAPH 2d(2)(c)

TABLE 54

OUTER PANEL INTERMEDIATE TANK RIB—COMPONENT PARTS

Item

1. Web
2. Upper Capstrip
3. Lower Capstrip
4. Tank Support
5. Stiffener

Station
22
.081
K-77
K-77S
K-1287
29388

Station 52
.040
K-77A
K-78C
K-1287
29388

Station
82
. 040
K-77A
K-78C
K-1287
29388

Station 112
.081
K-77A
K-78C
K-1287 29388

FIGURE 139-NOSE TANK RIB STRUCTURE

TABLE 55
OUTER PANEL NOSE TANK RIB—COMPONENT PARTS

Item	Part	Station 22	Station 52	Station 82	Station 112
1	Web	. 032	. 032	. 032	. 032
2	Web	. 032	. 032	. 032	. 064
2a	Web				. 032
3	Upper Cap	K-77A	K-77A	K-77A	K-77A
4	Lower Cap	K-78C	K-78C	K-78C	K.78C
5	Stiffener	29388	29388	29388	29388
6	Tank Support	K-1287	K-1287	K-1287	K-1287

FIGURE 141-REPAIR TO TANK RIBS-LOWER

REFERENCE: SEATION V, PARAGRAPH 2d(3)

FIGURE 143-REPAIR TO TANK RIBS-AFT END

FIGURE 144-OUTER PANEL FLANGED WEB RIB STRUCTURE

TABLE 56
OUTER PANEL FLANGED WEB RIB-COMPONENT PARTS

Item	Member	Station 142	Station 172	Station 202	Station 232	Station 262	Station 292	Station 322	Station 352	Station 382
1	Web	. 032	. 032	. 032	. 032	. 032	. 032	. 032	. 032	. 032
2	Upper Cap	29084	29084	29084	29084	29084	29084	29084	29084	29084
3	Upper Cap	K-77V	. 032	. 032	. 032	. 032	. 032	. 032	. 032	. 032
4	Web	. 020	. 020	. 020	. 020	. 020	. 020	. 020	. 020	. 032
5	Stiffener	29099	29084	29084	29084	29084	29084	29084	29084	29084
6	Lower Cap	K-77S	. 032	. 032	. 032	. 032	. 032	. 032	. 032	
7	Lower Cap	29084	29084	29084	29084	29084	29084	29084	29084	29084
8	Web	. 032	. 032	. 032	. 032	. 032	. 032	. 032	. 032	. 032

NOTE: Extrusions are designated by Alcoa die numbers.
legs are machined off in steps. Deep .051 inch flanges tie the rib to the wing skin between stringers. The rib web is stiffened by vertical bulb angles.
3. Ribs 172 and 352 are built up with flat sheet webs with lightening holes, upper and lower bent up channel capstrips, and vertical bulb angle stiffeners.
4. Rib 382 has a flanged web with one lightening hole. Three bulb angles serve to stiffen the web.
5. Rib 412 is the end rib of the outer panel. Its flanges take gang channels to which the wing tip is bolted. This is the only rib whose main web extends to the wing skin.
6. Typical repairs given may be used on any of these ribs except as noted in the figures and below.
(b) NEGLIGIBLE DAMAGE.-Due to the type of loading on these ribs, the only negligible damage will be that occurring in the rib skin tie at station 142. Damage to the tie which, when cleaned up, is 1 inch or less in diameter and is a minimum of .38 inch from any edge, flange or rivet, need not be patched. Repair is similar to that in the center panel. (See figure 137.) Small isolated dents, free from cracks, abrasions and sharp corners may be neglected.
(c) DAMAGE REPAIRABLE BY PATCHING.

1. All web patches may be effected by a sheet of the same gage as the web, riveted with AN442AD4 or LS1127-5 rivets. If the damage runs into the capstrip, the capstrip rivets should be carefully drilled out in the region of the patch and the holes used in setting up the new rivet pattern.
2. Damage to the bent up sheet channels may be repaired by nesting a new channel in the capstrip and using 7 AN442AD5 or 11 AN442AD4 rivets each side of splice. If the damage runs into the web, patch the web as in figure 156 and use a filler the thickness of the combined web and channel. Damage to the flange alone may be repaired by nesting an $.032 \times .5 \times .63$ inch angle on either side of the channel and riveting along the longer leg.
3. Damage occurring within 1 inch of the flange of rib station 382 should be patched with a bent up sheet nested within the rib. This sheet, which should extend a minimum of .63 inch beyond the cleaned up area, is riveted to the rib with AN442AD4 rivets as in figure 146.
4. Rib station 412 may be patched as shown in figures 147 and 148. Clean up damage and cut off gang channel allowing .75 inch minimum between center line of nut and end of channel. Individual anchor nut plates are located in the repaired region to line up with the wing tip attachment holes. The skin doubler is cut away on either side of the damage far enough to allow seven rivets as indicated in the figures. The patch is so cut out that the web attachment will fall between the flanged holes. Relief holes (. 19 inch radius) are drilled at the point where the patch is flanged. This flange should be in the same plane as the original rib flange and riveted to the skin and doubler with the same type and size rivets and spacing as is used through the . 064 doubler on either side. Unless the patch is flanged around existing lightening holes, vertical stiffeners must be used, so placed that the center line of rivets lie along the vertical center line of the lightening holes. (See figure 159).
5. Rib station 142 has extruded angle capstrips which, in their full section, may be spliced as in figure 231. Damage which, when cleaned up, is localized in one leg only may be patched with steel or dural plates of the gage given in the above figure and whose width is the width of the angle. The leg widths vary from 2 inches to 1.5 inches to 1 inch. For the upper capstrip, seven, five and three bolts respectively should be used, depending on the width. These may be AN3 or AN23 bolts. For the lower capstrip, nine, seven, and five bolts respectively are used. These are of the same type as above.

(d) DAMAGE REPAIRABLE BY IN-

 SERTION.1. Damage to webs which, when cleaned up, extend for 5 inches or more in length may be repaired by insertion with splice plates at each end. When the damage occurs in the region of lightening holes, the web should be cut away so that the splice may be made between holes. If a solid web replaces a lightening hole, add a vertical stiffener as shown in figure 149. Carefully drill out all existing rivets which interfere with the repair and use the resulting holes in arranging the new rivet pattern. If rivet holes are enlarged, see section I, paragraph 10 . i. for procedure. Inserts and splices should be of the same gage as the damaged webs.
2. Stiffeners may be repaired by insertion as per figures 231 and 232.
3. Channel type capstrips may be repaired by an insertion of the same cross-section as the

REFERENCE: SECTYON V, PARAGRAPH 2d[4]
FIGURE 145-OUTER PANEL RIB-CHANNEL AND WEB REPAIR

REFERENCE: SECTION V, PARAGRAPH 2d(4)

FIGURE 147-REPAIR TO OUTER PANEL RIB STA. 412 (PARTIAL DAMAGE)

FIGURE 148—REPAIR TO OUTER PANEL RIB STATION 412—COMPLETE DAMAGE

FIGURE 150-NOSE RIB REPAIR-DAMAGE FROM FLANGE TO LIGHTENING HOLE
original channel and the splice plates of the same gage channel section nested into the basic channel. Riveting is as per figure 145.
4. Extruded angle capstrips on rib station 142 should be repaired by insertion if the damage covers more than one leg. The length of splice and insert legs is determined from the angle size and the number of bolts is determined as under paragraph 2. d. (4) (c) of this section.
(e) DAMAGE REQUIRING REPLACEMENT.

1. All vertical stiffeners should be replaced if the material is available.
2. Ribs and capstrips that are extensively damaged may be replaced.
3. All fittings, clips, etc. are to be replaced.
(5) NOSE RIBS.
(a) GENERAL.
4. The nose ribs of the center and outer panel are of the press formed type with lightening holes and beads. The center panel nose ribs are essentially skin stiffeners, there being no tie to the web of the front beam. Outer panel nose ribs are of two types of construction. Air Force Nos. $41-5159$ to 41 5183 have ribs extending from the 30 percent spar forward, whereas all subsequent ships have these ribs divided into two parts: One section from the 30 percent spar forward to the de-icer tee, and one from the de-icer tee forward. The type of construction is similar for all these ribs, therefore, the repairs in figures 150 and 151 are typical.

FIGURE 151-NOSE RIB REPAIR-DAMAGE FROM FLANGE THROUGH LIEHTENING HOLE
2. Lightening holes which do not carry conduits may be covered with a sheet of the same gage as the rib, provided a vertical stiffener is attached to the plate in such a manner that the rivet line coincides with the vertical center line of the hole.
3. Beads may be either flattened out with a mallet and block of wood or may be repaired on the surface opposite to the bead.
4. All riveting through the skin should be countersunk. Refer to section I, paragraph 10.f.(2) for information on dimpling and machine counter-sinking. Access may be had through the many doors in the nose sections.
(b) NEGLIGIBLE DAMAGE.

1. Dents free from cracks, abrasions and sharp corners may be neglected. These dents should be restored to shape to prevent their developing into cracks, using care, however, not to stretch or crank the sheet in the process. Inspect all rivets near the damage to see that they have not been loosened or sheared, or the holes elongated.
2. Holes and cracks which can be cleaned up to a 1 inch circle may be neglected, providing the edge of the hole is at least .75 inches from the nearest flange or rivet, and 1 inch from any edge or stringer cut-out. Such holes should be a minimum of 4 inches apart between centers.

FIGURE 152 -NOSE RIB REPAIR—FORMED WEB TYPE
(c) DAMAGE REPAIRABLE BY

PATCHING.

1. Damage occurring between a lightening hole and the leading edge may be repaired as in figure 150. The damage is cleaned up maintaining .5 inch corner radii and the rivets through the skin in the region of the patch carefully drilled out. The patch is formed of the same gage sheet as the rib and scalloped in the same manner as the original rib. If the break is horizontal and, when cleaned up, is a maximum of 1.5 inches wide, a vertical .5 inch flange is turned up at the edge of the hole as in figure 150. Any other break may be repaired as shown in figure 151. The sheet is cut out around the hole if it is necessary to maintain an opening for conduits, etc. and flanged horizontally above and below the hole. AN442AD4 rivets are used through the web and AN426 rivets through the skin. The patch may have a
flanged hole formed in it to match the damaged hole in the rib. In this case, the flange discussed above is not required.
2. Damage to a rib between the upper or lower surface and a lightening hole may be repaired with a bent up sheet of the same gage as the rib. If the damaged area after cleaning up is more than .75 inch from a lightening hole, a flat plate flanged against the skin is used in patching; if the damaged area comes closer to the hole, the patch is turned up to form a .5 inch flange tangent to the hole. Damage running beyond the tangency point of the hole should be patched by a sheet that reaches to the other side and riveted as in figure 151. Fillers are used as necessary.
3. Damage which extends the full depth of the rib may be patched with a sheet whose flanges

FIGURE 153-NOSE RIB-FORMED WEB TYPE REPLACEMENT

FIGURE 154-REPAIR TO INTERMEDIATE NOSE RIBS
are the same width as the rib flange against the skin. Use a filler between the patch and the skin as necessary. The patch may have a flanged lightening hole to match that in the rib, or, if no hole is made, a formed argle is used. The line of rivets should lie along the vertical center line of the hole. Repairs will be similar to that for rib station 384 . (See paragraph 2. d. (4) (c) 3. of this section).
4. Damage to the one leg of any angle may be patched with a plate riveted on either side of the damage. See figure 232 for size of plate and number of rivets.
5. Leading edge ribs on the outer panel on airplanes numbered AF41-5184 and up, are repaired as in figure 152. The patch may either be bent to follow the contour of the rib or .188 inch filler plates may be used to build up the rib to a level surface.
6. Damage to beads may be patched with a sheet of the same gage as the wob placed on the side opposite the bead with a line of rivets on either side of the bead. A half-inch vertical flange should be turned up on the sheet.
7. Intermediate nose ribs, figure 154, are repaired in a similar manner.
(d) DAMAGE REPAIRABLE BY IN. SERTION.

1. If the damage occurs near the point of attachment of the rib to another rib or to a spar, the region at the attachment should be cut away and a new section inserted. The insert is spliced to the rib with a shcet of the same gage, the riveting being the same as existed in the original attachment.
2. For any other damage which, when cleaned up, is 6 inches or more in length, an insert may be ised, splicing each end with similar rivet patterns to that used in the above patches.
3. If the damage to an angle is greater than that specified in this section, paragraph 2. d. (5) (c) 4., repair as per figure 232.

(e) DAMAGE REQUIRING REPLACE-

 MENT.1. The nose ribs, especially those in the outer panel, are fairly small and may be replaced if the damage is extensive.
2. The outer panel leading edge ribs whose webs are pressed formed in two levels should be replaced when necessary with a flat web maintaining
the necessary flanged lightening hole. Two vertical stiffeners are attached to the web on either side of hole with their outstanding leg .88 inch from the irside edge of the hole. The angle is $.040 \times .5 \times .63$ inch, the shorter leg being the outstanding one. Rivet the angle to the web with AN442AD4 rivets at $1 \pm .1$ inch spacing. (See figure 153.)
3. All angles are short and may be easily replaced. Figure 232 gives the various replacements.
4. All brackets, clips, etc. are to be replaced.
(6) TRAILING EDGE RIBS.
(a) GENERAL.
5. The trailing or closure ribs are those which extend from the 70 percent spar to the flaps or aileron. The aft contour of the rib is such as to fit the leading edges of the control surfaces. Some of these ribs have added stiffness built into them in the form of channels, doublers, etc.
6. There are a number of doors which make the interior of this region accessible for repair. These doors are fastened by screws and are easily removable.
7. All patches on the curved closure skin are to be placed on the inside of the skin to prevent any interference with the movable surfaces.
8. Aileron hinge supports occur on stations 172, 232, 275, 292, and 352 (outer panel). These ribs are strengthened by various combinations of channels, angles and doublers. The rib at station 275 is made up of two supports attached to the 70 percent spar at 8.65 inches either side of station 275 and converging at the aft end at the hinge. Figure 155 shows this rib and a typical aileron rib.
9. Flap closure ribs have stiffeners in the form of flared channel sections.
(b) NEGLIGIBLE DAMAGE.
10. Dents, free from cracks, abrasions, and sharp corners may be neglected. These dents should be restored to shape wherever possible to prevent their developing into cracks. Inspect all rivets near the damage to see that they have not been loosened or sheared.
11. Holes and cracks, which when cleaned up to a 1 inch diameter circle, may be considered negligible provided the edge of the hole is at least .75 inches from any flange cut-out or rivet.

(c) DAMAGE REPAIRABLE BY

PATCHING.

1. Damage to flat of web may be repaired with a sheet of the same gage as the rib and riveted with AN442AD4 rivets $.68 \pm .06$ inch spacing as per figure 156.
2. If web damage occurs in region of existing rivet holes or in region of a channel splice, the rivet pattern through the patch should include all other existing and added rivets.
3. Damage which comes closer to a flange than .75 inch is patched in the same manner as described above except that a flange should be turned up and riveted to the rib with three AN442AD4 rivets either side of the cleaned up area.
4. All damaged areas should be cleaned up with minimum corner radii of .5 inch.
5. Straight sections of channels may be patched by nesting a section of similar form and gage in the damaged portion. If the complete section is damaged, the patch should be a channel. If only a flange is damaged, patch with an angle of the same gage and same width of outstanding leg. Riveting for these patches is given in figures 229 and 230. It is necessary to read the explanation accompanying these figures to apply the results properly.
6. Damage to the flared region of the channels may be patched only if such damage occurs to the flanges alone and can be repaired by the use of an angle. Greater damage calls for replacement.
7. Damage around an umreinforced cutout should be patched with a plate of the same gage as the rib. This plate has a similar hole in it. Riveting is as paragraph 1. above, and overall dimensions 1 inch greater than the hole.
(d) DAMAGE REPAIRABLE BY INSERTION.
8. Damage to the aft end of the rib should be cleaned up by cutting off the damaged portion and splicing in a new trailing edge as shown in figure 156. The rib is cut off at a point through the rear stringer cut-out, and the splice plate is a sheet of the same gage as the rib with a single flange. The riveting is shown in the figure, the number of rivets in a line normal to the flange depends on the depth of the web. Always maintain the specified rivet spacing.
9. If the damage to the flared part of channels extends to the back, a new flared portion
should be inserted ana spliced to the remaining channel as in paragraph 2. d. (6) (c) 5.. of this section.
10. Sections of the rib, which tie into the 70 percent spar or to any fittings, are to be repaired by insertion if damaged. The damaged portion is cut away maintaining .5 inch minimum corner radii. The insertion and splice plate are of the same gage as the rib and the riveting as per paragraph 2. d. (6) (c) 1. of this section.
11. Angles over 10 inches in length may be repaired in accordance with figures 231 and 232.

(e) DAMAGE REQUIRING REPLACE-

 MENT.1. All clips, gussets, short bent up angles, and cut-out reinforcements are to be replaced if damaged.
2. Extruded angles may be replaced with the same type of extrusion or with the equivalent bent up section. (See figures 231 and 232.)
3. Channel sections which are not constant and which have cut-outs are best replaced.
4. All forgings to be replaced.
5. Since these ribs are relatively small, any extensive damage may most efficiently be taken care of by putting in a new rib.

e. CENTER PANEL TO OUTER PANEL ATTACHMENT.

(1) GENERAL.-The two panels are attached by a row of bolts through heavy extruded angles running along the outer surface of the wing. These bolts are of the Allen head type, heat treated to 160,000 pounds per square inch.

WARNING

THESE BOLTS ARE SPECIAL AND CARE MUST BE OBSERVED IN THEIR REPLACEMENT TO GET MATERIAL OF THE SAME HEAT TREAT.

(a) Large doublers tie the skin and stringers into the match angles. Since the structure is such that patching cannot be resorted to and splices can be used only on the skin, damaged members may be repaired only by insertion, with each insert overlapping the adjacent insert as in figure 157. This figure gives a complete repair to the surface assuming all the members in this region to be damaged. Figures 159 and 160 give the repair of the floating rib at

AILERON HINGE RIB STATION 275

TYPICAL HINGE RIBS
REFERENCE: SECTION V PARAGRAPH 2 d (6)

FIGURE 155-AILERON HINGE RIB STRUCTURE

SEE NOTES BELOW EACH SIDE OF SFLICE THROUGH SKIN

3. ALL RIVET EDGE DISTANCE $=.32 \mathrm{MINIMUM}$
4. ALL RIVET SPACING . 06 EXCEPT AS NOTED

REFERENCE: SECTION V PARAGRAPH 2 d (6)
FIGURE 156-REPAIR TO TRAILING EDGE RIBS

FIGURE 157-CENTER PANEL-OUTER PANEL JUNCTION REPAIR (STA. 192)

LEGEND FOR FIGURE 157

Attach angle insert-make from original extrusion or machine from 24ST bar stock.
.051 Doubler insert-24ST Alclad. To extend a minimum of 3 inches beyond the ends of 1 .
Skin insert-24ST Alclad. Same gage as skin being repaired. To extend a minimum of 2 inches beyond the doubler insert 2, the chordwise length being such that the splice occurs between stiffeners.
Spanwise splice plates for skin-24ST Alclad. Same gage as skin. Place on inner surface.
Chordwise splice plate for skin-24ST Alclad. Same gage as skin. Place on outer surface. .051 wing skin doubler-24ST Alclad.

Wing skin-See figure 102 for gage.
Wing stringers-See figure 107 for repair.
Attach angle-Alcoa Die No. 29086 (for upper and lower surfaces).
Attach angle insert. See 1 above.
.051 Doubler insert-24ST Alclad. To extend same distance or greater than 2 above.
Skin insert-24ST Alclad. Same gage as skin being repaired. To extend a minimum of 2 inches beyond the doubler insert 11.

Spanwise splice plates for skin-24ST Alclad. Same gage as skin. Place on inner surface.
Chordwise splice plate for skin-24ST Alclad. Same gage as skin. Place on outer surface. . 051 Wing skin doubler-24ST Alclad.

Wing skin. See figures 103 and 104 for gage.
Attach angle-Alcoa Die No. 29576 (29575 for lower surface).
.156 Reinforcement insert-24ST Alclad. Rib Station 192. Pick up a minimum of 3 bolts each side of the angle insert 1 .
.156 Skin insert-24ST Alclad. Rib Station 192. Pick up a minimum of 2 bolts each side of angle insert 1. Rib web insert-24ST Alciad. Same gage as web (. 032 in nose section and .036 in intermediate regionsee figure 158). To extend each side of damage to pick up one row of rivets through the vertical web stiffeners.
. 040 Web insert splice plate- 24 ST Alclad. Pick up one row of rivets through the insert and the web.

TABLE 57

1. ALCOA DIE NO. 29089
2. ALCOA DIE NO. 29083
3. ALCOA DIE NO. D-79-O
4. 032 WEB 24 ST ALCLAO
5. . 036 WEB 24 ST ALCLAD
6. 156 CAPSTRIP $245 T$ ALCLAD
7. 040 REINFORCEMENT 24ST ALCLAO

REFERENCE: SECTION Y, PARAGRAPH 20(1)

FIGURE 158 - FLOATING RIB STRUCTURE

REFERENCA SECTION V PARAGRAPH 2 。

FIGURE 159-FLOATING RIB WEB REPAIR (STA. 192)

NOTES,

1. SPLIGE AFT OF DE-ICER TEE TO

BE SIMSLAR TO EXISTING SPLICE
2. SPLICE SHOWN TO BE USED FORWARD

CUT AWAY RIV-NUT SPLIC
PLATE EACH END OF SPLICE,
INSTALL REQUIRED RIV.NUTS
THROUGH SPLICE PLATE

IVET PATTERN

ALL ADDED RIVETS THROUGH SKIN
TO BE 671D-6AD
4. AIL RIVET EDGE DISTANCE TO

BE . $3 B$ EXCEPT AS NOTED
.063 ANGLE SPLICE X 4130 STEEL. NORMALIZING TO $90,000 \mathrm{LB} / \mathrm{SQ} \mathbb{I N}$.
AFTER FORMING
APPLY CORROSION RESISTING COATING AS PER SECTION I PARAGRAPH 11

- DE-ICER TEE. ALCOA OIE NO. 129193

REFERENCEI SECTION Y PARAGRAPH 2 •

ALCOA DIE NO. L-28928 see figure 160

outer panel lower attach angle
FIGURE 161-WING ATTACH ANGLE EXTRUSIONS
station 192 , showing the repair to the web and to the leading edge match angle. Figure 158 shows the rib assembly, and the accompanying table (table 57) gives the component parts. The following torques should be applied to the various attachment bolts:
Bolt Diameter
Torque in Inch-Pounds
(no lubrication)

$1 / 4$	50 to 70
$3 / 8$	160 to 190
$7 / 16$	450 to 500

(2) NEGLIGIBLE DAMAGE.-No damage in this region will be negligible except for the rib web. Holes in the web which, when cleaned up, are .75 inch diameter or less may be neglected, provided such holes are a minimum of 2 inches from any rivet, and at least 5 inches apart.
(3) DAMAGE REPAIRABLE BY PATCH-ING.-If the damage to the rib, when cleaned up, is more than 2 inches from the rib capstrip, it may be patched as in figure 159. The patch should run to the nearest vertical stiffener cach side of the damage. The patch is of the same gage as the web. Damaged stiffeners are repaired as per figures 232 and 233.
(4) DAMAGE REPAIRABLE BY INSER-TION.-Cut out the match angle on the panel where the chordwise extent of damage is least. Cut out other match angle so that the overlap of angles will be two bolts as shown. The doubler insert on panel with the shorter match angle cut-out should be at least 2 inches longer than the angle cut-out and should extend the entire width of the doubler. The doubler insert on the other panel should be the same length as the angle insert and extend the width of the doubler. The skins on each panel should be cut back far enough beyond the doublers to allow for the necessary splice plates. Rivets in the region of the inserts should be carefully drilled out and replaced by the same size and type rivet. Every attempt should be made not to increase the size of the rivet holes. If the holes are enlarged, see section I, paragraph 10. i. for procedure. The skin corners should be rounded off with a .5 inch radius. Spanwise splices should be placed on the inner surface paraliel to the stringers whereas the chordwise splice plates are placed along the outer surface of the wing. The stringers, if damaged, should be repaired as in figure 107. The rib at station 192 will require reinforcement and shim inserts as shown in figure 157, keeping the number of bolts picked up by each insert as shown. The web insert runs from center
line to center line of stiffeners. An 040 splice plate ties the horizontal edge of the web insert to the web.
(a) The attach angle over the nose section may be repaired by insertion with splice plates similar to those existing at the aft end of the leading edge attach angle if the break occurs aft of the de-icer tee. (See figures 102 through 104.) If the break is forward of this point, the splice plate is similar except that it has no flange and is of 102 gage.
(b) If no extruded stock is available for the match angles, they may be machined out of 24 ST bar stock with the grain running along the length of the angle.
(5) DAMAGE REQUIRING REPLACE-MENT.-Small gussets over the spar ends, the vertical .156 gage plates running the height of the 30 percent and 70 percent spars both on the outer panel and on rib station 192, and all small clips, brackets, etc. should be replaced if damaged.

3. WINGTIPS.

a. GENERAL.-The wing tip is attached to the outer panel at outer panel station 412 by means of a row of screws. The tip is of all metal construction consisting of two beams, three ribs, stiffeners, and skin, (see figure 162 and table 58). Since the tip is fairly small, it should be replaced if any extensive damage occurs. Figure 162A and table 58A show the structure and component parts of the wing tip installed on airplanes AF44-78545 and subsequent.
b. SKIN.
(1) GENERAL. -The skins are of .020 and .025 gage and are fastened to the structure with AN426AD4 rivets forward of the 30 percent spar and with $671 \mathrm{D}-4 \mathrm{AD}$ rivets aft of the 30 percent spar. The leading and trailing edges are of formed .032 sheet.
(2) NEGLIGIBLE DAMAGE.-Skin dents free from cracks and abrasions may be restored to the original shape. Care should be taken not to crack the skin in the process.
(3) DAMAGE REPAIRABLE BY PATCH-ING.-Damage not considered negligible should be cleaned up with .5 inch corner radii and patched with a similar gage sheet using a double row of 671D-4AD or AN426AD4 rivets at $.88 \pm .1$ inch spacing or a double row of LS1127-5 rivets at $.68 \pm .06$ inch spacing.
(a) The edges may be repaired with an .032 gage patch using a double row of rivets spanwise and a single row chordwise for the leading edge. The trail-

AN 01-25LA-3

ing edge requires a single row of rivets around the patch. AN426AD4 rivets should be used on the leading edge and $671 \mathrm{D}-4 \mathrm{AD}$ on the trailing edge. (See figure 163.)
b. Repair by insertion or replacement will depend on the materials available and the discretion of the repair personnel.
c. STRINGERS.-The stringers are all .040 gage bent up sheet and may be spliced with an angle of the same gage. Three 671D-4AD or AN426AD4 rivets are required per leg each side of splice, the countersunk head rivets being used through the skin flange forward of the 30 percent spar.

TABLE 58
COMPONENT PARTS OF WING TIP

Item	Designation	Sta- tion	Part No.	Gage
1.	Stiffener		$20-031-1001-22$.040
2.	Stiffener		$20-031-1001-5$.040
3.	Stiffener		$20-031-1001-23$.040
4.	Stiffener		$20-031-1001-24$.040
5.	Spar Assembly		$20-031-1014$.032
6.	Stiffener		$20-031-1001-25$.040
7.	Rib	428.42	$20-031-1015$.025
8.	Attach Angle	412.00	$20-031-1001-33$	$*$
9.	Attach Angle	412.00	$20-031-1001-19$	$*$
10.	Stiffener		$20-031-1001-9$.040
11.	Stiffener		$20-031-1001-27$.040
12.	Stiffener		$20-031-1001-41$.040
13.	Stiffener		$20-031-1001-28$.040
14.	Stiffener		$20-031-1001-29$.040
15.	Stiffener		$20-031-1001-16$.040
16.	Edge		$20-031-1001-17$.032
17.	Spar Assembly		$20-031-1013$.032
18.	Stiffener		$20-031-1001-12$.040
19.	Rib	443.9	$20-031-1012$.025
20.	Stiffener		$20-031-1001-11$.040
21.	Stiffener		$20-031-1001-10$.040
22.	Rib	452.8	$20-031-1011$.025
23.	Stiffener		$20-031-1001-8$.040
24.	Stiffener		$20-031-1001-7$.040
25.	Stiffenet		$20-031-1001-6$.040
26.	Leading Edge		$20-031-1001-3$.032
27.	Stiffener		$20-031-1001-20$.040
28.	Stiffener		$20-031-1001-37$.040
	Al			

[^1]d. RIBS-All the ribs are flanged .025 gage bulkheads with flanged lightening holes and may be repaired in a manner similar to outer panel rib station 382. (See figure 146.)
e. SPARS. -The spars are flanged .032 gage sheet with flanged lightening holes. The repairs are similar to those to the ribs but .032 gage stock must be used.
f. REPAIR OF ATTACH ANGLE.-This member is made from Alcoa Die L-29087. Damage to this section should be repaired by inserting a new piece of extrusion in the damaged area and splicing with an .064 gage angle on the outboard side of the vertical leg. Use four 671D-5AD rivets through each leg each side of the break. (See figure 163.)

TABtE 58A
COMPONENT PARTS OF WING TIP

Item	Designation	Sta- tion	Part No.	Gage
1.	Stiffener		$20-031-5701-7$.040
2.	Stiffener		$20-031-5701-6$.040
3.	Stiffener		$20-031-5701-21$.040
4.	Stiffener		$20-031-5701-22$.040
5.	Stiffener		$20-031-5701-23$.040
6.	Splice Angle	412.00	$20-031-5701-50$	CE
				$4199-1$
7.	Stiffener		$20-031-5701-16$.040
8.	Stiffener		$20-031-5701-17$.040
9.	Stiffener		$20-031-5701-18$.040
10.	Stiffener		$20-031-5701-19$.040
11.	Stiffener		$20-031-5701-20$.040
12.	Splice Angle		$20-031-5701-49$	CE-
			$4199-1$	
13.	Rib		$20-031-1015-39$.025
14.	Beam		$20-031-5701-40$.032
15.	Rib		$20-031-1015-3$.025
16.	Stiffener		$20-031-5701-15$.040
17.	Stiffener		$20-031-5701-14$.040
18.	Rib		$20-031-1012-3$.025
19.	Stiffener		$20-031-5701-12$.040
20.	Stiffener		$20-031-5701-13$.040
21.	Rib		$20-031-1011-37$.025
22.	Stiffener		$20-031-5701-11$.040
23.	Spar		$20-031-1014-1$.032
24.	Edge	459.42	$20-031-5701-36$.032
25.	Stiffener		$20-031-5701-10$.040
26.	Stiffener		$20-031-5701-9$.040
27.	Rib	452.78	$20-031-1011-2$.025
28.	Rib	443.93	$20-031-1012-2$.025
29.	Stiffener		$20-031-5701-8$.040
30.	Rib	428.42	$20-031-1015-2$.025
31.	Edge		$20-031-5701-34$.032

FIGURE 162B - AILERON STRUCTURE (AIRPLANES AF44-78545 AND SUBSEQUENT)

TABLE 58B
AILERON AND TAB COMPONENT PARTS
(AIRPLANES AF44-78545 AND SUBSEQUENT)

	Ifem	Designation
	1	Rib
	2	Rib
1	3	Rib
:	4	Rib
\|	5	Tab Spar
-	6	Rib
I	7	Rib
	8	Rib
	9	Rib
	10	Rib
	11	Rib
	12	Rib
	13	Fib
	14	Rib
	15	Main Spar
	16	Rib
	17	Trailing Edge
	18	Rib
	19	Rib
	20	Rib
	21	Rib
	22	Rib
	23	Rib
	24	Rib
	25	Rib
	26	Rib
1	27	Rib
	28	Rib
	29	Rib
	30	Rib
	31	Rib
	32	Rib
	33	Rib
	34	Rib
	35	Rib
	36	Rib
	37	Nose Ribs
	38	Nose Ribs
	39	Nose Ribs
	40	Front Spar
	41	Nose Ribs
i	42	Nose Ribs
1	43	Nose Ribs
	44	C. Balance
	45	Rib
।	45	C. Balance
	47	Nose Rib
	48	Nose Rib
	49	C. Balance
	50	Rib
	51	C. Belance
	52	Rib
	53	Front Spar
	54	Rib
	55	Rib

Part No.	Web	Gage	Sta.	Ifem	Designation
20-050-5702-3	. 016	24SO	173.20	56	Rib
20-050-5744-1	. 032	24ST	178.38	57	C. Balance
20-050-5702-4	. 016	24ST	186.29	58	Rib
20-050-5702-5	. 016	24ST	194.22	59	Rib
20-050-5702-13	. 016	24ST		60	C. Balance
20-050-5745-1	. 016	24ST	202.567	51	Rib
20-050-5702-6	. 015	24ST	209.66	52	Rib
20-050-5702-7	. 016	24ST	217.17	63	C. Balance
20-050-5745-2	. 016	24ST	224.69	54	Rib
20-050-5702-8	. 016	24SO	230.40	55	Rib
20-050-5731-6	. 020	24ST	248.04	66	c. Balance
20-050-5729-11	. 020	24ST	256.06	67	Rib
20-050-5731-5	. 020	24ST	264.09	68	C. Balance
20-050-5721-1	. 820	24SO	276.35	69	Front Spar
20-050-5711.1	. 032	24ST		70	Nose Ribs
20-050-5731-4	. 020	24ST	284.18	71	Nose Ribs
20-050-5714-1	. 025	24ST		72	Front Spar
20-050-5729-10	. 020	24ST	292.65	73	C. Balance
20-050-5731-3	. 020	24ST	301.12	74	Rib
20-050-5729-9	. 020	24ST	309.59	75	Rib
20-050-5731-2	. 020	24ST	318.06	76	C. Balance
20-050-5729-8	. 020	24ST	326.53	77	Rib
20-050-5731-7	. 020	24ST	335.00	78	Rib
20-050-5729-7	. 020	24ST	343.47	79	C. Balance
20-050-5722-1	. 020	24ST	352.00	80	Rib
20-050-5729-6	. 020	24ST	360.44	81	Rib
20-650-5729-5	. 020	24ST	368.93	82	C. Balance
20-050-5729-4	. 020	24ST	577.43	83	Rib
20-050-5729-3	. 020	24ST	385.92	84	C. Balance
20-050-5729-2	. 020	24ST	394.42	85	Rib
20-050-5729-15	. 020	24ST	402.91	86	Rib
20-050-5723-1	. 020	24ST	412.00	87	Rib
20-050-5729-13	. 020	24ST	420.18	88	Rib
20-050-5729-12	. 020	24ST	428.42	89	C. Balance
20-050-5729-14	. 020	24ST	437.00	90	Rib
20-050-5733-2	. 020	24ST		91	C. Balance
20-050-5750-2	. 020	24SO	437.00	92	Front Spar
20-050-5730-25	. 020	24SO	428.42	93	Spar
20-050-5730-27	. 020	24SO	420.18	94	Rib
20-050-5749-2	. 032	24ST		95	Stiffener
20-050-5732-4	. 020	24SO	414.50	96	Rib
20-050-5732-8	. 020	24SO	409.50	97	Rib
20-050-5730-26	. 020	24SO	402.91	98	Rib
20-050-5751-17			99	Rib
20-050-5730-2	. 020	24SO		100	Rib
20-050-5751-2		101	Rib
20-050-5730-3	. 020	24SO	385.92	102	Rib
20-050-5730-4	. 020	24SO	377.43	103	Rear Spar
20-050-5751-3				104	Rib
20-050-5730-5	. 020	24SO	368.93	105	Rib
20-050-5751-4			106	Rib
20-050-5730-6	. 020	24SO	360.44	107	Rib
20-050-5739-1	. 032	24ST	108	Rib
20-050-5732-2	. 020	24SO	354.50	109	Rib
20-050-5732-3	. 020	24SO	349.50		

No	Web	G	Sta.
-	. 02	24	
20-050-5751-5			
20-050-5730-8	. 020	24	335.00
20-05	. 020	245	32
-050-5751-6			
20-050-5730-10			
20-050-5730-11	. 020	24S	309.59
50			
20-050-5730-12	. 02	24	
20-050-5730-13	. 02	24S	292.
20-050-5751-8			
20-050-5730-14	. 02	24S	284.18
20			
20-050-5738-1	. 03	245	
0-5754-2	020	24 S	276.35
20-050-5	. 02	24S	271.45
20-050-5737-1	. 032	24ST	
20-050-5751-10			
20-050-5730-15	. 02	24S	99
20-050-5	. 020	24S	256.06
20-050-5751-11			
20-050-5730-17	. 02	245	04
20-050-5730-18	. 020	24	24
20-050-5751-12			
20-050-5	. 02	24	0
20-050-5730-20	. 02	24	224.48
20-050-5751-13			
20-050-5730-21	. 02	24	216.97
20-050-5			
20-050-5730-22	. 02	245	209.46
20-050-5732-6	. 020	24	204.50
20-050-5	. 020	24S	199.50
20-050-5	. 02	24	
20-050-5751-15			
20-050-5730-24	. 020	24	
20-050-5751-16			
20-050-5712-1	. 03	24 S	
20-050-5	. 02	245	
20	. 0	24S	176.80
20-050-5701-27	. 020	245	178.36
20-050-5726-1	. 020	24S	179.57
20-050-5	. 02	24,	187.35
05	. 0	24	194.75
20-050-5720-1	. 02	24S	202.00
20-050-5728-2	. 02	24	209.46
20-050-5728-4	. 020	24 S	216
20-050-5	. 020	24	22
20-050-5713-1	. 0	245	
20-050-5727-2	. 020	245	232.10
20-050-5748-2	. 02	24	240.02
20-050-5702-12	. 016	24SO	220.62
20-050-5702-11	. 0	24	205.84
20-050-5702-10	. 016	24S0	197.64
0 -0	. 01	24SO	

FIGURE 162C - AILERON SKIN DIAGRAM (AIRPLANES AF44-78545 AND SUBSEQUENT)

TABLE 58C-AILERON SKIN RIVETING (AIRPLANES AF44-78545 AND SUBSEQUENT)

CHORDWISE SKIN CONNECTIONS-AILERON

Location	Extent	Cage of Outboard Skin	Gage of Inboard Skin	$\begin{aligned} & \text { Rivet } \\ & \text { Types } \end{aligned}$	Rivet Spacing	Rivet Rows
Station	Trailing Edge					
428.42	To Main Spar	. 020	. 020	671D-3AD	1.25	1
Station	Main Spar					
428.42	To Leading Edge	. 032	. 020	671D-3AD	1.25	1
$\begin{aligned} & \text { Station } \\ & 402.91 \end{aligned}$	Trailing Edge to Leading Edge	. 020	. 020	671D-3AD	1.25	1
$\begin{aligned} & \text { Station } \\ & 318.06 \end{aligned}$	Trailing Edge to Leading Edge	. 020	. 020	671D-3AD	1.25	1
Station 232.1	Trailing Edge to Main Spar	. 020	. 020	671D-3AD	1.08	1
$\begin{aligned} & \text { Station } \\ & 232.1 \end{aligned}$	Main Spar to Leading Edge	. 020	. 020	$671 \mathrm{D}-3 \mathrm{AD}$	1.25	1

SPANWISE SKIN CONNECTIONS-AILERON

| Location | Extent | Gage of
 Forward Skin | Gage of
 Aft Skin | Type of
 Rivets | Rivet
 Spacing | No. of
 Rivet Rows |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Main Spar | Sta. 453.5 to Sta. 428.4 | .032 | .020 | NAF1195-5A | 1.03 | 1 |
| Front Spar | Sta. 428.4 to Sta. 412.5 | .020 | .020 | NAF1195-5A | 1.2 | 1 |
| Main Spar | Sta. 318 to Sta. 232 | .020 | .020 | $671 D-4 A D$ | .90 | 1 |

REFERENCE SECTION Y PARAGRAPH 3 b AND 3 f
FIGURE 163-REPAIR TO WING TIP MATCH ANGLE AND MOLDING

FIGURE 164-AILERON STRUCTURE

TABLE 59
AILERON AND TAB COMPONENT PARTS

4. AILERONS:

a. GENERAL.-The aileron on airplanes up to AF44-78545 differs from the other control surfaces in that it is not a stressed skin structure.

The structure consists of a spanwise beam to which is attached the ribs and hinges. The section forward of the main beam is covered with a metal skin and then the entire structure is covered with fabric. See figure 164 and table 59.

On airplanes AF44-78545 and subsequent the metal-covered aileron may be repaired in accordance with the instructions and limitations given in paragraphs b, c, and d following. Repairs to skin aft of the main beam may be accomplished by the methods outlined for nose skin repair. For aileron structure see figure 162 B and table 58B. For aileron skin diagram see figure 162 C and table 58 C .
b. NOSE SKIN.
(1) NEGLIGIBLE DAMAGE.-Smooth dents free from cracks and abrasions may be neglected but should be restored to shape to prevent further damage developing.

Holes not over . 5 inch in diameter when cleaned up may be neglected but should be covered with an .020 patch attached with LS1127-4 rivets through each corner. See figure 106.
(2) DAMAGE REPAIRABLE BY PATCH-ING.-Any damage not extending over an entire panel of skin may be repaired by patching.

Clean up the damaged area by rounding all sharp corners to a .5 inch radius and stopping all cracks with a $1 / 8$ inch hole at each end. Cover the damaged area with a patch of the same gage as the skin and attach with two rows of LS1127-5 rivets at a $.68 \pm .06$ inch spacing. See figure 165.
(3) DAMAGE REPAIRABLE BY INSER-TION.-Due to the small cross-section of the aileron, repair by insertion will be very difficult and impractical. Therefore, it will be omitted from this part of the text.

c. BEAM.

(1) GENERAL.-This beam, running the entire length of the aileron is a formed channel section. The web is stiffened by flanged lightening holes while the flanges are not reinforced.
(2) NEGLIGIBLE DAMAGE.-Smooth dents free from cracks or abrasions may be neglected but
should be restored to shape to prevent further damage from developing.

Nicks or cracks in the edge of the flange not over .13 inch deep when cleaned up with a round file maintaining . 25 inch corner radii and not closer than 3 inches to a similar nick or crack may be neglected.
(3) DAMAGE REPAIRABLE BY PATCH-ING.-Damage extending through the flange and not over .5 inch down the web may be repaired by patching.

Nest a $1.15 \times .7$ angle the same gage as the web into the flange, extending it far enough each side of the damage to pick up four AN442AD4 rivets. If a lightening hole flange interferes with the angle it may be flattened out to allow the angle to fit properiy. See figure 166.

A filler should be inserted between the skin and repair angle to eliminate the necessity of joggling.
(4) DAMAGE REPAIRABLE BY INSER-TION.-Damage extending into a rib connection or a lightening hole should be repaired by insertion.

Make a square cut across the beam each side of the damaged area, leaving as much room as possible between the edge of the cut and the next lightening hole.

Form an insert from the same gage material and of the same section as the original beam. Splice in place using plates 2.5 inches wide picking up two rows of AN442AD4 rivets at $.68 \pm .06$ inch spacing each side of splice. Splice the flanges following the same procedure as outlined by patching. If the cutout is less than 9 inches in length the splice angle should be continuous and if the cutout is greater than 9 inches in length, a separate splice angle may be used at each end of the cut.
(5) DAMAGE NECESSITATING REPLACE-MENT.-Replace all clips, brackets, hinges, and angles (if less than 10 inches in length) that may be damaged.
d. RIBS.-The ribs aft of the beam may be repaired in the same fashion as the stabilizer ribs and, therefore, refer to section VII, paragraph 1. d. when making these repairs.

When the fabric slot is damaged that portion should be removed and a new section inserted.

The nose ribs are small and consequently will be difficult to repair. Therefore, when damage is too extensive to be neglected the part should be replaced.

FIGURE 165-AILERON NOSE SKIN REPAIR

(1) NEGLIGIBLE DAMAGE. - Smooth dents free from cracks or abrasions may be neglected but should be restored to the original shape to prevent further damage from developing.

Nicks or cracks in the edges of the flanges not over 13 inch deep when cleaned up with a round file maintaining $\mathbf{~} 25$ inch radii and no nearer than 3 inches to a similar nick or crack may be neglected.

(2) DAMAGE NECESSITATING RE-

PLACEMENT.-If a hinge is damaged it should be replaced.
e. FABRIC REPAIR.-The fabric used on C-46 ailerons is made according to Specification No. AN-C-121. Repairs may be divided into three groups.
(1) DAMAGE REPAIRABLE BY PATCH-ING.-A sandwich patch should be used to repair a
straight, vee shaped or three-sided tear which occurs between two ribs. If a quick repair is absolutely essential, damage of any size may be repaired by the sandwich patch method.
(a) SMALL TEARS.-Cut the tear so that a square flap is formed, one or more sides of which is formed by the original tear. Apply a coat of dope to the under side of the flap and over an area 1.5 inches on all sides. Dope a pinked fabric patch and insert it under the flap. The patch should be large enough to extend 1 inch beyond all three open sides of the hole. See figure 167. Press the flap down on the patch and apply another coat of dope. See figure 167. Another pinked patch is then laid on top of the first and extends at least one inch beyond it on all sides. After this patch has had two coats of dope and allowed to dry, it is ready for a final light sanding and finish. See figure 167.

(b) PREPARATION OF THE AILERON COVER.-The fabric covering of the aileron shall be so applied that the warp threads are parallel to the line of flight. Sew together enough fabric widths to equal the span of the aileron and of sufficient length to reach from the trailing edge, around the nose section and back to the trailing edge. The seams should be machine stitched with a fell seam sewing attachment. Place the cover around the frame and pull the ends together at the outboard end and along the trailing edge. Pin the ends together by starting at the outboard end and working along the trailing edge as far as the trim tab cutout. Draw a line on the cloth with a soft pencil along the outboard end and around the trailing edge to the trim tab cutout to mark the seam, Remove the cover from the frame and machine sew the edges together along the pencil line, removing the pins as the sewing progresses. Trim off the excess fabric to within $1 / 4$ inch of the seam. Turn the covering inside out and slip over the frame of the aileron.
(c) ATTACHMENT OF COVERING TO AILERON FRAME.-The first step is to make the fabric-to-rib attaching wires. Measure the lengths of the attaching channels on the ailerons ribs and cut the wires $11 / 2$ inch longer than the length of the channels. File two nicks on each of the wires so the extra $11 / 2$ inch can be broken off after assembly. Turn up the short end of the wires to a 90 degree bend. Hold the bend over an anvil and fatten out the wire with a hammer. See figure 169 for the finished wire. The flattened part will enable the wire to be slipped through the channel without spreading the neck.

Start attaching the covering to the frame at the trim tab cut-out by pushing the fabric down into the attaching channel. Slip the flat section of the wire into the neck of the channel and pull the wire through the full length of the channel, see figure 169. Break off the bent up end of the wire at the filed nicks. Attach the top and bottom surfaces of the covering to all of the ribs by the same method.

Pull the edges of the covering together at the inboard end of the aileron affil sew together using a roll or overthrow stitch. Apply a brush coat of dope to the aft edge of the aileron at the trim tab cut-out. Allow the dope to dry and then attach the trim tab half-hinge to the upper surface and the metal strip to the lower surface. Apply a brush coat of clear dope to the covering around all cut-outs so that fabric will hold its position upon cutting out the opening.

The final doping process is outlined in paragraph (4) (d) below.
(d) DOPING PROCEDURES.-This consists of removal of old dope; and application of three brush coats of clear nitrate dope, two spray coats of clear nitrate dope, and two spray coats of pigmented camouflage dope.

1. REMOVAL OF OLD DOPE.-Apply a brush coat of clear dope or dope thinner to the surface of the covering. Allow enough time for the old dope to become soft before attempting to remove it. The old dope may best be removed by scraping with a dull knife or some similar tool. Do not bear too hard while scraping as the fabric may be stretched beyond repair. Several applications of dope or dope thinner may be necessary before all of the old dope can be removed. Smooth and clean up the fabric with steel wool after removal of the old dope.
2. DOPING.-The first coat of clear dope should be brushed on as soon as possible after the completion of the repair or recovering of the aileron. This first coat of clear dope should be brushed on the fabric uniformly at full body. Allow at least 30 min utes for drying.

Apply the second brush coat of clear dope. Press on the required amount of finishing tape to the aileron. Exercise care in applying the finishing tape by having the pinked edges firmly doped down. Place the drain grommets in the proper position on the lower surface of the aileron. Dope the circular pieces of pinked finishing tape in place over the grommets. Allow at least 30 minutes for drying.

Brush on the third coat of clear dope and allow at least 30 minutes for drying.

Apply two spray coats of clear dope at the covering. Use two to four parts of dope to one part of thinner depending upon the spray equipment. Allow at least 30 minutes for drying. Smooth the surface of the aileron by rubbing very lightly with No. 7/0 or No. 320 sandpaper. Do not use any other rubbing material.
(e) LARGE TEARS.-Where the damage is extensive but confined to one bay, that is, beween two ribs, a patch for the whole bay should be used. Cut out the fabric covering one bay leaving a .75 inch margin between the cutout and the ribs. Remove the trailing edge tape and the upper leading edge tape for a distance of 2 inches on each side of the cutout. Also remove the tape covering the ribs. Dope the fabric around the cutout. Dope one end of the patch and press it down over the rib allowing a 1.5 inch overlap from the edge of the cutout. After this has dried

FIGURE 167 AILERON FABRIC REPAIR MINOR DAMAGE

St6il Rabnudr sL pes!nay

FIGURE 168 AILERON FABRIC REPAIR MAJOR DAMAGE

FIGURE 169-AILERON FABRIC ATTACHING PIN
thoroughly, pull the patch sheet taut over the cutout and dope it down over the other rib. Repeat the procedure at the forward edge of the cutout allowing the same 1.5 inch margin. Lap the patch around the trailing edge for at least .5 inch . See figure 168 . Trim off the loose edges of the patch and give it two coats of dope. After a light sanding, apply four inch tape at the chordwise edges and two inch tape at the spanwise edges, with half the tape overlapping the patch in each case. The repair is then ready for the final camouflage coat.
(2) DAMAGE REPAIRABLE BY REPLACE-MENT.--If a large section of fabric is damaged on both sides of the aileron, or if it has beennecessary to re-
move a large section on both sides in order to make rib or skin repairs, the following method may be used.

Remove the counter-weight on the leading edge of the aileron. Cut away the damaged section of fabric about an inch from the bordering rib. Use a new sheet of fabric of sufficient length to reach from the trailing edge, around the nose section and back to the trailing edge. Pull the fabric taut and sew along the trailing edge, using a baseball or overthrow stitch. Knot the sewing every six inches to prevent raveling in case of a broken thread. Chordwise attachment of the replaced section should be made as indicated in paragraph 4.e.(1)(b), preceding.
(3) DAMAGE THAT NECESSITATES THE COMPLETE RECOVERING OF THE AILERON. -This type of repair is necessary when the damage is throughout the span of the aileron; or after a long period of time, the fabric loses its life and has to be replaced.
(a) STRIPPING OF THE AILERON FRAME.-Remove all of the sections of the aileron balance weight along the leading edge. Remove the aileron trim tab half-hinge from the upper surface and the metal strip on the lower surface. Rip off all of the old fabric and finishing tape from the frame. Rub off any dirt or foreign matter that may have collected on the frame. Soften the old dope that is in the attaching channels by brushing on dope thinner. Spread the channels slightly apart at one end with a screw driver and work the ends of the attaching wires out. Remove each wire from the channel by grasping the free end with a pair of pliers and pulling straight back. Push the spreaded end of the channels back into position. Clean all of the old fabric and dope out of the channels with steel wool.

Apply two spray coats of pigmented camouflage dope to the surface. Apply these coats wet and very heavy so as to wet all previous coats, thereby giving a smooth uniform surface.
(4) DOPING PRECAUTIONS.
(a) VENTILATION. - Doping should be carried on only in a room that is well ventilated. Prolonged breathing of dope is dangerous due to its severe toxic effect.
(b) TEMPERATURE AND HUMIDITY.To prevent blushing of the surface, doping should be carried on at temperatures from 20 degrees to 23 degrees C. (68 degrees to 73 degrees F.) The relative humidity should not be under 60 per cent. Blushing of dope is flat or milky looking spots appearing on the surface.
(c) FIRE PRECAUTION.-Nitrate dope is very inflammable. Exercise fire precaution measures to the fullest extent. Ground all surfaces while sanding with clamps and cables to prevent the accumulation of static electricity.
(d) BLUSHING.-The addition of 4 ounces of blush retarding thinner per gallon of dope will have a tendency toward preventing blushing.
(e) THINNING AND HANDLING OF DOPES. It is very important that the proper viscosity of the dope be maintained while handling. Bo not use dope that has been left open to the air for more than an hour without being returned to the central container. Dope in the central container should be checked and thinned to the proper viscosity once per hour.

f. MASS BALANCING.

(1) CONTROL SURFACE MASS BALANCE TOLERANCES.
(a) Movable control surfaces ordinarily possess an inherent tail heavy characteristic that is com-
pensated for by the addition of counterbalance weights forward of the hinge line of the surface. In order to prevent flutter during flight, the mass balancing of the C-46 ailerons, elevators and rudder must be maintained within the following tolerances:

Surface	Static Unbalance Tolerances	Static Unbalance Tolerances
	(C-46, C-46A, C-46D)	(C-46E, C-46F)
Aileron (each)	$+5 \pm 20 \mathrm{in}-\mathrm{lb}$	$+5 \pm 20 \mathrm{in}-1 \mathrm{~b}$
Elevator (each)	$+750 \pm 70 \mathrm{in}-\mathrm{lb}$	$+410 \pm 70 \mathrm{in}-\mathrm{lb}$
Rudder	$+700 \pm 70 \mathrm{in}-1 \mathrm{~b}$	+ 700 70 in-16

(Note + (plus) unbalance indicates that the center of gravity of the control surface is aft of the hinge line.)
(2) BALANCING PROCEDURE FOR CONTROL SURFACES.
(a) GENERAL-Following the repair of damage or the rework of the ailerons, rudder or elevator, the unbalance should be checked to see if the specified tolerance has been exceeded. If the specified tolerances are not met, lead balance weights must be either added to or removed from the leading edge of the control surface. (All control surfaces must be complete with tab assembly before a mass balance check is performed.) The balancing procedure to be used is as follows:

1. Mount the control surface on a stand, using the two-end hinge brackets to fasten the surface. Make certain that the hinge line is parallel to the ground and that the surface is free to pivot with a minimum of restraint about its hinge line.
2. If the control surface is tail heavy (center of gravity aft of hinge line) suspend a container from the leading edge and add weight until the control surface is balanced. (Chord line is parallel to the ground.) If the control surface is nose heavy (center of gravity ahead of hinge line) place a small weight on the top surface and slide it fore or aft until the surface is balanced.
3. Measure the distance from the point of suspension of the container or the weight to the control surface hinge line. This distance is designated as "X." For distances forward of the hinge line indicate " $+\mathbf{X}$ " and for distances aft of the hinge line indicate "-X." Remove the container or weight and weigh it. This weight is designated as "W."
4. To determine the static unbalance of the control surface use the following equation

Static Unbalance $=(\mathrm{W})(\mathrm{X})$ inch-pounds. As an example:

An elevator mounted on a stand requires 52 pounds of weight to balance it. The container weighing 52 pounds is suspended 10 inches forward of the hinge line. The static unbalance therefore, is given as $W X=(52 \mathrm{lb})(+10 \mathrm{in})=$.+520 inchpounds. This unbalance value is not within the specified tolerance of 410 ± 70 inch-pounds and, therefore, sufficient balance weight must be added to the leading edge of the elevator until static unbalance comes within the range of 410 ± 70 inch-pounds.

FIGURE 170—AILERON MASS BAIANCING

5. After the addition (or removal) of lead weight, the unbalance of the control surfaces will be rechecked to insure that the control meets the specified tolerances of mass balance.

5. FLAPS.

a. GENERAL.-The flaps are of the conventional type located on the trailing edge of the wing. There are two flaps on each side of the airplane, one attached to the center panel and one to the outer panel.

The construction consists of ribs interconnected by spanwise stringers with stub beams at the hinge points to support the hinges and actuating controls. The entire structure is covered by a thin stressed kin. Figures 171 and 172 show the construcion.
b. SKIN.
(1) NEGLIGIBLE DAMAGE. - Dents free from cracks or abrasions may be neglected. However, they shouldebe restored to the original contour to prevent further damage from developing.
(2) DAMAGE REPAIRABLE BY PATCH-ING.-Any damage not classed as negligible may be repaired by patching.

Clean up the damaged area rounding all sharp corners to a .5 inch radius and stopping all cracks with a $1 / 8$ inch hole at each end.

Cover the damage with a patch the same gage es the skin attached with two rows of LS1127-5 rivets a $.63 \pm .06$ inch spacing.
(3) DAMAGE REPAIRABLE BY INSER-TION.-Damage which, when cleaned up, is 6 inches jacross the narrowest dimension may, if so desired, be repaired by insertion.

Cut the damage to a rectangular pattern using the insert which is the same gage as the skin as a 'template. Rivet the insert to the stringers and ribs with the same size rivets and spacing as existed originally. The insertion is connected to the undamaged skin on all sides by means of splice plates 2.5 inches wide and the same gage as the skin. For riveting refer to the attachment of the patch above and to figure 174. Figure 173 shows the flap skin gages.
c. BEAMS.-The stub beams located at the hinge points have flat sheet webs with extruded angles for flanges. The web is made up in three sections each being approximately 10 inches in length. If a section is damaged remove and replace with an identical piece. If a lightening hole is not formed in the new web, a $.5 \times .63$ stiffener of the same gage as the web extending from the upper to the lower flange and riveted through the .63 leg along the centerline of the original hole, should be added. Figure 175 shows the flap beam structure.

If a flange is damaged, it will be necessary to replace it with a similar extrusion or a substitute chosen from figures 231 and 232.

All damaged fittings etc., should be replaced.

d. RIBS.

(1) GENERAL.-The construction of all the ribs with one exception is the same as that of the stabilizer ribs and should, therefore, be repaired in the same manner. See section VII, paragraph 1 d .

The one exception is the addition of the extruded stiffeners to the ribs in the region of the hinge attachment. If the damage to these ribs does not include the stiffeners, the repairs will be the same as above. If, however, the stiffeners are included, repair or replace according to figures 231 and 232. If more than one-half of the stiffener is damaged, it will be necessary to make a replacement and if less than one-half of stiffener is damaged it may be repaired by splicing in an insertion.
e. TRAILING EDGE CHANNEL.-This channel is similar in construction to the outboard portion of the stabilizer beam and may be repaired in the same manner (see section VII, paragraph 1. c.) with the exception of the following item:

To splice the flanges use an .040 nested angle picking up four AN442AD5 rivets each side of the damage. See figure 176.

If the damage extends into a rib or fitting connection, repair should be made by insertion and if the fitting is damaged it should be replaced.

All clips, brackets or angles (less than 10 inches in length) should be replaced when damaged.

TABLE 60
COMPONENT PARTS OF FLAP —— CENTER PANEL

Item

Designation
Rib Assembly
Stringer
Rib Assembly
Stringer
Stringers
Rib Assembly 20.41
Stringer
Rib Assembly
Rib Assembly
Stringer
Rib Assembly
Stringer
Rib Assembly
Stringer
Stringer
Stringer
Stringer
Stringer
Rib Assembly
Rib Assembly
Channel Assembly
Rib Assembly
Web
Rib Assembly
Stringer (Top)
Web
Web
Stringer (Bottom)
Rib Assembly
Rib Assembly
Rib Assembly
Rib Assembly
Trailing Edge
Rib Assembly
Rib Assembly
Web
Stringer
Web
Stringer
Web
Stringer
Stringer
29.58
42.23
80.21

Station No.
0
10.20
54.89
67.55

\square
127.35
134.63
24.98
27.54
92.86
105.52
118.18
120.22
122.78

Part No.

Alcoa Die No. 29093
20-070-1101-3
Alcoa Die No. 15262
Alcoa Die No. 29096
20-070-1101-4
Alcoa Die No. 29093
20-070-1101-89
20-070-1101-8
Alcoa Die No. 29093
20-070-1015-1
Alcoa Die No. 29093
20-070-1015-1
Alcoa Die No. 15262
Alcoa Die No. 29093
Alcoa Die No. 29093
Alcoa Die No. 29093
Alcoa Die No. 29096
20-070-1101-30
20-070-1101-10
20-070-1102-1
20-070-1101-87
.040
20-070-1101-88
Alcoa Die No. 77F
. 064
.040
Alcoa Die No. 77 R
20-070-1015-1
20-070-1015-1
20-070-1101-9
20-070-1101-7
Alcoa Die No. 29659
20-070-1101-6
20-070-1101-5
. 040
Alcoa Die No. 77F
. 064
Alcoa Die No. 29093
.032
Alcoa Die No. 29093
Alcoa Die No. 29093

AN 01-25la-3

TABLE 61
COMPONENT PARTS OF FLAP-OUTER PANEL

Item	Designation	Station No.	Part No.	Gage
1	Stringer		Alcoa Die No. 29093	
2	Stringer		Alcoa Die No. 29093	
3	Stringer		Alcoa Die No. 29093	
4	Stringer		Alcoa Die No. 29093	
5	Stringer		Alcoa Die No. 15262	
6	Stringer		Alcoa Die No. 15262	
7	Stringer		Alcoa Die No. 29093	
8	Stringer		Alcoa Die No. 29093	
9	Stringer		Alcoa Die No. 29093	
10	Stringer		Alcoa Die No. 29093	
11	Stringer		Alcoa Die No. 29093	
12	Stringer		Alcoa Die No. 29093	
13	Lower Stringer		Alcoa Die No. 77 R	
14	Upper Stringer		Alcoa Die No. 77F	
15	Trailing Edge		Alcoa Die No. 29659	
16	Rib Assembly	0	20-070-1001-2	. 032
17	Rib Assembly	8.42	20-070-1020-1	. 032
18	Rib Assembly	16.53	20-070-1001-4	. 045
19	Rib Assembly	25.7	20-070-1001-7	. 045
20	Rib Assembly	38.51	20-070-1001-8	. 032
21	Rib Assembly	51.02	20-070-1021-2	. 020
22	Rib Assembly	63.53	20-070-1021-5	. 020
23	Rib Assembly	76.03	20-070-1021-7	. 020
24	Rib Assembly	88.54	20-070-1018-2	. 020
25	Rib Assembly	101.04	20-070-1018-5	. 020
26	Rib Assembly	113.55	20-070-1018.7	. 020
27	Rib Assembly	126.06	20-070-1028-1	. 032
28	Rib Assembly	138.3	20-070-1001-10	. 045
29	Rib Assembly	147.47	20-070-1001-13	. 045
30	Rib Assembly	159.31	20-070-1019-1	. 032
31	Rib Assembly	171.58	20-070-1001-15	. 032
32	Rib Assembly	142.9	20-070-1001-12	. 045
33	Rib Assembly	140.34	20-070-1001-11	. 045
34	Channel Assembly		20-070-1024-1	. 032
35	Rib Assembly	21.10	20-070-1001-5	. 045
36	Rib Assembly	23.66	20-070-1001-6	. 045
37	Web		20-070-1001-47	. 032
38	Web		20-070-1001-48	. 064
39	Web		20-070-1001-49	. 040
40	Web		20-070-1001-50	. 040
41	Upper Stringer		Alcoa Die No. 77F	
42	Lower Stringer		Alcoa Die No. 77R	
43	Web		20-070-1001-51	. 064
44	Web		20-070-1001-52	. 032

FIGURE 173-FLAP SKIN DIAGRAM

REFERENCE: SECTION V, PARAGRAPH 5b

FIGURE 174-FLAP SKIN REPAIR

FIGURE 175-COMPONENT PARTS OF FLAP BEAMS

TABLE 62

MATERIALS FOR WING REPAIR

Material	Stock	Size		xtrusio	
24ST	Sheet, aluminum alclad	. 020	Alcoa Die No.		
24 ST	Sheet, aluminum alclad	. 025	77-A	778	29091
24ST	Sheet, aluminum alclad	. 028	77-B	1287	29093
24ST	Sheet, aluminum alclad	. 032	77 -	1288	29095
24 ST	Sheet, aluminum alclad	. 036	77-F	5290	29096
24 ST	Sheet, aluminum alclad	. 040	77-L	9823	29097
24ST	Sheet, aluminum alclad	. 045	77-P	11026	29098
24ST	Sheet, aluminum alclad	. 051	77-R	12037	29099
24 ST	Sheet, aluminum alclad	. 064	77-S	12679	29183
24 ST	Sheet, aluminum alclad	. 102	77. T	13641	29184
24ST	Sheet, aluminum alclad	. 156	77-U	13839	29185
24 ST	Sheet, aluminum alclad	. 188	77.V	14089	29186
X4130*	Sheet, steel	. 063	77-W	15262	29187
X4130*	Sheet, steel	. 078	$77 . \mathrm{Y}$	15263	29188
X4130*	Sheet, steel	. 102	78-A	15276	29189
X4130*	Sheet, steel	. 125	$78 . \mathrm{C}$	15614	29190
1179-D-2	Nut Plate	10-32	78-F	15643	29191
1178-D-3	Nut Plate	8-32	78-J	16849	29192
1088-D-1	Nut Plate Spacer		78-K	24383	29193
671-D-4AD	Rivet, brazier head	1/8	$78-\mathrm{M}$	24596	29387
671-D-5AD	Rivet, brazier head	$5 / 32$	$78 . Y$	26659	29388
671-D-6AD	Rivet, brazier head	3/16	79-0	28928	29390
AN426 AD3	Rivet, 100° countersunk	$3 / 2$	734-MM	29083	29391
AN426 AD4	Rivet, 100° countersunk	1/8	$734-\mathrm{T}$	29084	29571
AN426 AD5	Rivet, 100° countersunk	5/32	766	29089	29572
AN 426 AD6	Rivet, 100° countersunk	8/16		29090	
AN442 AD4	Rivet, flathead	1/8			
AN442 AD5	Rivet, flathead	5/32			
AN442 AD6	Rivet, flathead	3/16			
6-K-160	Rivnut				
LS-1127-4	Blind Rivet	1/8			
LS-1127-5	Blind Rivet	$5 / 32$			
LS-1127-6	Blind Rivet	3/6			
AN525-10	Washer Head Bolt				
AN3-	Bolt, aircraft				
AN23-	Bolt, clevis				
AN365-1032	Nut, self-locking				
AC364-1032	Nut, self-locking				
AN960-10	Washer, plain				
Commercial	Sheet Lead				

*All Steel Sheet to be Normalized to 90000 LB/SQ IN. for X4130 Steel Plate, See Figures for Wing Spar Cap Repairs.

Wing Extrusion List Alcoa Die No.

AN 01-25LA-3

FIGURE 177-WNG-SPECIAL EXTRUSIONS

SECTION VI
 NACELLE REPAIR

1. GENERAL.

a. The nacelle is of the same type of construction as the fuselage, employing ring bulkheads, stringers, and stressed skin. To the forward end is attached the power plant assembly which includes the firewall and engine mount. The aft end fairs into the upper and lower surfaces of the wing. Right and left hand nacelles are essentially the same except for the location and size of the holes in the skin. See figure 178 and table 63.
b. The bottom of the nacelle is open with provision for the attachment of the landing gear doors. The existence of these doors makes it possible to gain easy access to any part of the nacelle.
c. Since the landing gear ties into the wing and the nacelle, it is advisable to jack the wing before any extensive repairs are made. If any of the skins tying into the wing are to be replaced, the front end of the nacelle should be supported to prevent deflections.

2. SKIN.

a. GENERAL.

(1) The skinning diagram is given in figure 179. All skins are 24 ST alclad except the lower forward sections which are of stainless stecl.
(2) All skin joints are lapped, the forward skins lying over the aft skins and the upper skins lapping over the lower skins.
(3) All rivets are 671D-5AD except in a few isolated places where flathead or countersunk rivets are used.

b. NEGLIGIBLE DAMAGE.

(1) Skin dents, free from cracks, abrasions, and sharp corners may be neglected. These dents should be restored to shape wherever possible to prevent their developing into cracks. Care must be taken, however, not to stretch or crack the skin in the process. Inspect all rivets near the damage to see that they have not been loosened or sheared.
(2) Holes and cracks which can be cleaned up to a 1 inch diameter circle may be considered negligible provided the edge of the hole is a minimum of .75 inch from any rivet and 2 inches from any bulkhead. Such holes are covered with an .032 sheet using four 671D4 AD rivets equally spaced around the hole.

c. DAMAGE REPAIRABLE BY PATCHING.

(1) The damaged skin is cleaned up, using .5 inch minimum corner radii. The rivets in the adjacent stringers and bulkheads are carefully drilled out and a sheet of similar gage to that of the damaged member is laid over the region and attached with a double row of $671 \mathrm{D}-5 \mathrm{AD}$ rivets. The rivet pattern should be similar to that of skin lap of the damaged skin that has the closest rivet spacing, and should include the rivet holes through the stringers and bulkheads. Figure 179 and table 64 give the rivet spacing of the various lap joints in the skin.
(2) When the damage is more extensive than that discussed above, the type of repair is similar except that fillers are used between the patch and any structure that is riveted to the skin.
(3) Damage that runs into the edge of the skin is patched as in paragraph (1) above except that the rivet pattern along the edge should be the same as the original pattern at that point. Use fillers as necessary.
(4) Damage running into a hole in a region such as on the inboard side just forward of the front beam, should be repaired as in figure 180. Where the skin has a doubler, use a .102 sheet for the patch using a rivet attachment as in paragraph (1) above.

d. DAMAGE REPAIRABLE BY INSERTION.

 -Damage covering more than two bays in any direction may be repaired by insertion. The damage is cut out in the form of a rectangle using the insertion as a template. Remove all rivets that will interfere with the repair and, using the necessary fillers, put the insertion in place, reriveting through the various stringers and bulkheads. Splice plates of the same gage as the skin are used on all four sides. The rivet pattern is as per paragraph (1) above.

5
0
8
8

FIGURE 178-NACELLE STRUCTURE

TABLE 63
COMPONENT PARTS OF NACELLE

		Stem
		Station
1	Bulkhead	88
2	Lower Longeron	
3	Flange	
4	Bulkhead	98.8
5	Bulkhead	108.3
6	Bulkhead	117.8
7	Bulkhead	127.3
8	Extrusion	
9	Bulkhead	136.8
10	Stiffeners	136.8
11	Bulkhead	145.9
12	Extrusions	136.8
13	Bulkhead	152.85
14	Bulkhead	163.21
15	Bulkhead	180.96
16	Bulkhead	191.33
17	Bulkhead	201.66
18	Stiffeners	
19	Front Wing Spar	
20	Top-Center Longeron	
21	Stiffeners	
22	Upper Longeron	
23	Landing Gear Door Assembly	
24	Gusset	

Part No.	Gage
20-720-1004	. 125 24SO Alclad
20-720-1001	. 0912480 Alclad
20-720-1005-11	. 040 24SO Alclad
20-720-1005	. 04024 SO Alclad
20-720-1006	. 040 24SO Alclad
20-720-1007	. 040 24SO Alclad
20-720-1008	. 040 24SO Alclad
Alcoa No. 29101	
20-720-1009	. 064 24SO Alclad
Alcoa No. 29390	
20-720-1022	. 040 24SO Alclad
Alcoa No. 77-R	
20-720-1010	. 072 24SO Alclad
20-720-1011	.051 24SO Alclad
20-7.20-1013	. 0512450 Alclad
20-720-1014	. 0512450 Alclad
20-720-1015	. 0512450 Alclad
Alcoa No. K-78J	
20-020-1005	
20-020-1003	. 091 24SO Alclad
Alcoa No. 77-B	
20-720-1002	. 081 2450 Alclad
20-720-1019	
20-720-1053	. 051 24SO Alclad

e. DAMAGE REQUIRING REPLACEMENT.---Since the various skins are fairly small, skin extensively damaged may be more easily replaced.

3. BULKHEADS

a. BULKHEAD STATION 88.-This ring bulkhead is a $1 / 8$ inch thick channel of constant section. The existing splices do not occur at points of maximum load and should not be used to make repairs at any other point. Figure 181 gives the required splice for any damaged region of the ring. If the bulkhead cannot be straightened after damage (assuming no breaks), the damaged portion should be cut out and a new section installed, splicing each end in accordance with the above figure and the existing splices if a new section of ring is inserted to that point. Replace all clips, brackets, and fittings if damaged.
b. BULKHEADS STATIONS 98.8, 108.3, 117.8, AND 127.3.
(1) GENERAL.-These four bulkheads occur immediately aft of the forward ring bulkhead and serve primarily to support the oil tank and stiffen the stringers. They are open at the bottom to permit the gear to enter the nacelle. The bulkheads are intercostal between longerons and are of bent up channel section. Various channels and angles serve to stiffen the bulkhead locally.
(2) NEGLIGIBLE DAMAGE.
(a) Dents, free from cracks, abrasions, and sharp corners may be neglected. These dents should be restored to shape wherever possible to prevent their developing into cracks. Care must be taken, however, not to stretch or crack the material in the process.

FIGURE 179 - NACELLE SKIN AND STRINGER DIAGRAM

AN 0T-25LA-3

TABLE 64
NACELLE SKIN RIVETING

HORIZONTAL SPLICES

Location	Extent	Rivet Type	Number of Rows	Rivet Spacing
Upper Engine			Row Spacing	
\quad Mount Longeron	Station 88-136.8	671D-5AD	2	.63
Stringer No. 8	Station $88-152.9$	671D-5AD	2	1.0
Lower Longeron	Station $88-213$	671D-5AD	2	1.25
Upper Wing	Station 136.8-230	671D-5AD	1	.63
Lower Wing	Station 152.9-213	AN442AD5	1	2.00

VERTICAL SPLICES

Location	Extent	Rivet or Screw Type	Number of Rows	Rivet Spacing	Row Spacing
Station 88	Lower Longeron to Upper Engine Mount Longeron	671D-5AD	2	1.25	. 75
Station 127.3	Lower Longeron to Upper Engine Mount Longeron	671D-5AD	2	. 88	. 62
Front Beam	Upper Engine Mount Longeron to Stringer No. 8	AN442-AD5	2	1.25	. 38
Station 152.9	Stringer No. 8 to Lower Longeron	671D-AD5	2	. 68	. 63
Station 170.7	Top	AN526-832	1	. 88	-
Station 213.2	Bottom	671D-5AD	2	1.00	1.00

(b) Nicks in the edges of the outstanding legs of angles which, when cleaned up with a round file, are less than $1 / 5$ the length of the leg, may be neglected. Be sure that no sharp corners exist.
(3) DAMAGE REPAIRABLE BY PATCHING.
(a) Damage to a web flange alone may be repaired by nesting an .040 angle in the damaged region. Six $5 / 32$ rivets per side of damage are required. Rivets through the skin are to be 671D-5AD and all other rivets AN442AD5. Figure 182 shows the rivet locations and general view of the patch.
(b) Damage including more than the flange is repaired by an .040 channel nested into the bulkhead. Use four AN442AD5 rivets through the back of the channel and two through the flanges per side of darnage. Rivet spacing should be $.63 \pm .13$ inches. Rivets through skin are 671D-5AD.
(c) The angle adjacent to the oil tank is repaired by nesting an .040 angle of the same leg dimensions into the damaged region and picking up three AN442AD4 rivets each side of the damage. The original rivet holes may be used with added rivets midway between. (See figure 183.)
(d) The region below the tank may be patched with .040 sheet using AN442AD5 rivets at $.68 \pm .06$ inch spacing. If the break runs into a hole, carry the patch around the hole with the same spacing.
(e) Fillers are to be used in the above cases whenever necessary.
(4) DAMAGE REPAIRABLE BY INSERTION.
(a) Damage occurring within 3 inches of a longeron is repaired by cutting out the end of the bulkhead and splicing in a new section using the same attachment as is used for patches. (See figure 182.)

1. SEE FGGURE 179 AND TABLE 64 FOR SKIN GAGES AND RIVET PATTERN
2. FOR REPAR TO STRINGERS IN THIS REGION, REFER TO FIGURE 179 FOR DEE NO. AND FIGURE 232 FOR REPAIR
3. MINIMUM RIVET EDGE DISTANCE TO BE . 38
4. CARRY PATCH AROUND HOLE AS SHOWN

FIGURE 180-NACELLE SKIN PATCH ADJACENT TO FRONT SPAR
(b) If the extent of damage after cleanup is more than 5 inches, an insert of the same section as the bulkhead is fitted in place and spliced at each end as in paragraph (a) above.
(5) DAMAGE REQUIRING REPLACEMENT.
(a) All clips, gussets, brackets, and short angles should be replaced.
(b) Extruded shapes may have the substitutions given in figures 231 through 233.
c. BULKHEAD STATION 136.8 .
(1) GENERAL.--This bulkhead takes primarily landing gear loads. It is constructed in the form of a curved beam with inner and outer flanges and an . 064 web stiffened by radially extending extrusions. Since the flanges are curved, it will be necessary to bend the splices or inserts to fit the contour.

REFERENCE: SECTION VI, PARAGRAPH 3 a

FIGURE 181-NACELLE BULKHEAD REPAIR-STA. 88

1. all material 2450 alclad heat treated TO 56,000 LB/SQ IN. ATTER FORMING 2. MINIMUM BEND RADII $=.09$
2. ALL EDGE DISTANCE TO BE . 38 UNLESS OTHERWISE SPECIFIED

REFERENCE: SECTION V, PARAGRAPH 3c

FIGURE 184-NACELLE BULKHEAD REPAIR—STA. 136.8

Section VI

1. ALCOA DIE NO. K.78-J
2. ALCOA DIE NO. K-78-K
3. ALCOA DIE NO. 29390
4. ALCOA DIE NO. 29390

SEE DETAIL

REFERENCE, SECTION VI, PARAGRAPH 3g

NOTE:
replace all damaged extrusions EXCEPT 4 WHICH MAY BE REPARED

3. REPLACE ALL DAMAGED EXTRUSIONS EXCEPT ITEM 4 WHICH MAY BE REPAIRED

FIGURE 185-NACELLE BULKHEAD REPAIR-STA. 213

(2) NEGLIGIBLE DAMAGE.

(a) Repair dents as in same section under paragraph 3. b. (2) (a) above.
(b) Nicks in outstanding legs of radial web stiffeners may be repaired as in the same section under paragraph 3. b. (2) (b) above.
(c) Holes and cracks in the web which can be cleaned up to a .75 inch diameter circle, may be considered negligible provided the edge of the hole is a minimum of .75 inch from any rivet. Such holes should not be closer than 4 inches between centers.
(3) DAMAGE REPAIRABLE BY PATCHING.
(a) A full web repair may be effected by cutting away the damaged portion along a radial line and patching with an .064 sheet using a double row of AN442AD5 rivets per side. These rivets should be at $.68 \pm .06$ inch spacing. (See figure 184.)
(b) The inner and outer flanges may be repaired as per figure 231 for extrusion Alcoa Die No. K77R.
(c) Use fillers as required.
(4) DAMAGE REPAIRABLE BY INSERTION.
(a) Web damage which, when cleaned up as under paragraph (3) immediately above, extends over more than one bay, should have an insert fitted and spliced at each end with .064 material using a double row of AN442AD5 rivets per side of splice. The rivet pattern is as in figure 184.
(b) If the damage occurs within 5 inches of a fitting, a new section of web should be inserted, extending 5 inches either side of the fitting and spliced as in the preceding paragraph.
(c) If the damage occurs in the region of the | vertical stiffeners on the aft face of the bulkhead, . 064 fillers should be used as necessary to obviate the use of joggles.
(d) Extensive damage to the flanges may be repaired by inserting a new piece of extrusion and splicing at each end as per figure 231.
(5) DAMAGE REQUIRING REPLACE-MENT.-All members of the bulkhead other than the web and the flanges should be replaced if damaged.
d. BULKHEAD 145.9. -Clips and brackets to be replaced as required. The bulkhead should be repaired as per figures 229 and 230 , using any one of the four types of repair given. The text accompanying this figure should be carefully read. Splices for .040 stock should be used.
e. BULKHEADS STATIONS 152.9 AND 170.7.Since the gages are . 072 and the size of the members relatively small, damaged parts should be replaced.
f. BULKHEADS STATIONS 163.2, 181, AND 201.7.-All gages are .051 and the maximum member sizes are small. Replace all damaged members.
g. BULKHEAD 213.-This bulkhead carries loads from the landing gear drag strut and, therefore, requires special attention in repair. All rivets which require drilling out should be done so with extreme care so as not to elongate or enlarge the holes. All angles and stiffeners should be replaced as per figures 231 through 233, except the long transverse bulb angle tee running from side to side of the bulkhead which may be repaired or replaced in accordance with figure 233. The web may be repaired by patching or insertion, using .051 sheet riveted to the web with two rows of AN442AD5 rivets at .75 inch spacing. If the edge of the cleaned up damage is closer than 1.5 inches from any stiffener or fitting, a new piece of web should be inserted and spliced on either side of the member. This repair is shown in figure 185.

h. BULKHEAD STATIONS 226.6 AND 240.-.

Repairs to this bulkhead are made as per figures 229 and 230. Gage is .051. See paragraph d. immediately preceding.
i. BULKHEAD STATION 249.-Replace if damaged.

4. LONGERONS.

a. UPPER NACELLE ENGINE MOUNT LONGERON.
(1) GENERAL.-The longeron consists of two .081 channels which taper from a maximum section at the forward end to a minimum at station 136.8.
(2) NEGLIGIBLE DAMAGE.-Small dents, free from cracks, abrasions and sharp corners may be neglected. These dents should be restored to shape to prevent their developing into cracks.
(3) DAMAGE REPAIRABLE BY PATCH-ING.--Damage to the upper flange and the lower flange, where sufficient width is present (see below), may be repaired by nesting an .081 angle in the channel and attaching it with three 671D-6AD rivets each leg each side of splice. (See figure 186.)

Damage to complete section should be repaired by a nested .081 channel as in figure 186 . A splice for the maximum load consists of five rows of rivets each side of splice, using three rivets per row. Locate three rows of AN442AD6 rivets in web and one row each of 671D-6AD rivets in the flanges. Minimum spacing of rows to be .63 inches. Where taper decreases width of web below that required to maintain above spacing, decrease number of rows to two and finally to one. When the width of the lower flange becomes such that a .38 inch edge distance on the rivets cannot be obtained, this row should be dropped in making a repair.
(4) DAMAGE REPAIRABLE BY INSER-TION.-If the damage, when cleaned up, extends more than 8 inches in length or if the damage occurs within 7 inches from either end, a new section of channel is inserted and spliced as in paragraph (3) above.
(5) DAMAGE REQUIRING REPLACE-

MENT.-All clips, fittings, and brackets must be replaced if damaged.

b. TOP CENTER LONGERON.

(1) The top center longeron consists of two .091 channels, each of which is made in two sections and spliced together by fittings at station 136.8. The channels are tapered as in paragraph a. above.
(2) NEGLIGIBLE DAMAGE.-Same as item (2) under paragraph a. above.
(3) DAMAGE REPAIRABLE BY PATCHING.
(a) If the upper flange forward of station 136.8 or the lower flange at any point is damaged, patch with an .091 angle using five AN442AD6 rivets in each leg each side of break. Rivets through upper flange should be 671D-6AD. These rivets should pick up the original rivet holes through the flange.
(b) The upper flange aft of station 136.8 is too narrow to nest an angle within it. Repair to this flange will be made by riveting an .091 angle to the
back of the channel with its outstanding leg against the nacelle skin. Either ten 671D-6AD, ten AN442AD6, or 12 LS1127-6 rivets are used through the vertical leg each side of the damage. (See figure 187.)
(c) Complete damage to the channel should be repaired by means of a channel patch of the same gage forward of station 136.8 , and by an upper angle as in paragraph (b) above, together with a lower angle whose vertical leg extends the height of the channel web aft of station 136.8. Figure 187 shows the arrangement of such a patch. In order to determine the number of rivets required through the web, measure the distance in inches between flanges and multiply by 6.25 . For example, a 3 inch gap between flanges will require $3 \times 6.25=18.75$ or 19 rivets. The rivet pattern is so arranged to be symmetrical about the center line of the web with a minimum of .63 inch between horizontal rows. The rivets should be staggered as shown and the number of rivets per row increase as the flange is approached.
(4) DAMAGE REPAIRABLE BY INSER-TION.-If the damage is extensive, an . 091 insertion may be used splicing as per paragraph (3) above.
(5) DAMAGE REQUIRING REPLACE-

MENT.-All fittings, clips, brackets, etc. to be replaced.

c. LOWER LONGERON.

(1) The lower longeron consists of two .091 channels and an .091 flat sheet. It is riveted to the skin thus forming a box section. In order to repair this member, it is necesssary to remove a section of nacelle skin. Any damage to individual parts of the longeron requires a repair to the entire part.
(2) To repair the upper channel, nest an 091 channel in the original member and attach it with a minimum of nine AN23 bolts.
(3) To repair the lower channel, insert an . 091 channel through the skin opening and boit it with its flanges turned up, to the original member. Use a minimum of eight bolts through the back.
(4) The inner flat plate is repaired with an .091 sheet using six AN23 bolts.
(5) Use fillers as required.
(6) Upon completion of the longeron repair, the skin is repaired as per paragraph (2) above. The patch should have its upper and lower horizontal rivet

LEGEND

a tower CHANNEL INSER

RETS AND SPACING TO BE SIMILAR TO THAT THROUGH LOWER END

NOTES:

1. ALI BENT UP MATERIAL TO BE $245 T$ ALCLAD

HEAT TREATED TO $56,000 \mathrm{LB} / \mathrm{SG}$ IN. AFTER FORMING
2. SEE TABLE 7 for send rad ir
3. ALL MATERIAL TO BE . 091 EXCEPT ITEMS 11، 12, AND 13
4. ALL BOLT AND RIVET EDGE OISTANCE TO BE . 38 INCH
5. FOR DRILLING OUT RIVETS, SEE SECTION I, PARAGRAPH 10d
6. FILLERS TO BE THE SAME WIDTH AS CORRESPONDING flanges of channels
patterns the same as that existing originally through the lower skin longeron splice, using the existing rivet holes in this region. The vertical pattern should be the same as the nearest parallel skin splice containing the largest number of rivets per inch.
(7) Figure 188 gives the repair to the total longeron with the added skin repair. These may be used in any combination dependent upon the type of damage.
(8) All clips, bulkheads, stiffeners, brackets, fittings, etc. are to be replaced. The bulkhead repair will necessitate a hole in the skin as described above.

5. MISCELLANEOUS.

a. Large gussets with flanged lightening holes may be repaired in the same manner as the wing ribs. (See figure 146.)
b. Various extrusions are repaired as per figures 231 through 233.
c. Various channels are repaired as per figures 229 and 230 .

TABLE 65

MATERIALS FOR NACELLE REPAIR

Material
24ST
24ST
24ST
24ST
24ST
24ST
24ST
18-8
$1 / 2$ H type 302
671-D-4AD
671-D-5AD
671-D-6AD
LS1127-6
AN442 AD6
AN23-
AN364-1032
AN960-10

Stock
Sheet, aluminum aiclad
Sheet, aluminum alclad
Sheet, aluminum alclad
Sheet, aluminum alclad040

Sheet, aluminum alclad 051

Sheet, aluminum alclad . 091
Sheet, aluminum alclad . 125

Sheet, stainless steel
Rivet, brazier head
Rivet, brazier head
Rivet, brazier head
Blind rivet, cherry
Rivet, flathead
Bolt, clevis
Nut, self-locking
Washer, plain
Size
. 032
. 038

NACELLE EXTRUSION LIST

Alcoa Die No.

$77-\mathrm{B}$	$78-\mathrm{A}$	$78-\mathrm{K}$	29390
$77-\mathrm{F}$	$78-\mathrm{F}$	$78-\mathrm{Y}$	29179
$77-\mathrm{R}$	$78-\mathrm{J}$	22999	29387

SECTION VII
 EMPENNAGE REPAIR

1. STABILIZERS.

a. GENERAL.-The stabilizer is of the conventional highly stressed skin type of construction consisting of three beams with intercostal bulkhead type ribs extending from the leading edge to the elevator hinge line and covered with alclad sheet. Figure 189 and table 66 give the component parts. Figure 190A and Table 67A indicate the component parts of the stabilizer installed on airplanes AF44-78545 and subsequent.

The stabilizer assembly is attached to the fuselage by means of standard $A N$ bolts and match angles around the outside contour. The stabilizer tip si attached at station 190 by means of standard AN bolts and gang channel nuts on the inside surface of the stabilizer.

b. SKIN.

(1) GENERAL.-Figures 190 and 190B and tables 67 and 67 B show the various skins and skin splices used on the stabilizer.

Flush riveting is used forward of the front beam, but for repairs this procedure would necessitate the installation of a structural door. This requires more time than the advantages warrant; therefore, for repairs Cherry blind brazier head rivets will be used in conjunction with either external or fush patches.

For repairs in the region of the de-icer shoe, either the external or flush patch may be used. If external patch is used all edges, corners, and rivet heads should be well rounded to prevent damage to the shoe.
(2) NEGLIGIBLE DAMAGE.-Dents free from cracks, abrasions, or sharp corners may be neglected, but should be restored to the original contour. During this procedure, care should be taken not to stretch or crack the skin.

Holes or cracks . 75 inch in diameter or less, when cleaned up and located at a minimum of 2 inches from a skin splice and spaced at a minimum of 5 inches between centers, may be neglected provided they are covered by an . 020 patch with four LS1127-4 rivets equally spaced around the hole. These holes should be a minimum of 5 inches apart. (See figure 106.)
(3) DAMAGE REPAIRABLE BY PATCHING.
(a) EXTERNAL PATCHES. - Holes of greater size than .75 inch in diameter, and whose largest dimension is less than 5 inches, may be patched with an alclad sheet of the same gage as the skin and two rows of LS1127-5 rivets at $.68 \pm .06$ inch spacing center to center in the same row. If patch covers existing rivets, drill out carefully and replace with Cherry blind rivets of the same size as above.
(b) FLUSH PATCHES.-See paragraph 1. b (4) immediately below.
(4) DAMAGE REPAIRABLE BY INSER-TION.-Damage 5 inches or more across the narrowest dimension may be repaired by insertion.

Cut a rectangular insertion of the same gage as the skin large enough to entirely cover the damage. Using this as a template, clean up the area. Attachment is accomplished by splice plates of the same gage as the skin and 2.5 inches wide. The spanwise plates should be on the inside surface and the chordwise plates may be either inside or outside depending on the ease of installation. However, if they are on the inside, they should be discontinuous at the stringers. Two rows of LS1127-5 rivets at $.68 \pm .06$ inch spacing should be used.

Any damage in the region of the de-icer shoe may be repaired by insertion.

Damaged areas, which when cleaned up do not cross a stringer or rib, may be patched by a sheet of the same gage as the skin, placed on the inner surface using the same rivet pattern as for an external patch. (See figure 191.) Rivet a filler plate of the same gage as the skin to the internal patch with LS1127-5 rivets to bring the surface of the repair flush with the undamaged skin.

For holes crossing nose ribs, and/or stringers, follow the procedure outlined above provided such holes are 5 inches or more across. If the hole is smaller than 5 inches across, it should be enlarged to that size if a flush patch is to be used. If a flush patch is not to be used, clean up hole and install a patch as shown in figure 110.

FIGURE 189-STABILIZER STRUCTURE

TABLE 66

COMPONENT PARTS OF STABILIZER

STABILIZER SKIN RIVETING TABLE 67 SPANWISE SKIN CONNECTIONS-STABILIZER

Location

Beam 1
Beam 1
Beam 1
Beam 2
Beam 2
Beam 2
Beam 2
Beam 2
Extent

Root to Station 87
Station 87 to Station 148
Station 148 to Station 190
Root to Station 87
Station 87 to Station 107
Station 107 to Station 148
Station 148 to Station 169
Station 169 to Station 190
.025
.025 . 025
.025 . 020
.032 . 032
.025 . 025
.020 . 025
.020 . 020

Gage of	Gage of
Forward	Aft

Number Rivet
Rivet of Rivet Row

AN426AD
1.26 2 . 50 AN426AD
1.26
1.00
1.50
.032 671D-4AD $1.50 \quad 2 \quad .50$
$.025 \quad 671 \mathrm{D}-4 \mathrm{AD} \quad 1.50 \quad 2 \quad .50$
$\begin{array}{lll}.020 & 671 D-4 A D & 1.50\end{array}$
.50
. 50
.50

CHORDWISE SKIN CONNECTIONS-STABILIZER

Location	Extent	Gage of Inboard	Gage of Outboard Skin	Type of Rivets	Rivet Spacing	Number of Rows	Rivet Row	Spacing

FIGURE 190 - STABILIZER SKIN DIAGRAM

TABLE 67A

COMPONENT PARTS OF STABILIZER (AIRPLANES AF44-78545 AND SUBSEQUENT)

Item	2 Member	Stock	Part No.	Item	Member	Stock	Part No.
1	Match Angle	CE 4193-1	20-110-5001-37 L-R	13	Rib	.020 24 SO Alc.	20-110-5017-2
2	Beam		20.110-1001	14	Rib		20-110-5013
	Channel	. 040245 ST Alc.	20-110-1001-3		Rib	. 02524 SO Alc.	20-110-5013-1
	Channel	. 05124 ST Alc.	20-110-1001-2		Rib	. 025 24SO Alc.	20-110-5013-4
3	Stiffeners	.051 Formed Sec.	Typical		Rib	. 025 24SO Alc.	20-110-5013-508
4	Beam		20-110-5002		Rib	. 025 24SO Alc.	20-110-5013-507
	Beam	. 03224 ST Alc.	20-110-5002-3	15	Stiffener		20-110-3114
	Beam	. 04024 ST Alc.	20-110-5002-2		Stiffener	. 040 24ST Alc.	20-110-3114-6
5	Rib		20-110-1018		Stiffener	. 040 24ST Alc.	20-110-3114-7
	Rib Assembly	. 02024 SO Alc.	20-110-1018-5	16	Stiffener	.020-24SO Alc.	20-110-5018-1
	Rib Assembly	. 0202450 Alc .	20-110-1018-6	17	Rib		20-110-1022
6	Beam		20-110-5003		Rib Assembly	.020 24SO Alc.	20-210-1022-5
	Web	. 040 24ST Alc.	20-110-5003-3		Rib Assembly	.0202450 Alc.	20-110-1022-6
		. 051245 St Alc.	20-110-5003-2		Rib Assembly	. 02024 SO Alc.	20-110-1022-7
7	Rib	. 02024 SO Alc.	20-110-5015-2	18	Rib	. 02024 SO Alc.	20-110-5019-1
8	Rib		20-110-5011	19	Rib	. 032 24SO Alc.	20-110-5014-1
	Bulkhead	. 02524 SO Alc.	20-110-5011-1	20	Rib		20-110-1023
	Bulkhead	. 02524 SO Alc.	20-110-5011-2		Rib	. 020 24SO Aic.	20-110-1023-5
	Bulkhead	. 02524 SO Alc.	20-110-5011-502		Rib	.020 24SO Alc.	20-110-1023-6
	Web	. 025 24SO Alc.	20-110-5011-4		Rib	. 020 24SO AJc.	20-110-1023-7
9	Rib	. 04024 ST Alc.	20.110.5023	21	Stiffener		20-110-3114
10	Rib	. 02024 SO Alc.	20-110-5016		Stiffener	. 040 24ST Alc.	20-110-3114-2
11	Rib		20-110-5012		Stiffener	. 040 24ST Alc.	20-110-3114.3
	Bulkhead	. 02024 SO Alc.	20-110-5012-2	22	Nose Ribs		20-110-1016
	Bulkhead	. 025 24SO Alc.	20-110-5012-3		Rib Assembly	. 02024 SO Alc.	20.110-1016-11
	Bulkhead	. 02524 SO Alc.	20-110-5012-503		Rib Assembly	. 020 24SO Alc.	20.110-1016-14
	Bulkhead	. 025 24SO Alc.	20-110-5012-1		Rib Assembly	.020 24SO Alc.	20.110-1016-10
					Rib Assembly	$.02024 \mathrm{SO} \text { Alc. }$	20-110-1016-13
12	Rib		20-110-1020		Rib Assembly	. 02024 SO Alc.	20-110-1016-9
	Rib	. 02024 SO Alc.	20-110-1020-6		Rib Assembly	.020 24SO Alc.	20-110-1016-12
	Rib	. 020 24SO Alc.	20-110-1020-7		Rib Assembly	. 02024 SO Alc.	20-110-1016-15

TABLE 67B-STABILIZER SKIN RIVETING (AIRPLANES AF44-78545 AND SUBSEQUENT) CHORDWISE SKIN CONNECTIONS-STABILIZER

Location	Extent	Gage of Outboard Skin	Gage of Inboard Skin	Rivet Types	Spacing Between		Rivet Rows
					Rivets	Rows	
Station 87	Beam No. 2 to						
	Beam No. 1	. 025	. 032	AN426AD4	. 76	. 55	2
Station 107	Beam No. 3 to						
	Beam No. 2	. 025	. 032	671D-4AD	.76	. 55	2
Station 107	Beam No. 1 to						
	Leading Edge	. 025	. 025	AN426AD4	1.00	. 55	2
Station 148	Beam No. 2 to Be	No. 1.020	. 025	AN426AD4	1.00	. 55	2

SPANWISE SKIN CONNECTIONS-STABILIZER

Location	Extent F	Gage of Forward Skin	Gage of Aft Skin	Rivet Types	Spacing Between		Rivet Rows
					Rivets	Rows	
Beam No. 1	Root-Sta. 87	. 025	. 032	AN426AD4	1.26	. 50	2
Beam No. 1	Sta. 87-Sta. 107	. 025	. 025	AN426AD4	1.26	. 50	2
Beam No. 1	Sta. 107-Sta. 143.5	. 5.025	. 025	AN426AD4	1.26	. 50	2
Beam No. 1	Sta. 143.5-Sta, 148	8 . 025	. 025	AN426AD4	1.00		1
Beam No. 1	Sta. 148-Sta. 190	. 025	. 020	AN426AD4	1.00		1
Beam No. 2	Root-Sta. 87	. 032	. 032	671D-4AD	1.50	. 50	2
Beam No. 2	Sta. 87-Sta. 107	. 025	. 032	671D-4AD	1.50	. 50	2
Beam No. 2	Sta. 107-Sta. 145	. 025	. 025	671D-4AD	1.50	. 50	2
Beam No. 2	Sta. 145-Sta. 148	. 025	. 025	671D-4AD	1.50		1
Beam No. 2	Sta. 148-Sta. 190	. 020	. 025	671D-4AD	1.50		1
Beam No. 3	Root-Sta. 47	. 032	. 025	671D-4AD	1.00	. 50	2
Beam No. 3	Sta. 47-Sta. 107	. 032	. 025	671D-4AD	1.00	. 50	2
Beam No. 3	Sta, 107-Sta. 130	. 025	. 025	$671 \mathrm{D}-4 \mathrm{AD}$	1.00	. 50	2
Beam No. 3	Sta. 130-Sta. 190	. 025	. 025	671D-4AD	1.00		1
Closure Skin Attachment at							
Trailing Edge	Root-Sta. 47	. 025	. 025	671D-4AD	1.00		1

FIG. 190B - STABHIZER SKIN DIAGRAM (AIRPLANES AF44-78545 AND SUBSEQUENT)

FIGURE 190C - STABILIZER TIP STRUCTURE-(AIRPLANES AF44-78545 AND SUBSEQUENT)

TABLE 67C-COMPONENT PARTS OF STABILIZER TIP

	Item	Designation	Gage	Part Number	Item	Designation	Gage

c. BEAMS.
(1) GENERAL.-The beams are made up of flat sheet stiffened by flanged lightening holes and flanged at the top and bottom. From the root to station 137.5, the flange is reinforced by a bent up angle nested into the flange. From this station to the tip, the flange is not reinforced.

It is necessary for structural reasons to maintain a snug fit at the rib beam attachment; therefore, special consideration should be given to repairs in this region.
(2) NEGLIGIBLE DAMAGE.-Holes or cracks .5 inch or less in diameter, when cleaned up and located at a minimum of 2 inches from the nearest lightening hole, cut-out, or flange, may be neglected. If more than one such crack or hole occurs between adjacent lightening holes, patch both as shown in figure 192.

Nicks or cracks in the flanges not over .13 inch deep, when cleaned up and not adjacent to any rivet hole or closer together than 4 inches, may be neglected provided they are cleaned up with .25 inch corner radii.
(3) DAMAGE REPAIRABLE BY PATCH-ING.-Web or flange damage less than 5 inches in length in the region of the reinforcing angle or 4 inches in length in any other region, may be repaired by patching.

Clean up the damaged area, rounding off all sharp corners with a .5 inch radius. Cut a patch the same gage as the web and rivet to the opposite side of the web from the lightening hole flanges with two rows of AN442-AD5 rivets at $.68 \pm .06$ inch spacing.

There are two methods of repair for the flange in the region of the reinforcing angle. Either metnod may be used.

The first step in either method is to roll back the skin sufficiently far to expose the damage for repair.

The first method consists of nesting an angle in the flange, extending it far enough each side of the break to pick up six AN442-AD5 rivets through the web. An angle of the same gage and dimensions as the original reinforcing angle, should be used for this purpose. To build the repaired section of the beam up flush with the undamaged portion, a filler should be inserted between the skin and flange. On the surface of the skin, attach an $.051 \times 1.5$ inch alclad strip
with the same rivets as are used for the skin and filler. This strip should extend at least 2 inches past the ends of the splice angle. (See figure 193.)

The second method consists of nesting an X-4130 steel angle $.094 \times .85 \times 1.1$ in the original reinforcing angle and extending it far enough each side of the damage to pick up six AN442-AD5 rivets through the beam web. Use a filler to build up the repaired section flush with the original section. (See figure 194.)

To repair the flange beyond the region of the reinforcing angle, use the following procedure. Nest in an angle the gage of which should be that of the original flange. The horizontal leg should be the same width as the inside of the original, and the vertical leg should be 1'inch long. Extend the angle far enough each side of the damage to pick up six AN442-AD5 rivets. Build the repaired section up flush with the original section, using a filler of the same gage as the flange. (See figure 195.)
(4) DAMAGE REPAIRABLE BY INSER-TION.-Damage extending over more than 5 inches of the beam should be repaired by insertion.

Remove the damaged area by making a square cut across the beam on each side and insert a section of beam of the same gage and build up in the same manner as the original.

For repair in the region of the reinforcing angle, the following method is used:

Splice the web with plates 2.39 inches wide and the same gage as the web, using two rows of AN442AD5 rivets at $.68 \pm .06$ inch spacing. The splice plates should extend from flange to flange.

Splice the flanges with an angle of the same section as used in figure 194 extending the angle far enough either side of the cut to pick up six AN442AD6 rivets. If the damage is less than 14 inches long, make the splice angle continuous, but if the damage is of greater length, the splice angle should be discontinuous.

For the region beyond the reinforcing angle, make an insertion as described above and cut an Ishaped splice plate as shown in figure 195. Flanges are turned up to form splice angles for the flanges. Pick up three AN442-AD5 rivets.

If a lightening hole existed in the damaged region and none is formed in the insertion, add a vertical angle stiffener with the attachment rivets

FIGURE 193-STABILIZER—BEAM FLANGE REPAIR IN REINFORCED REGION

FIGURE 194-STABILIZER-BEAM FLANGE REPAIR IN REINFORCED REGION
lying along the center line of the original hole. The angle is $.5 \times .62$ inch, the same gage as the web.
(5) DAMAGE NECESSITATING REPLACE. MENT.-Any damage to clips, brackets or fittings will necessitate a replacement.

d. REPAIRS TO RIBS.

(1) GENERAL.-The ribs are formed from fiat sheet and stiffened by means of beads and flanged lightening holes. The ribs to which are attached the elevator hinges are reinforced at the hinge attachments by 24 ST extruded angles. Due to the similarity of construction of all ribs, the repairs for all will be the same except for a few special cases which will be discussed later.
(2) NEGLIGIBLE DAMAGE.-Holes or cracks, .5 inch in diameter or less when cleaned up and are
located 1 inch from any bead or 2 inches from any flange or lightening hole, may be neglected.

Cracks or nicks. 13 inch deep or less in the edge of the flanges may be neglected provided they are cleaned up with a round file maintaining a .25 inch minimum radius and are not located within .38 inch of a rivet hole or within 3 inches of a similar nick or crack.
(3) DAMAGE REPAIRABLE BY PATCH-ING.- Damage up to 5 inches in length to the rib web or flange may be repaired by patching.

Remove all sharp corners by filing to a .5 inch radius and stop all cracks by drilling a $1 / 8$ inch hole at each end. Patch web, on opposite side from lightening hole flanges, with a patch of the same gage and material as the original rib and two rows of AN442AD5 rivets spaced at $.68 \pm .06$ inch.

To repair the flange, nest an angle of the same gage and flange width as original into the rib flange making the vertical leg 1 inch long. Extend flange splice angle far enough either side of the damaged area to pick up four AN442-AD5 rivets. In the damaged atea, it will be necessary to sandwich a filler the same gage as the skin between the angle and web patch to insure a snug fit. (See figure 195.)

If damage occurs in region of extruded stiffeners, they may be either repaired or replaced in accordance with figures 231 through 232.
(6) DAMAGE REPAIRABLE BY INSERTION.-Any damage 5 inches or more in length may be repaired by insertion. Make a square cut across the rib on each side of the damaged area as shown in figure 195.

From an insertion of the same cross-section as the rib, flange the top and bottom to the same contour as the stabilizer at that point. This insertion should be the same length as the cut-out with a tolerance of .03 inch overall. Splice the insert with a plate at each end the same gage as the rib. Two rows of AN442-ADS rivets spaced at . $68 \pm .06$ inch are used for the splice attachment each side of the cut.

Splice the flanges with an angle of the same gage as the rib nested into the original flange. Extend the angle far enough to each side of the cut to pick up four AN442-AD5 rivets. If the cut-out is less than 8 inches long, make the angle continuous over the insertion; and if longer, make the angle disconcontinuous. If the section removed contains lightening holes or beads and they are not formed in the insertion, a . $5 \times .62$ angle the same gage as the web should be attached along the location of the center lines of the lightening holes or beads with AN442-AD4 rivets at $.68 \pm .06$ inch spacing.
(5) DAMAGE NECESSITATING REPLACEMENT,Replace all fittings, brackets, clips, etc. that may be damaged.
(6) DAMAGE TO RIB AT REINFORCED HINGE AT STATION 190.-If cracks are found in angle, part No, 20-1 0 -5014-4 replace with similar serviceable angle fabricated locally from 24 SO aluminum alloy sheet, . 040 inch thick, specification No. AN-A-13, condition A, Stock No. 6800-141850, and heat treated in accordance with AN 01-1A-1. The angle removed may be used as a pattern.

If cracks are found in rib, part No. 20-110-50142, fabricate four angles, part No. 20-110-5014-1201,
from .051 sheet aluminum alloy 24 ST , 15 inches long with $.62 \times .71$ inch legs, and four angles. Part No. 20-110-5014-1202, from . 051 sheet aluminum alloy $245 T, 8.80$ inches long with $.62 \times .71$ inch legs. Alternate material. Stock No. 6800-065900 aluminum alloy extruded shape Alcoa Die No. 12883 may be used if available locally.

Install angles, -1201 , top and bottom on outboard side of rib starting at forward edge of block assembly, part no. $20-110.5112-3$ or 20-1 10-5020.502, and running forward. Pick up existing rivers in rib and skin. Install angles -1202 on inboard side of rib top and bottom picking up the six bolts in block assembly, part no, 20-110-5112-3 or 20-110-5020-502, and runaing forward 8.80 inches from end of rib. Pick up existing rivets and add three rivets top and bottom between existing rivets in web of rib assembly, add eight rivets top and bottom to flange of rib, part no. 20-110-5014-2, and leg of angle, part no. 20-1 10-50144. as shown in figure 194A.
(a) Cut clip, part no. 20-110-5033-1, to clear angles ~ 1201 and install.
(b) Cut angle, part no. 20-110-5014-5, to clear angles -1202 and install.
(c) Cut skin, part no. 20-110-5001-66, to clear angles -1202 and replace rivets.
e, DAMAGE TO MATCH ANGLE.-Any damage extending through the skin, doubler and match angle must be repaired by insertion.

Clean up the damaged area and round off all sharp corners to a .5 inch radius as shown in figure 197. Make the doubler cut 2 inches inside the skin cut-out and cut the splice angle 3 inches inside the doubler cut. The skin cut-out should be made at least 3 inches from the nearest stringer. Make an insert for the doubler and skin from material of the same respective gages and an insert for the match angle from a similar extrusion. If no extrusion is available, a section must be machined from 24ST bar stock with the grain running the length of the angle,

Splice plates the same gage as the skin and 2.5 inches wide are used with two rows of 671D-SAD rivets at $.68 \pm .06$ inch spacing to attach the skin insert. The spanwise plates should be under the skin and the chordwise plates on the surface.
f. STRINGERS.-Figure 189 gives țhe various stringers used on the stabilizer. All extruded sections may be repaired in accordance with figures 231 through 233. The doubler and extrusion inserts should be attached using the same size rivets and same

pattern as original.

g. STABILIZER TIP.

(1) GENERAL.-The stabilizer tip is of the bame general construction as the main assembly and, therefore, the repairs will be similar. Figure 198 shows the major structure, and table 68 gives the component parts. Figure 190C and Table 67C show the structure and component parts of the stabilizer tip installed on airplanes AF44-78545 and subsequent.
(2) The beams and ribs are of the same construction as the main assembly ribs and, therefore,
the repairs will be the same.
(3) If the doubler at the attachment rib is damaged, cut away the damaged portion and insert a new section picking up the same rivet pattern as the original.
(4) Replace all channel reinforcements that are partially damaged and all ribs and beams that are totally damaged.
(5) The skin should be repaired in accordance with the text for the main assembly skin.

FIGURE 196-STABILIZER-TIP ATTACHMENT RIB REPAIR

Itern
1
2
3
4
5
6
7
8
9
10

Designation	Gage
Rib Assembly	.020
Bearn Assembly	.020
Rib Assembly	.020
Rib Assembly	.020
Bulkhead	.040
Beam	.020
Bulkhead	.020
Beam	.020
Rib	.020
Bulkhead	.020

Part Number

20-111-1018-2 20-111-1013-2 20-111-1019-2 20-111-1018-2 20-111-1015-2 20-111-1014-2 20-111-1016-2 20-111-1017-2 20-111-1019-3 20-111-1020-2

2. FIN.

a. GENERAL.-. The fin is of the same general construction as the stabilizer, having six beams supporting formed sheet bulkhead ribs and covered by highly stressed skin. The structure and component parts are given in figure 199 and table 70.

The attachment of the fin to the fuselage is made in the same manner as the stabilizer. The fin tip is attached at station 192 by means of gang channel nuts and standard AN bolts.

As on the stabilizer, flush riveting is used over the forward portion of the assembly. Here again this procedure is regarded as too awkward and time absorbing for repairs and will, therefore, not be used.
b. SKIN.-The repair procedure for the fin skin is the same as for the stabilizer skin and, therefore, that portion of the text may be used in conjunction with figure 200 and table 69.

c. BEAMS.

(1) GENERAL.-The beams are made up of a flat sheet web, stiffened by flanged lightening holes and extruded angles, to which are riveted bent up channel flanges.

It is essential that a snug fit between rib and beam be maintained; therefore, repairs in this region should receive special consideration.
(2) NEGLIGIBLE DAMAGE.-Holes or cracks in the web which, when cleaned up, do not exceed . 5 inch in diameter may be neglected. Smooth dents free from cracks or abrasions may be neglected but should be restored to the original contour to prevent cracks from developing.

Nicks or cracks less than 13 inch deep in the edge of the flanges or stiffeners may be neglected provided they are cleaned up with a round file to a .25 inch radius and are not located within .38 inch of rivet holes or are not less than 3 inches apart.
(3) DAMAGE REPAIRABLE BY PATCH-ING.-Damage to the web and flange less than 5 inches in length may be repaired by patching.

Clean up damaged area by rounding all sharp corners to a .25 inch radius and stopping all cracks with a $1 / 8$ inch drill. Cut a patch of the same gage as the skin to cover the damaged area and attach to the opposite side of the beam from the lightening hole flanges with two rows of AN442-AD5 rivets at .68 $\pm .06$ inch spacing. If the damage extends into a lightening hole, a .5 inch flange should be bent up on the patch over the covered portion of the hole. (See figure 201.)

From a sheet of X-4130 steel . 031 thick, make a bent up channel to be nested into the original flange. Extend the splice channel far enough each side of the damage to pick up four AN442-AD5 rivets through the web. A filler the same gage as the skin should be inserted between the splice channel and skin to maintain the contour of the fin surface and to eliminate the necessity of joggling.

Damage in the region of ribs and fittings cannot be repaired by patching.
(4) DAMAGE REPAIRABLE BY INSER-TION.-Damage 5 inches or over in length may be repaired by insertion. If the damage occurs near a a fitting or rib attachment, insert a new section of beam in the region and splice it on either side to the

TABLE 69
FIN SKIN RIVETING

Location	Extent	Gage of Fwd. Skin	Gage of Aft Skin	Type of Rivets	Rivet Spacing	No. of Rivet Rows
Beam 1	Root to 92.22	. 020	. 020	AN426AD4-5	1.00	1
Beam 2	Root to 92.22	. 020	. 020	AN426AD4-4	1.50	1
Beam 3	Root to 92.22	. 020	. 020	671-D-4AD3	1.50	1
Beam 4	Root to 92.22	. 020	. 020	671-D-4AD3	1.50	1
Beam 5	Root to 92.22	. 020	. 020	671-D-4AD3	1.50	1

REFERENCE SECTION YI, PARAGRAPH 20
TABLE 69

FIGURE 199-FIN STRUCTURE

AN 01-25LA-3

TABLE 70

COMPONENT PARTS OF FIN

Item	Designation	Sta. No	. Part	Item	Designation	Sta. No.	Part
1	Beam Assembly No. 1		20-120-1001-1	54	Rib Assembly	112.22	20-120-1020-9
2	Beam Assembly No. 2		20-120-1002-1	55	Rib Assembly	132.22	20-120-1021-3
3	Beam Assembly No. 3		20-120-1003-1	56	Rib Assembly	132.22	20-120-1021-4
4	Beam Assembly No. 4		20-120-1004-1	57	Rib Assembly	132.22	20-120-1021-5
5	Bearn Assembly No. 5		20-120-1005-1	58	Rib Assembly	132.22	20-120-1021-6
6	Beam Assembly No. 6		20-120-1006-1	59	Rib Assembly	132.22	20-120-1021-7
7				60	Rib Assembly	152.22	20-120-1022-3
thru			Alcoa Die No	61	Rib Assembly	152.22	20-120-1022-4
29	Stringer		29083	62	Rib Assembly	152.22	20-120-1022-5
30	Nose Rib Assembly	84.50	20-120-1015-2	63	Rib Assembly	152.22	20-120-1022-6
31	Nose Rib Assembly	92.22	20-120-1019-7	64	Rib Assembly	152.22	20-120-1022-7
32	Nose Rib Assembly	102.22	20-120-1015-3	65	Rib Assembly	172.22	20-120-1023-3
33	Nose Rib Assembly	112.22	20-120-1020-2	66	Rib Assembly	172.22	20-120-1023-4
34	Nose Rib Assembly	122.22	20-120-1015-5	67	Rib Assembly	172.22	20-120-1023-5
35	Nose Rib Assembly	132.22	20-120-1021-2	68	Rib Assembly	172.22	20-120-1023-6
36	Nose Rib Assembly	142.22	20-120-1015-4	69	Rib Assembly	172.22	20-120-1023-7
37	Nose Rib Assembly	152.22	20-120-1022-2	70	Rib Assembly	182.22	20-120-1017-9
38	Nose Rib Assembly	162.22	20-120-1015-6	71	Rib Assembly	172.22	20-120-1017-8
39	Nose Rib Assembly	172.22	20-120-1023-2	72	Rib Assembly	162.22	20-120-1017-7
40	Nose Rib Assembly	182.22	20-120-1015-7	73	Rib Assembly	151.22	20-120-1017-6
40-A	Rib Assembly	192.22	20-120-1024-1	74	Rib Assembly	142.22	20-120-1017-5
41	Rib Assembly	75.30	20-120-1018-2	75	Rib Assembly	132.22	20-120-1017-4
42	Rib Assembly	75.30	20-120-1018-3	76	Rib Assembly	122.22	20-120-1044-2
43	Rib Assembly	75.30	20-120-1018-4	77	Rib Assembly	112.22	20-120-1017-2
44	Rib Assembly	75.30	20-120-1018-1	78	Rib Assembly	102.22	20-120-1016-6
45	Rib Assembly	92.22	20-120-1019-2	79	Rib Assembly	92.22	20-120-1016-5
46	Rib Assembly	92.22	20-120-1019-3	80	Rib Assembly	84.22	20-120-1016-4
47	Rib Assembly	92.22	20-120-1019-4	81	Rib Assembly	74.30	20-120-1016-3
48	Rib Assembly	92.22	20-120-1019-5	82	Rib Assembly	65.30	20-120-1016-2
49	Rib Assembly	92.22	20-120-1019-6	83	Match Angle		Alcoa Die No
50	Rib Assembly	112.22	20-120-1020-3				L-28928
51	Rib Assembly	112.22	20-120-1020-4	. 84	Match Angle		. 051
52	Rib Assembly	112.22	20-120-1020-5				
53	Rib Assembly	112.22	20-120-1020-6				

FIGURE 200 - FIN SKIN AND STRINGER DIAGRAM

REFERENCE SECTION YII, PARAGRAPH 2c

FIGURE 201—FIN-REPAIR OF BEAM

FIGURE 202—FIN REPAIR IN REGION OF ATTACH ANGLE

undamaged portion of the beam. The procedure will be the same as for the stabilizer except for the items discussed below and will, therefore, not be outlined again in detail. In conjunction with the text for the stabilizer beam, figure 201 should be used.

In this case, if the cut-out is less than 10 inches long, the flange splice should be continuous across the cut-out, and if greater than 10 inches, it may be discontinuous.

The flange splice should be the same as used for patching and should pick up four rivets each side of cut.
(5) DAMAGE NECESSITATINGREPLACE-MENT.-Replace all stiffeners, fittings, etc. that may be damaged. If extruded stiffeners are damaged and no extrusion is available, replace with a bent up section as shown in figures 231 through 233.
d. RIBS.-Due to the similarity of construction between these ribs and the stabilizer ribs, the repairs will be the same. Therefore, for the repair of the fin ribs, refer to the text of the stabilizer ribs.
e. MATCH ANGLE. - The similarity between the fin and stabilizer match angles makes it possible to use the method of repair described in paragraph 1.e. of this section. The region of the doublers, however, require special treatment. This is shown in figure 202.
f. STRINGERS.-Figure 200 gives the various
stringers used on the fin. All extruded sections may be repaired in accordance with figures 231 and 233 .
g. FIN TIP.-The major structure of the tip is shown in figure 203. The repairs will be similar to that of the stabilizer tips. (See paragraph 1.g.)

3. RUDDER.

a. GENERAL. -The rudder installation is made up of the rudder assembly, the tab assembly and the tip assembly. (See figures 204 and 213, and tables 72 and 74.)

All assemblies are made up of a single beam supporting bulkhead type ribs and covered by a highly stressed alclad skin.

The tip is attached to the rudder at station 198.76 by standard AN bolts and gang chanmel nuts.

A piano hinge attaches the tab to the rudder.
The rudder installation on airplanes AF44-78545 and subsequent consists of the rudder assembly, a trim tab assembly, a spring balance tab assembly and a tip assembly. Repairs to this rudder installation may be accomplished in the manner outlined in this paragraph. (See Figures 205A, 205B, and Tables 73A and 73B.)
b. SKIN.-The repairs for the rudder and tab skins are the same as for the stabilizer skin and, therefore, their repairs will be made in accordance with the text on the stabilizer skin and figure 205, table 73 .

TABLE 71
COMPONENT PARTS OF FIN TIP

Item	Member	Gage	Station	Part No.
1	Scallop	.032	192.22	$20-121-1000-4$
2	Beam	.020		$20-121-1013-2$
3	Reinforcement	.032		$20-121-1019-3$
4	Rib	.020	207.22	$20-121-1016-2$
5	Reinforcement	.032		$20-121-1019-2$
6	Doubler	.032		$20-121-1000-5$
7	Beam	.020		$20-121-1020-1$
8	Rib	.020	207.22	$20-121-1016-3$
9	Beam	.020		$20-121-1012-3$
10	Bulkhead	.020	207.22	$20-121-1021-3$
11	Rib	.020	$20-121-1011-3$	
12	Beam	.020		$20-121-1015-2$
13	Rib	.020		$20-121-1018-2$
14	Bulkhead	.020	$20-121-1017-2$	
15	Bulkhead	.020		$20-121-1000-4$

c. BEAMS.
(1) MAIN BEAM.
(a) GENERAL. This beam is made up of a flat sheet web, flanged at the top and bottom and stiffened by flanged lightening holes. Between stations 75.3 and 81.45 there is a cut-out reinforced by an extruded stiffener on cach side and a reinforcing angle nested in the flange at top and bottom.
(b) NEGLIGIBLE DAMAGE -- Smooth dents in the web free from cracks or abrasions may be neglected but should, however, be restored to the original contour taking care not to stretch or otherwise damage the web.

No flange damage may be neglected.
(c) DAMAGE REPAIRABLE BY PATCH ING.-Damage to the web and or flange may be repaired by the following procedure. Clean up the damaged area by rounding out all corners to a radius of .5 inch and stopping all cracks with a ! s inch drill. Cover the damaged area with a patch of the same gage as the web and attach to the opposite side of the beam from the lightening holes with two rows of AN442AD5 rivets at $.68 \pm .06$ inch spacing.

To repair the flange, use the splice channel shown in figure 206. Extend the channel far enough to each side of damage to pick up seven AN442AD6 rivets through the beam web. Where the chamel extends over the patch, a filler of the same gage as the web should be inserted between them,

If the patch extends through a rib attachment, the length of the rib on the side of the patch should be decreased by the thickness of the patch and the length of the rib on the opposite side should be correspondingly increased.

To shorten the rib, remove the beam attachment flange and replace it with an angle of the same | gage as the rib and attached to it with two rows of AN442AD5 rivets at $.68 \pm .06$ inch spacing. The flange of this angle should be the same width as the original flange. (See figure 207.)

To lengthen the rib, place a filler the same gage as the web between the rib and patch.

If the patch covers only a portion of the depth of the beam, it will be necessary to use a filler on both sides of the web to avoid joggling.
(d) DAMAGE REPAIRABLE BY INSERTION. .- Any damage 5 inches or more in length may be repaired by insertion. (See figure 206.)

Clean up the damage by making a square cut across the beam on each side of the damaged area. The cut should be made so that at least 2 inches of material remain between the cut and the nearest lightening hole in the undamaged portion.

Make an insertion from the same stock and formed into the same section as the original beam. This insertion should be the same length as the cut-out with a tolerance of $+0,-.03$ inch overall.

To fasten the insert, use two plates the same gage as the web and 2.38 inches wide, and two rows of AN442AD5 rivets at $68 \ddot{-} .06$ inch spacing each side of the splice.

Repair the flange with the same channel as used for a patch repair, picking up seven AN442AD6 rivets each side of the cut. If the cut is less than 16 inches long, make the splice channel continuous across the insertion. However, if cut is greater than 16 inches in length, a channel at each end of the insert may be used. If the section removed contains lightening holes and none are to be formed in the insert, a $.5 \times .63$ inch stiffener the same gage as the beam and with a length equal to the beam depth should be riveted to the web along the location of the center line of the original. holes.
(e) DAMAGE NECESSITATING REPLACEMENT. Replace all extruded stiffeners, clips. brackets, or short angles that may be damaged. See figures 231 through 233 for extrusion replacements.

(2) RUDDER TAB HINGE BEAM.

(a) GENERAL. The rudder tab hinge beam is an .032 channel section. The continuous hinge is sandwiched between two extruded angles which arc riveted to the beam web.
(b) NEGLIGIBLE DAMAGE, Smooth dents free from cracks or abrasions may be neglected but should be restored to the original contour to prevent further damage from developing. Care should be taken during this procedure not to stretch or crack the metal.

AN 01-25LA-3

TABLE 72

COMPONENT PARTS OF RUDDER

Vo.	Item	Part No.	Gage	Station
1	Rib	20-140-1023-1	. 051	
2	Rib	20.140-1022.1	. 040	
3	Rib	20.140.1021-1	. 040	192.22
4	Rib	20-140-1020.7	. 020	184.22
5	Rib	20-140-1020-6	. 020	176.22
6	Rib	20-140-1020-5	. 020	168.22
7	Rib	20-140-1019-1	. 020	160.22
8	Rib	20-140-1018-1	. 032	152.22
9	Rib	20-140-1017-5	. 032	144.22
10	Rib	20.140-1017.6	. 032	136.22
11	Rib	20-140-1017-7	. 032	128.22
12	Rib	20-140-1016-2	. 020	120.22
13	Rib	20.140-1015-1	. 032	112.22
14	Rib	20-140-1014-8	. 020	106.05
15	Rib	20-140-1014-7	. 020	99.90
16	Rib	20.140-1014.6	. 020	93.75
17	Rib	20-140-1014-1	. 025	87.60
18	Rib	20-140-1013-2	. 032	81.45
29	Rib	20-140-1012-1	. 040	75.30
20	Rib	20-140-1011-6	. 025	70.18
$\because 1$	Rib	20-140-1011-5	. 020	65.05
$\because 2$	Rib	20-140-1011-1	. 020	59.92
23	Rib	20-140-1010-1	. 040	55.80
24	Nose Rib	20-140.1008-2	. 020	190.78
25	Nose Rib	20-140-1008-3	. 020	184.22
26	Nose Rib	20-140-1008-4	. 020	176.2?
27	Nose Rib	20-140-1008-5	. 020	168.22
128	Nose Rib	20-140-1007-2	. 020	160.22
29	Nose Rib	20-140-1007-3	. 020	153.66
30	Nose Rib	20-140-1007-4	. 020	150.78
'31	Nose Rib	20-140-1007-5	. 020	144.22
32	Nose Rib	20-140-1007-6	. 020	136.22
33	Nose Rib	20.140-1007-7	. 020	128.22 120.22
34	Nose Rib	20-140-1036-2	. 051	120.22 11366 11178
35	Nose Rib	20-140-1036-3	. 051	113.66
36	Nose Rib	20-140-1007-10	. 020	111.78
37	Nose Rib	20-140-1007-11	. 020	106.05
38	Nose Rib	20-140-1007-12	. 020	99.90
39	Nose Rib	20-140-1007-13	. 020	93.75 87.60
40	Nose Rib	20-140-1007.14	. 020	87.60 81.45
41	Nose Rib	20-140-1007-15	. 020	81.45 73.86
42	Nose Rib	20-140-1007-16	. 051	73.86
43	Nose Rib	20-140-1006-1	. 040	70.18
44	Beam	20-140-1002-1	. 040	
45	Beam	20-140-1003.1	. 032	
46	Tab Rib	20-140-1028.15	. 016	119.32
47	Tab Rib	20-140-1028-14	. 016	106.05
48	Tab Rib	20-140-1028-13	. 016	106.05 99.90
49 40	Tab Rib	20-140-1028-12	. 016	93.75
51	Tab Rib	20-140-1028-10	. 016	87.60
!2	Tab Rib	20-140-1028-9	. 025	81.45
:3	Tab Rib	20-140-1028-7	. 040	78.20
54	Tab Rib	20-140-1028-6	. 025	75.30
55	Tab Rib	20-140-1028-5	. 016	70.18
56	Tab Rib	20-140-1028-4	. 016	65.05
57	Tab Rib	20.140-1028-3	. 016	59.92
58	Tab Rib	20-140-1028-2	. 016	54.20
!9	Beam	20.140.1026-1		

TABLE 73
RUDDER SKIN RIVETING

Station	Gage of Upper Skin	Gage of Lower Skin	Type of Rivets	Rivet Spacing
199.35	.025	.032	AN526-1032-8	Screws
			671.5 in.	
144.22	.020	.020	$671 \mathrm{D}-4 \mathrm{AD}$	
112.22	.020	.020	$671 \mathrm{D}-4 \mathrm{AD}$.75 in.
81.45	.020	.020	$671 \mathrm{D}-4 \mathrm{AD}$.75 in.
75.30	.020	.020	.75 in.	
			.75 in.	

FIGURE 205 - RUDDER SKIN DIAGRAM

TABLE 73A

COMPONENT PARTS OF RUDDER

(AIRPLANES AF44-78545 AND SUBSEQUENT)

Item	Designation	Part No.	Gage	Station
1	Beam	20-140-5112-1	. 040	
2	Rib	20-140-1006-1	. 040	70.18
3	Rib	20-140-1011-6	. 025	70.18
4	Rib	20-140-5140-1	. 040	75.30
5	Rib	20-140-1007-16	. 051	73.80
6	Rib	20-140-5141-1	. 032	81.45
7	Rib	20-140-1007-15	. 020	81.45
8	Rib	20-140-1007-14	. 020	87.60
9	Rib	20-140-1014-1	. 025	87.60
10	Rib	20-140-1007-13	. 020	93.75
11	Rib	20-140-1014-6	. 020	93.75
12	Rib	20-140-1007-12	. 020	99.90
13	Rib	20-140-1014-7	. 020	99.90
14	Rib	20-140-1007-11	. 020	106.05
15	Rib	20-140-1007-10	. 020	110.78
16	Rib	20-140-1036-3	. 051	113.66
17	Rib	20-140-5144-1	. 020	106.05
18	Rib	20-140-1036-2	. 051	120.22
19	Rib	20-140-1015-1	. 032	112.22
20	Rib	20-140-1007-7	. 020	128.22
21	Rib	20-140-5122-1	. 020	120.22
22	Rib	20-140-5123-2	. 020	128.22
23	Rib	20-140-1007-6	. 020	136.22
24	Rib	20-140-5123-3	. 020	136.22
25	Rib	20-140-1007-5	. 020	144.22
26	Rib	20-140-5125-1	. 020	144.22
27	Rib	20-140-1007-3	. 020	153.66
28	Rib	20-140-5126-1	. 032	152.22
29	Rib	20-140-1007-2	. 020	160.22
30	Rib	20-140-5127-2	. 020	160.22
31	Rib	20-140-1008-5	. 020	168.22
32	Rib	20-140-5128-2	. 020	168.22
33	Rib	20-140-1008-4	.020	176.22
34	Rib	20-140-5128-3	. 020	176.22
35	Rib	20-140-1008-3	. 020	184.22
36	Rib	20-140-5130-2	. 020	184.22
37	Rib	20-140-1008-2	. 020	190.78
38	Rib	20-140-1021-1	. 040	192.22
39	Eulkhead	20-140-1035-2	. 064	
40	Rib	20-140-1022-1	. 040	194.24
41	Rib	20-140-1023-1	. 051	198.76
42	Rib	20-140-5131-1	. 040	184.22
43	Beam	20-140-5118-1	. 032	
44	Rib	20-140-5184-1	. 025	184.19
45	Rib	20-140-5174-10	. 016	176.22
46	Beam	20-140-5178-2	. 025	
47	Rib	20-140-5174-9	. 016	168.22
48	Rib	20-140-5174-8	. 016	162.22
49	Rib	20-140-5174-7	. 016	157.22
50	Rib	20-140-5174-6	. 016	152.22
51	Rib	20-140-5172-1	. 032	148.22
52	Rib	20-140-5174-5	. 016	144.22
53	Rib	20-140-5174-4	. 016	139.22
54	Rib	20-140-5174-3	. 016	134.22
55	Rib	20-140-5174-2	. 016	128.22
56	Rib	20-140-5179-1	. 020	119.53
57	Rib	20-140-5154-3	. 016	119.32
58	Rib	20-140-5168-1	. 020	106.32
59	Rib	20-140-5154-7	. 016	94.05
60	Rib	20-140-5154-6	. 016	83.69
61	Rib	20-140-5152-1	. 032	78.51
62	Rib	20-140-5154-4	. 016	74.13
63	Rib	20-140-5166-1	. 020	64.16
64	Rib	20-140-5154-2	. 016	54.20
65	Beam	20-140-5158-2	. 025
66	Beam	20-140-5114-1	. 032	
67	Rib	20-140-5139-1	. 020	65.05
68	Rib	20-140-1011-1	. 020	59.92
69	Rib	20-140-1010-1	. 040	55.80

FIGURE 205B - RUDDER SKIN DIAGRAM (AIRPLANES AF44-78545 AND SUBSEQUENT)
TABLE 73B-RUDDER SKIN RIVETING (AIRPLANES AF44-78545 AND SUBSEQUENT)

Station	Gage of Upper Skin	Gage of Lower Skin	Type of Rivets	Rivet Spacing	Rivet Rows
81.45	.020	.020	$671 \mathrm{D}-4 \mathrm{AD}$.75	1
112.22	.020	.020	$671 \mathrm{D}-4 \mathrm{AD}$.75	.75
144.22	.020	.020	$671 \mathrm{D}-4 \mathrm{AD}$.75	1
176.22	.032	.020	$671 \mathrm{D}-4 \mathrm{AD}$.75	1
199.3	.025	.032	$671 \mathrm{D} \cdot 4 \mathrm{AD}$.75	1

FIGURE 206-RUDDER BEAM REPAIR

REFERENCE, SECTION VII, PARAGRAPH 3c(1)/c)

FIGURE 207—RUDDER-METHOD OF SHORTENING RIB

Small holes . 5 inch or less in diameter when cleaned up, and cracks .5 inch or less in length when stopped with a $1 / 8$ inch drill, may be neglected.
(c) DAMAGE REPAIRABLE BY PATCH-ING.-- Damage located 3 inches or more from a rib attachment may be repaired by patching.

Clean up the damaged area rounding all sharp corners to .5 inch radius and stopping all cracks with a $1 / 8$ inch drill at each end. Cut a patch from material the same gage as the beam and rivet it to the opposite side of the beam from the flanges using two rows of AN442AD5 rivets at $.68 \pm .06$ inch spacing. If the extruded angles and hinge are damaged, cut out the damaged portion and build up an insert from a new section of hinge and a similar extruded angle. This should be riveted in place but need not be tied in with the undamaged portion. It will be necessary that the new section of hinge be carefully aligned with the remaining portion. Fillers and shims may be used where necessary.

The flanges should be patched in accordance with figure 208. The nested angle should be of the same gage as the original flange and long enough to pick up four AN442AD5 rivets through the web each side of the damage.

In the damaged area, a filler the same gage as the flange should be inserted between the skin and nested angle, thus eliminating the necessity of joggling the skin.
(d) DAMAGE REPAIRABLE BY INSER-TION.-Damage at the rib attachments must be repaired by insertion.

Any damage over 5 inches in length may be repaired by insertion.

Make a square cut across the beam on each side of the damage so that cut-out is at least 5 inches long and the edges are 2.5 inches or more from the nearest rib.

Make an insert from the same stock as the original beam and formed into the same section. Attach the hinge in the same fashion as the original, using either a similar extrusion or a substitute from figures 231 through 233. Here again the new section of hinge should be carefully aligned with the original.
d. RIBS.
(1) GENERAL.-The repairs for the rudder ribs will be in most cases the same as for the stabilizer ribs and, therefore, that portion of the text may be used. The only special cases will be those for the ribs supporting the counter balance weight and the bottom rib at station 54.2 inches from center line of the airplane to which is attached the torque tube.
(2) COUNTER BALANCE RIBS.
(a) GENERAL.--These ribs are formed channels reinforced by a 1.25 inch 24 ST alclad plate. The counter balance weight is bolted between the ribs by standard AN bolts and elastic stop nuts.

(b) NEGLIGIBLE DAMAGE. Smooth dents free from cracks and abrasions may be neglected but sinould be restored to the original contour to prevent further damage.
(c) DAMAGE REPAIRABLE BY PATCH-ING.-Damage outside of the region of the plate may be repaired by patching.

Clean up damaged area using a .5 inch radius on all sharp corners and stopping all cracks with a $]_{\text {s inch hole at each end. Cut a patch the same gage }}$ as the web and rivet it with two rows at $.68 \pm .06$ inch spacing to the opposite side of the beam from the flanges.

If th rib is less than 2 inches in depth at point of lam a_{4} ', nest a channel section formed from the same gaye material, into the original channel and pick up $s \times$ AN442ADS rivets through the rib
each side of the damage. (See figure 209.) If only the flange is damaged, nest in an angle of the same gage extending it far enough to either side of the damaged area to pick up four AN442AD5 rivets through the web. In the case of a flange damage, insert a filler between the skin and repair angle to rnaintain a smooth contour when the skin is applied.

(d) DAMAGE REPAIRABLE BY INSER-

TION. Any damage in the region of the $1 / 8$ inch plate should be repaired by insertion.

Make a square cut acioss the rib on each side of the damage. To eliminate any interference with the counter balance weight or beam, the cuts will be limited to the following locations: 1.4 inches forward and or 2.5 inches or more aft of the hinge line. Build up a new section to replace the section removed, from material of the same gage and formed to the same shape. Attach the plate using the same rivets and rivet

FIGURE 209-RUDDER-REPAIR OF COUNTERBALANCE RIB
pattern as on original except within 1.5 inches of the cut. In this region, the rivets are omitted. Also drill out any rivets within 1 inch of the cut in the original section. To repair the flange, nest a full depth channe! formed from .051 sheet into the rib, and attach with 14 AN442AD5 rivets on each side of the cut. Use the rivet pattern shown in figure 209, starting the rivets as close to the flange as possible. Splice the web with an .065 sheet of X-4130 normalized steel on each side of the rib using four AN3 bolts either side of the cut.

(3) RIBS AT HINGE ATTACHMENTS.

(a) GENERAL. These ribs are flanged next to the skin and are stiffened by flanged lightening holes. At the hinge attachments the webs are reinforced by extruded and formed angles. From the beam aft approximately 20 inches, the flange is reinforced by a formed angle riveted to the web and flanged in the opposite direction from the rib.
(b) NEGLIGIBLE DAMAGE. -- Smooth dents in the web free from cracks and abrasions may be neglected if carefully restored to the original contour. Nicks or cracks in the edge of the flanges that are not more than .13 inch deep when cleaned up with a round file to a .25 inch radius and not within .38 inch from a rivet hole or closer than 3 inches to a similar nick or crack, may be neglected.
(c) DAMAGE REPAIRABLE BY PATCH-ING.- Damage aft of the first lightening hole may be repaired by patching.

Clean up the damage by rounding all sharp corners to a .5 inch radius and stopping all cracks with a $1 / 8$ inch hole at each end. Cover the damage with a patch of the same gage as the web and attach with two rows of AN442AD5 rivets at $.68 \pm .06$ inch spacing. If the flange is damaged in the region of the reinforcing angle, cut a patch as shown in figure 210 and extend the web flange repair angle far enough each side of the damage to pick up four AN442AD5 rivets through the web.

To repair the reinforcing angle, nest an angle of the same gage and dimensions into the original, extending the nested angle far enough each side of the damage to pick up three AN442AD5 rivets through the web. A filler should be used between the flange repair angles to insure a snug fit.

If the damage occurs outside of the region of the reinforcing angle, the repair may be made in accordance with the procedure outlined for the stabilizer ribs.
(d) DAMAGE REPAIRABLE BY INSERTION. If damage occurs forward of the first lightening hole, it should be repaired by insertion. If it is desired, any damage over 5 inches long may be repaired by insertion, but it is not required.

Make a square cut across the rib on each side of the damage, keeping the cut at least 1.5 inches from the nearest lightening hole flange. If the damage is confined to the portion forward of the first lightening hole, only one cut need be made.

Remove the portion of the reinforced angle remaining on the undamaged section of the rib and replace entire angle when repair is completed.

Form a new section to the same shape as the original from material of the same gage to replace portion removed.

The web and flange are spliced with the plate shown in figure 210, extending the flange splice angle far enough each side of cut to pick up three AN442AD5 rivets through the web.
(e) DAMAGE NECESSITATING REPLACEMENT. All short (under 10 inches in length) formed angles should be replaced by identical parts and all extruded angles should be replaced per figures 231 through 233.
(4) RIB AT TORQUE TUBE ATTACHMENT.
(a) GENERAL. \cdots This rib, which is located at the bottom of the rudder, is flanged against the skin and stiffened by flanged lightening holes. The rib web is reinforced at the torque tube attachment by a heavy 24 ST Alclad doubler and the flange is reinforced by a nested, bent-up channel section extending the entire length of the rib.
(b) NEGLIGIBLE DAMAGE. - Smooth dents free from cracks and abrasions may be neglected provided they are restored to the original contour of the surrounding area.

Nicks and cracks in the edge of the flange not over . 13 inch deep when cleaned up with a round file to a .25 inch radius and not within .38 inch from a rivet hole or within 3 inches of a similar nick or crack may be neglected.

(c) DAMAGE REPAIRABLE BY PATCH-

ING.

1. DAMAGE IN REGION OF DOUBLER.

If the damage does not extend into the flange or into the beam attachment when cleaned up, it may be repaired by patching. (See figure 211.)

AN 01-25LA-s

Remove the doubler and clean up the damaged area by rounding all sharp corners to a .5 inch radius and stopping all cracks with a $1 / 8$ inch hole at each end. Cover the damaged area with a patch the same gage as the skin and attach with two rows of AN442AD5 rivets at $.68 \pm .06$ inch spacing, replacing the doubler if it is damaged, with a new one.

2. DAMAGE EXTENDING INTO THE

 FLANGE.-If the damage extends into the flange forward of a point 1.26 inches aft of the rudder hinge repair as follows:Follow the same procedure outlined above to repair the web. The patch should be attached to the opposite side of the web from the lightening hole flanges.

Build up a section of flange identical with that removed and insert in place. Splice in inserted portion with an .078 angle of X-4130 normalized steel, using six AN442AD5 rivets each side of the cut.

CAUTION

IF THE DAMAGE EXTENDS INTO THE REGION OF THE TORQUE TUBE ATTACHMENT, CARE MUST BE TAKEN TO SPACE THE RIVETS SO THERE WILL BE NO INTERFERENCE WITH THE TORQUE TUBE COLLAR.

3. DAMAGE AFT OF DOUBLER.-The web in this region may be patched according to the previous discussions. If the damage extends into a lightening hole making it necessary to cover a portion thereof, flange the patch to a .5 inch width over the hole, or attach a $.63 \times .5$ stiffener the same gage as the web along the edge of the patch in the region of the hole as per figure 211.

The capstrip should be patched with an . 094 gage X-4130 normalized steel nested angle picking up seven AN442AD5 rivets on each side of the damage. Before replacing the skin over the damage, insert a filler to eliminate the necessity of joggling.

If an entire lightening hole is covered, a $.63 \times .5$ stiffener the same gage as the web and extending the entire depth of the rib, should be attached with AN442AD5 rivets at $.68 \pm .06$ inch spacing along the center line of the lightening hole.
(d) DAMAGE REPAIRABLE BY INSER-TION.-Damage in the region of the beam attachment should be repaired by insertion. Any damage
over 5 inches in length may be repaired by insertion but such a repair is not required.

Make a square cut across the beam on each side of the damage, thus removing that area. Build up a new section to replace portion removed using materials of the same gages and formed into the same shape.

Splice the web with plates 2.5 inches wide and of the same gage as the web picking up two rows of AN442AD5 rivets at $.68 \pm .06$ inch spacing.

Splice the flange with the same angle as is used for patching (paragraph (4) (c) 2. above), picking up seven AN442AD5 rivets each side of the cut. If the cut is less than 14 inches long, the splice angle should be continuous across the insertion but if the cut is longer than 14 inches in length, an angle at each end of the insert may be used.

If the damage is in region of the beam attachment, make one cut aft of the first lightening hole and follow the procedure outlined in the previous paragraph.

If the section removed contains lightening holes and none are to be formed in the insertion, replace them with stiffeners as discussed in patching repairs unless the hole is necessary for the passage of controls, etc. In this case, it will be necessary to form a new lightening hole.

e. RUDDER TAB.

(1) SKIN.-The procedure for repairing the tab skin is identical with that for the stabilizer skin and, therefore, follow the text for the latter.

(2) BEAM.

(a) GENERAL.-The rudder tab beam is a channel section formed from .032 stock to which is attached the continuous piano hinge. The web is not stiffened by lightening holes or vertical stiffeners and the flanges are not reinforced in any way.
(b) NEGLIGIBLE DAMAGE.-Small dents free from cracks and abrasions may be neglected but should be restored to the original shape to prevent further damage from developing.

Cracks and nicks in the edges of the flanges not more than .13 inch deep, when cleaned up with a round file to a .25 inch radius and not within .38 inch of a rivet hole or nearer than 3 inches to a similar crack or nick, may be neglected.

REfERENCE SECTION VII, PARAGRAPH 3ol3

FIGURE 212—RUDDER TAB RIB REPAIR
(c) DAMAGE REPAIRABLE BY PATCH-ING.-Damage not extending into a rib attachment may be repaired by patching. (See figure 208.)

Clean up the damaged area rounding all sharp corners with a .5 inch radius and stopping all cracks with a $1 / 8$ inch hole at each end.

Cover the damaged area with a patch the same gage as the beam and attach with one row of AN442AD5 rivets at $.68 \pm .06$ inch spacing. This patch should be placed on the opposite side of the beam from the hinge.

Repair the flange with a nested angle of the same gage as the original and extending far enough each side of the damaged area to pick up four AN442 AD 5 rivets through the web.

If the damage extends into the hinge, a new section should be inserted. The section to be inserted should be attached to the patch, using a similar rivet pattern as existed originally. Care should be taken when inserting the new section to insure alignment of the new and original portions of the hinge. The required fillers are used between the hinge and patch.

Before covering the damaged area, it will be necessary to place a filler over the splice angle to eliminate the necessity of joggling the skin.
(d) DAMAGE REPAIRABLE BY INSER-TION.-Damage at a rib connection should be repaired by insertion. To make this type of repair, it will be necessary that the section removed be at least 5 inches in length.

Form a section of the same shape and material as the original, including the required length of shim and hinge. The assembled insert is attached to the undamaged web with splice plates of the same gage as the web and 2.5 inches wide. Use two rows of AN442AD5 rivets at $.68 \pm .06$ inch spacing.

Splice the flanges with the same nested angle as is used for a patch repair picking up four AN442AD5 rivets each side of the cut. If the cut is less than 9 inches in length, make the splice angle continuous, and if cut is greater than 9 inches in length, a separate angle may be used at each end of the cut.

Here again it will be necessary to carefully align the new section of the hinge with the original.
(3) RIBS.
(a) GENERAL.-The ribs are simple in construction being made up of flat sheet flanged over to support the skin. Due to the simple construction and small size, only one repair will be given.
(b) NEGLIGIBLE DAMAGE. - Smooth dents free from cracks and abrasions may be neglected provided they are restored to the original shape of the rib.

Nicks and cracks .13 inch deep or less when cleaned up with a round file to a .25 inch radius and not within .38 inch of a rivet hole or within 3 inches of a similar nick or crack, may be neglected.
(c) REPAIR.-If damage, when cleaned up, covers only a portion of the depth of the rib, nest an angle into the flange and rivet in place with one row of AN442AD4 rivets around the damage as shown in figure 212. Near the flange an extra rivet should be inserted to insure the continuity of the structure. Insert a filler between the repair angle and skin to eliminate the necessity of joggling.

If the damage, when cleaned up, extends across entire web, nest a channel into the original rib and rivet in place with a row of AN442AD4 rivets down each side of the damage. The spacing is left to the repair personnel; however, there must be a minimum of three rivets at $1 / 2$ inch minimum spacing each side of the damage.

f. RUDDER TIP.

(1) GENERAL.-The tip is constructed in the same manner as the remainder of the rudder structure and, therefore, the repairs will be similar. (See figure 213.)
(2) RIBS AND BEAMS.-The ribs and beam of the rudder tip are of the same construction as the stabilizer ribs and may, therefore, be repaired in the same manner.
(3) SKIN.-The skin repairs should be made in accordance with the procedure given for the stabilizer skin.

8. SPECIAL REPAIRS.

(1) COUNTER BALANCE SKIN DOUBLER STATION 192.22.
(a) NEGLIGIBLE DAMAGE. - Smooth dents free from cracks or abrasions may be neglected but should be restored to the original shape to prevent further darnage from developing.

TABLE 74

COMPONENT PARTS OF RUDDER TIP

Item	Designation	Gage	Part Number
1.	Rib Assembly	.032	$20-141-1013-2$
2.	Rib Assembly	.020	$20-141-1012-2$
3.	Rib Assembly	.025	$20-141-1011-2$

(b) DAMAGE REPAIRABLE BY PATCH-ING.-Any damage not extending over the entire doubler or across the hinge line may be repaired by patching.

Clean up the damaged area, rounding all sharp corners with a .5 inch radius and stopping all cracks with a $1 / 8$ inch at each end.

For damage to be repaired by patching, it will not be necessary to repair the skin if an .094 patch is used for the doubler. Cut the patch to a rectangular prattern and attach with three rows of LS1127-5 rivets on the fore and aft sides and one row of LS1127-5 |rivets on the top and bottom sides, all at $.68 \pm .06$ inch spacing. (See figure 214.)
(c) DAMAGE NECESSITATING RE-PLACEMENT.-Damage extending to the hinge line
or over the entire doublet will necessitate a replace ment.
(2) COUNTER BALANCE SKIN DOUBLER

STATION 112.22.-This doubler is scalloped having two prongs extending out over the rudder skin. If damage occurs to one prong, cut the doubler at the bottom of the scallop. Repair the skin as outlined in the skin repairs and replace the damaged section of doubler with one of the same gage material and shape. Splice the two sections of the doubler with a plate 2.5 inches wide and the same gage as the doubler using two rows of 671D-AD5 rivets each side of the cut.
(3) TORQUE TUBE SKIN DOUBLER. This doubler is the same shape as the doubler at station 112.22 above and, therefore, the repairs will be the same. Reference should be made to that text when attempting a repair to this doubler.

REFERENCE SECTION VII, PARAGRAPH 30(4)

FIGURE 215—RUDDER TRAILING EDGE REPAIR

AN 01-25LA-3
TABLE 75
COMPONENT PARTS OF ELEVATOR

(4) TRAILING EDGE.-To repair the trailing edge, which is a bulb extrusion, cut away the damaged section and insert a new section of a similar extrusion or, if none is available, substitute a . 064 strip of 24 ST Alclad sheet .5 inch wide. Splice the insertion in place with .040 strips .5 inch wide on each side of the rudder. These strips should pick up three AN442AD4 rivets each side of the cut. (See figure 215.)

4. ELEVATORS

a. GENERAL.-The elevator is very similar to the rudder in construction, therefore, a description of the structure will be omitted. Figure 216 shows the structure, and table 75 lists the component parts. Figure 216A shows the structure, and table 75A lists the component parts of the elevator installation for airplanes AF44-78545 and subsequent.
b. SKIN.-The skin repairs will be the same as for the other surfaces. Therefore, refer to the text for the stabilizer skin repairs and to figure 191 for the procedure to be used in repairing the elevator skin. Figures 217 and 216B and tables 76 and 75B give the skins and skin splices.

c. BEAMS.

(1) ELEVATOR MAIN BEAMS.
(a) GENERAL.-The elevator main beam is flanged at the top and bottom and stiffened by flanged lightening holes. There is a cut-out in the web between stations 41 and 47 to allow for the passage of controls. The web is reinforced on each side of the cut-out by extruded stiffeners and the flange is reinforced by a nested channel of bent up flat stock.
(b) NEGLIGIBLE DAMAGE.-Due to the similarity between the construction of this beam and the rudder beam, the negligible damage will be the same for both. Therefore, see the text for the rudder to determine the damage which may be neglected.
(c) DAMAGE REPAIRABLE BY PATCH-ING.-Any damage not in the region of hinge or bracket attachments may be repaired by patching.

Clean up the damaged area, rounding all sharp corners to a .5 inch radius and stopping all cracks with a $1 / 8$ inch hole at each end. Cover the damaged area on the opposite side of the beam from the lightening hole flanges with a patch of the same gage as the web and attach with one row of AN442AD5 rivets at $.68 \pm .06$ inch spacing. If a damaged lightening hole is covered by the patch, a $.5 \times .63 \times .032$
stiffener angle should be attached to the web. The attaching rivets should lie along the center line of the damaged hole. (See figure 218.)

To repair the flange outboard of station 165.5 , nest a .051 channel in the flange and pick up six AN442AD5 rivets through the web on each side of the damage. Where the angle extends over a web patch, a filler the same gage as the web should be inserted between the patch and channel.

To repair the flange inboard of station 165.5, follow the above procedure, picking up five AN442AD5 rivets each side of the damage.

If flange is damaged at the cut-out between stations 41 and 47 , replace the existing channel with an . 063 channel of the same dimensions, formed from X -4130 steel (normalized). Pick up the existing rivets outboard of the cut-out and six AN442AD5 rivets inboard of the cut-out.

Fillers should be used between repair angles and skins to eliminate the necessity of joggling the skin over the damaged flange.
(d) DAMAGE REPAIRABLE BY INSER-TION.-Any damage extending into the hinge attachments or the splice at station 165.5, should be repaired by insertion or, if it is so desired, any damage over 5 inches in length may be repaired in this manner.

Make a square cut across the beam on each side of the damaged area, making it tangent to the far side of the nearest lightening hole. Making the cut this way will leave a small amount of a lightening hole flange on the undamaged portion which should be flattened flush with the remainder of the web. Form an insert from the same gage material and the same section as the original. The lightening holes need not be replaced unless necessary for the passage of controls, conduits, etc. In place of the lightening holes, substitute a stiffener angle $.5 \times .63$ the same gage as the web and extending from flange to flange, attached with AN442AD5 rivets at $.68 \pm .06$ inch spacing along the center line of the original hole. Splice the web with plates 2 inches wide and the same gage as the beam web. These plates should extend the depth of the beam and pick up two rows of AN442. AD5 rivets at $.68 \pm .06 \mathrm{inch}$ spacing on each side of the cut.

Splice the flanges with the same angle as is used for patching, picking up six $1 / 8$ inch rivets

TABLE 75A

COMPONENT PARTS OF ELEVATOR (AIRPLANES AF44-78545 AND SUBSEQUENY)

No.	Item	Part No.	Gage	Station	No.	Item	Part No.	Gage	Station
1	Rib	20-130-5703-513	. 025	77.50	57	Beam Assembly	20-130-5750-1	. 032	
2	Rib	20-130-5703-514	. 025	76.00	58	Rib	20-130-5729-7	. 020	181.00
3	Rib	20-130-5702-13	. 020	71.50	59	Rib	20-130-5729-6	. 020	172.00
4	Rib	20-130.5702-505	. 020	64.60	60	Rib	20-130-5729-5	. 020	163.00
5	Rib	20-130-5702-15	. 020	61.70	61	Counter Balance	20-130-5712-4		
6	Rib	20-130-5702-16	. 020	54.58	62	Rib	20-130-5729-4	. 020	154.00
7	Rib	20-130-5702-504	. 020	48.90	63	Rib	20-130-5729-3	. 020	145.00
8	Rib	20-130-5702-18	. 020	45.80	64	Counter Balance	20-130-5712-3		
9	Rih	20-130-5702-19	. 020	38.20	65	Rib	20-130-5729-2	. 020	136.00
10	Rib	20.130-5702-503	. 020	32.10	66	Rib	20-130-5728-2	. 020	128.82
11	Rib	20-130-5702-21	020	27.65	67	Rib	20-130-5727-2	. 032	125.18
12	Rib	20-130-5702-23	. 025	23.24	68	Counter Balance	20-130-5712-2		
13	Rib	20-130-5702-25	. 025	25.25	69	Rib	20-130-5724-4	. 025	119.00
14	Rib	20-130-5702-24	. 025	23.24	70	Rib	20-130-5724-3	. 020	111.00
15	Rib Assembly	20-130-5773-1	. 025	25.25	71	Rib Assembly	20-130-5726-1	. 025	102.20
16	Rib Assembly	20-130-5773-2	. 020	30.00	72	Rib Assembly	20-130-5725-1	. 025	99.80
17	Beam	20-130-5702-6	. 032		73	Rib	20-130-5724-2	. 020	95.00
18	Rib Assembly	20.130-5773-3	. 016	35.00	74	Rib	20.130-5723-2	. 020	88.82
19	Rib Assembly	20-130-5773-4	. 016	40.06	75	Rib	20.130-5722-2	. 032	85.18
20	Rib	20-130-5702-11	. 032	44.906	76	Rib	20-130-5721-5	. 032	79.00
21	Rib Assembly	20-130-5773-5	. 025	47.00	77	Rib	20-130-5721-4	. 020	71.00
22	Rib Assembly	20-130-5773-6	. 016	52.33	78	Rib	20-130-5721-3	. 020	63.00
23	Rib Assembly	20-130-5773-7	. 016	57.67	79	Rib	20-130-5721-2	. 020	55.00
24	Rib Assembly	20-130-5773.8	. 020	63.00	80	Rib	20-130-5720-2	. 020	48.82
25	Rib Assembly	20-130-5773-9	. 016	67.25	81	Rib	20-130-5719-2	. 025	45.80
26	Rib Assembly	20-130-5773-10	. 016	71.45	82	Rib	20-130-5718-2	. 051	38.50
27	Rib Assembly	20-130-5769-11	. 016	72.88	83	Torque Tube			
28	Rib Assembly	20-130-5769-503	. 025	76.00		Assembly	20-130-5772-1	2.750	
29	Rib Assembly	20.130-5769-10	. 020	79.00	84	Torque Tube Assembly			
30	Rib Assembly	20-130-5769-9	. 016	85.00		Assembly	20-130-5772-2	2.750	
31	Rib Assembly	20-130-5769-8	. 016	90.50	85	Beam	$20-130-5704-2$. 040	
32	Rib Assembly	20-130-5769-7	. 016	96.00	85	Rib Assembly	20-130-5711-1	. 020	
33	Rib	20-130-5703-12	. 032	100.90	87	Rib Assembly	20-130-5738-1	. 032	47.00
34	Rib	20-130-5703-11	. 032	101.10	88	Rib Assembly	20-130-5737-2	. 032	38.50
35	Rib Assembly	$20 \cdot 130 \cdot 5769.6$. 025	103.00	89	Rib Assembly	20-130-5717-1	. 032	30.00
36	Rib Assembly	20-130-5769-5	. 016	108.00	90	Rib Assembly	20-130-5734-1	-020	21.62
37	Rib Assembly	20-130-5769.4	. 016	114.00	91	Rib Assembly	20-130-5733-1	-020	14.50
38	Rib Assembly	20-130-5769-3	. 016	121.00	92	Bulkhead	20.130-5735-2	. 020	
39	Rib Assembly	20-130-5769-2	. 016	128.00	93	Rib	20-130-5736-2	. 025	26.74
40	Rib Assembly	20-130-5769-1	. 020	136.00	94	Beam Assembly	20-130-5705-501	. 032	
41	Rib Assembly	20-130-3164-1	. 025	138.88	95	Rib	20-130-5739-2	. 020	53.00
42	Rib Assembly	20-130-5770-1	. 025	143.38	96	Rib	20-130-5739-3	. 020	63.00
43	Rib	20-130-5703-511	. 025	138.88	97	Rib	20-130-5739-4	. 020	71.00
44	Rib	20-130-5703-512	. 025	137.38	98	Rib	20-130-5739-5	. 032	79.00
45	Channel	20-130-5703-3	. 032		99	Bulkhead	20-130-5172-2	. 032	
46	Rib Assembly	20-130-5745-1	. 020	145.00	100	Rib	20.130-5173-2	. 032	74.50
47	Rib Assembly	20.130-5746-1	. 020	154.00	101	Rib Assembly	20-130-5740-1	. 025	87.00
48	Rib Assembly	20-130-5746-2	. 020	163.00	102	Beam Assembly	20-130-5705-503	. 032	
49	Rib Assembly	20-130-5747-1	. 020	172.00	103	Rib Rib	$20-130-5741-2$ $20-130-5742-2$. 020	95.00 103.00
50	Rib Assembly	20-130-5747-2	. 020	181.00	104 105	Rib	20-130-5742-2	. 022	111.00
51	Rib Assembly	20-130.5748-1	. 025	190.00	106	Rib	20-130-5743-3	. 025	119.00
52	Rib Assembly	20-130-5749-1	. 020	198.00	107	Rib Assembly	20-130-5744-1	. 025	127.00
53	Beam Assembly	20-130-5704-1	. 040		108	Rib	20-130-5743-4	. 020	136.00
54	Rib	20-130-5732-2	. 020	198.00	109	Bulkhead	20-130-5175-2	. 032	
55	Rib	20-130-5731-2	. 020	191.82	110	Rib	20-130-5174-2	. 032	140.38
56	R ib	20-130-5730-2	. 020	188.18	111	Beam	20-130-5705-505	. 032	

FIG. 216B - ELEVATOR SKIN DIAGRAM - (AIRPLANES AF44-78545 AND SUBSEQUENT)
TABLE 75B-ELEVATOR SKIN RIVETING (AIRPLANES AF44-78545 AND SUBSEQUENT) CHORDWISE SKIN CONNECTIONS-ELEVATOR

Location
Extent
Trailing Edge to Main Beam

Trailing Edge to Main Beam

Trailing Edge to Main Beam

Rear Beam to Main Beam

Trailing Edge to Main Beam
Station 119

Station 95

Station 71

Station
47
Station
21.6

Gage of Gage of Outboard Skin Inboard Skin
.020
.020
.020
.020
.020
.020
.020
.020
.020

Rivet
Types
$671 \mathrm{D}-\mathrm{AD} 4$

671D-AD4

671D-AD4

671D-AD4
$671 \mathrm{D}-\mathrm{AD} 4$

671D-AD4

671D-AD4

671D-AD4

Rivet Spacing

Rivet Rows
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20

1

1

SPANWISE SKIN CONNECTIONS-ELEVATOR

Location	Extent	Gage of Forward Skin	Gage of Aft Skin	Type of Rivets	Rivet Spacing
Station Rivet Rows					

TABLE 76
ELEVATOR SKIN RIVETING

	Gage of Skin Outboard	Gage of Skin Inboard	Type	Number of Rivet Rows	
			Rivets	Rivet	Spacing

FIGURE 218 -ELEVATOR—REPAIR TO BEAM
ead:h side of the cut. Rivets through the skin to be $671 \mathrm{D}-4 \mathrm{AD}$ while those through the beam web are AN.442AD4. If cut-out is less than 13 inches long, the arigles should be continuous, and if more than 13 inches long, separate angles may be used at either ent of the cut.
(e) DAMAGE NECESSITATING REPLACEMENT. - All clips, brackets, short angles (I0 inches long or less), hinges, etc. should be repl申ced if damaged.
(2) ELEVATOR TAB HINGE BEAM.-This betam is similar in construction to the rudder tab hijpe beam and, therefore, the procedure for the repairs for this beam will be found in this section, paragraph 3. c. (2), and figure 208.
d. RIBS.-The elevator ribs are similar in con-
struction to the rudder ribs. Refer to paragraph 3. d. of this section.
e. TAB.-The elevator tab is of the same construction as the rudder tab, and, therefore, the repairs will be the same. Refer to paragraph 3. e. of this section.

1. TIP.-The elevator tip is similar to the rudder tip and, therefore, the repairs will be the same. The structure and component parts are given in figure 219 and table 77.
g. TRAILING EDGE. - The elevator trailing edge is identical with that of the rudder and may, therefore, be repaired in accordance with paragraph 3. (4) of this section.
2. Refer to paragraph 4 f , for mass balancing instructions.

FIGURE 219-ELEVATOR TIP STRUCTURE

TABLE 77
COMPONENT PARTS OF ELEVATOR TIP

Item	Member	Gage	Part Number
1	Rib	.020	$20-131-1003-2$
2	Rib	.025	$20-131-1002-2$
3	Beam	.025	$20-131-1001-2$

 Paragraph 5

AN O1-25LA-3

All data deleted from page 314

AN 01-25LA-3
 TABLE 78
 MATERIALS FOR EMPENNAGE REPAIR

Material
24ST
24ST
24ST
24ST
24ST
24ST
24ST
24ST
24ST
X4130
X4130
X4130
X4130
X4130
X4130
671D-4AD
671D-5AD
671D-6AD
AN442AD4
AN442AD5
AN442AD6
LS1127-4
LS1127-5
AN3-
AN365-1032
AN960-10

Stock
Size
Sheet, aluminum alclad .016
Sheet, aluminum alclad .020
Sheet, aluminum alclad . 025
Sheet, aluminum alclad . 032
Sheet, aluminum alclad .040
Sheet, aluminum alclad . 051
Sheet, aluminum alclad .064
Sheet, aluminum alclad .081
Sheet, aluminum alclad $\quad .125$
Sheet, steel $90,000 \mathrm{lb} / \mathrm{sq} \mathrm{in} .\mathrm{Normalized} \mathrm{}$.
Sheet, steel $90,000 \mathrm{lb} / \mathrm{sq} \mathrm{in}$.
Sheet, steel $90,000 \mathrm{lb} / \mathrm{sq}$ in. Normalized .125
Rivet, brazier head $1 / \mathrm{x}$
Rivet, brazier head 5/82
Rivet, brazier head $3 / 16$
Rivet, flathead
Rivet, flathead
Rivet, flathead
Blind rivets
Blind rivets
Bolt, aircraft
Nut, self locking
Washer, plain

EMPENNAGE EXTENSION LIST

Alcoa Die No.

$78-\mathrm{C}$	14256	28928	29096	29389
12680	22893	29083	29387	29659

SECTION VIII

FAIRING AND COWLING REPAIR

1. FIN-FUSELAGE FAIRING.

Remove fairing and make the necessary repairs to the surrounding region.

Repair fairing with an .025 sheet bent to fit the outside contour and rivet with eight 671D-4AD rivets each side of cleaned up damage.

Replace damaged fittings, doublers, clips, etc. Clamp repaired fairing in place by tightening up the screws at the aft end and fastening the nuts with lock wire. The fairing is shown in figure 20.

2. STABILIZER - FUSELAGE FAIRING.

Repairs are made as in paragraph 1. above.

3. WING - FUSELAGE FAIRING.

All 24ST material used is of the following sheet gages: $.020, .025$, and .032 . The fairing assembly consists of several fillets, bulkheads, and stiffeners, and is shown in figure 20. Damage to fillet or bulkhead skins may be repaired by patching a sheet of similar gage to the damaged area, attaching it with a single row of $671 \mathrm{D}-4 \mathrm{AD}$ rivets at $.68 \pm .06$ inch spacing or a double row of LSI 127-4 Cherry blind rivets at . 75 $\pm .06$ inch spacing. The type of rivet used depends on whether or not the fairing is removed before attempting to repair it.

Flanges and bent up angles may be repaired by nesting an angle of similar gage in the region of the damage and riveting to the damaged member with three 671D-4AD rivets through each leg each side of cut.

The only extrusions used are L29083 and K15614. The former may be repaired in accordance with figure 232. The latter, a trapezoidal shape, is repaired by inserting a new section of the extrusion in the damaged area. The skins should be continuous across the extrusion break.

Damage in the region of lightening holes and beads may be repaired in the same manner as the wing ribs. (See figure 146.)

All non-metallic material may be repaired by inserting a new section in the damaged area.

4. WING SPLICE FAIRING.

Repair will be facilitated if the fairing is removed, otherwise difficulties may be encountered because of the close proximity of the attach angles to the inner fairing contour. The fairing may be patched using a sheet of the same gage as the damaged material, attaching it with sixteen 671D-4AD rivets each side of splice. These rivets are to be equally spaced across the section, using a double row approximately one inch apart. The rivets should have a minimum spacing of .62 inch.

All clips, ties, rods, doublers, etc. are to be replaced if damaged.

5. DORSAL FIN TO FIN FAIRING.

The fairing is all of .032 gage with overlapping splices. (See figure 223.) Patches may be made of the same gage and attached with a single row of 671 D 4 AD rivets at $.75 \pm .13$ inch spacing, or a double row of LSil27-4 rivets at $1 \pm .13$ inch spacing. The strip and cover in the region of the de-icer hoses should be replaced if damaged. The channels may be spliced by using a similar section and three 671D-4AD rivets each side of break. Maintain a minimum spacing of .75 inch in channel. Existing de-icer rivnuts and flush rivets may be included in the required number of rivets, referring to section I for countersunk rivet procedure. The strip around the base of the shoe may be spliced with an .032 strip, 2.5 inches wide and attached with six 671D-4AD rivets each side of break. Replace cover plates and doublers if damaged.

6. TAIL WHEEL DOOR.

The tail wheel doors consist primarily of an outer .020 sheet and an inner .025 frame. Skin dents free from sharp comers, cracks, or abrasions may be restored to shape. Holes or cracks which when cleaned up are a maximum of 1.5 inches in diameter, may be neglected provided they are not less than 8 inches apart and not closer to any line of rivets than 1 inch. Where the outer sheet is accessible on both sides, a damage after clean-up may be repaired with an . 020 sheet using one row of 671D-4AD rivets at $.68 \pm .06$ inch spacing. If both sides of the sheet are not accessible, the patch will be the same but LS1127-s rivets

FIGURE 223-DORSAL FIN

reference: section vin, parag raph 6

FIGURE 224-TAIL WHEEL DOOR REPAIR

FIGURE 226-LANDING GEAR DOOR REPAIR

at $.63 \pm .06$ inch should be used. The .025 frame is patched with a sheet of similar gage using two rows of LS $1127-5$ rivets at $.68 \pm .06$ spacing. The patch should be formed to the contour of the frame. The hinge may be repaired by inserting a new piece of stock in the damaged region, making sure that the center line is properly located. The damaged portion should be cut out at a point half way between existing rivets. The angle may be spliced by an .051 sheet 1.32 inches wide and picking up six rivets each side of break. To clean up the damaged angle, it will be necessary to roll back the skin locally. Figure 224 shows these repairs. Replace all damaged fittings and brackets.

7. LANDING GEAR NACELLE DOOR.

These doors have channel and bulkhead stiffened skins (figure 225). Each door is supported by three hinges and is operated from one point. Negligible damage is the same as above. The skin is repaired by patching with an .036 sheet and one row of 671 D 4 AD rivets at $.75 \pm .06$ spacing around the edges. The repair to the inner sheet is similar to that used on the
outer panel wing ribs (figure 146) except that the splice plates should be attached with one row of AN442AD4 rivets at $.75 \pm .06$ spacing around the edges. If the lightening holes are covered over, LS1127-4 rivets at $.63 \pm .06$ spacing must be used. A damage to the scalloped region may be repaired by cutting an .036 patch to the same contour as the scallop and extending it back between the lightening hole to pick up four AN442AD4 rivets as shown in figure 226.

The ribs are all of .040 gage. Damage to a flange alone may be repaired by nesting an .040 angle into the flange and attach with three AN442AD4 rivets through each leg each side of cut. The complete repair of the rib may be effected in accordance with figures 229 and 230.

All channels may be repaired as in figures 229 and 230. Drill out spot welds where required with a $1 / 8$ drill. See section I, paragraph 8 for method.

Replace all fittings, hinges, and small items if damaged. If the damage is extensive, it will be necessary to build a form jig to maintain the shape of the door.

FIGURE 227 (SHEET 1 of 2 SHEETS) - ENGINE COWL STRUCTURE

8. ENGINE COWLING AND DUCTS.

a. Repairs to the cowling and ducting may be effected by the application of the material on general repairs. Those repairs will hold for the outer skin as well as the various bulkheads and angles. See section I, paragraph 8, for method of drilling out spot welds.
b. The hat sections may be repaired by fitting a piece of the same gage stock to the outside contour of the hat and riveting with nine 671D-5AD rivets each side of splice. Damage in the region of hat section intersections is repaired with two gussets. The hats are cut away on each side of the intersection. An .051 gusset, flanged as shown in figure 228, is placed on the crowns of the hats and riveted with four AN442AD5 rivets through each end of the hats. The rivets may be bucked through the skin which has been cut away. An . 040 gusset is cut to fit the hole in the skin and this, together with the skin patch, is riveted
to the flanges of the hats with three 671D-5AD rivets per flange. The skin patch is then riveted to the skin as shown.

CAUTION

(1) CHERRY BLIND RIVETS SHOULD NOT BE USED IN THE COWLING OR DUCTING.
(2) ALL REPAIRS SHOULD BE VERY RIGID BECAUSE OF VIBRATION.
(3) IN CLEANING UP SECTIONS, BE SURE THAT ALL CORNERS ARE ROUNDED OFF WITH $1 / 2$ INCH MINIMUM RADII.
(4) THE CONTOUR OF THE DUCTS AND COWL SHOULD BE KEPT AS CLOSE TO THE ORIGINAL AS POS. SIBLE.

FIGURE 227 (SHEET 2 of 2 SHEETS) - ENGINE COWL STRUCTURE

TABLE 80

COMPONENT PARTS OF ENGINE COWL
BOTTOM COWLING

Item	Member	Station No.	Part No.	Gage	**Material
1	${ }^{*}$ Hat Sections		20-730-1003	. 032	24SO Alclad
2	Channel		20-730-1088	. 064	24SO Alclad
3	Bulkhead	34.98	20-730-3055	. 032	24SO Alclad
4	Bulkhead	34.98	20-730-1101	. 032	2450 Alclad
5	Bulkhead	14.45	20-730-1089	. 032	24SO Alclad
6	Casting	10.12	20-730-3019		Alcoa 13 Die Casting /
7	Bulkhead	10.17	20-730-3048	. 051	24SO Alclad
8	Bulkhead	34.98	20.730-3008		24SO Alclad
9	Skin		20-730-1003	. 040	24SO Alclad
10	Oil Cooler Duct		20-730-1093	. 040	24SO Alclad
COWL FLAPS					
Item	Member	Station No.	Part No.	Gage	**Material
11	Intermediate Flap		20-730-1129	. 040	24SO Alclad
12	Spiller		20-730-3006	. 051	24SO Alclad
			20-730-3007	. 051	24SO Alclad
13	Pan Cowl Flap		20-730-1155	. 051	24SO Alclad
	Sheet No. 3		20-730-1156	. 051	24SO Alclad
14	Pan Cowl Flaps		20-730-1158	. 051	24ST Alclad
	Sheet Nos. 2 and 4		20-730-1159	. 051	24SO Alclad
15	Spring		20-730-3039	. 031	S.A.E. 1095
16	Pan Cowl Flaps		20-730-1160	. 051	24SO Alclad
	Sheet Nos. 1 and 5		20.730-1157	. 051	24ST Alclad
17	Hat Ring	71.74	20-730-1060	. 051	Stainless Steel Type 302 Annealed
	Plate Assembly	71.74	20-730-1060	. 051	Stainless Steel Type 302% H.
SIDE COWLING					
Item	Member	Station No.	Part No.	Gage	**Material
18	Carburetor Air Filter		20-730-3090		
19	Engine Seal	34.98	20-730-1002	. 040	24SO Alclad
20	*Hat Sections		20-730-1002	. 032	24SO Alclad
21	Bulkhead	14.45	20-730-1002	. 040	24SO Alclad
22	Skin		20-730-1002	. 040	24SO Alclad
23	Bulkheads	10.17	20-730-3050	. 051	24SO Alclad
24	Channel		20-730-1002	. 064	24SO Alclad
25	Hinge		20-730-3146	. 064	24SO Alciad
	Pin		20-730-3146	. 25	Stainless Steel

TABLE 80 (CONTINUED) CARBURETOR AIR INDUCTION SYSTEM

Item	Member	Station No.	Part No.	Gage	**Material
26	Bulkhead Leading EdgeCarburetor Air Scoop	10.27	20-480-1064	. 051	24SO Alclad
27	Zee Former	14.45-49	20-480-3002	. 064	24SO Alclad
28	Lower Bulkhead	34.98	20-480-1073	. 040	24SO Alclad
29	Base		20.480-3033		Alcoa 195-T6 Casting
30	Base		20-480-1059	. 081	24SO Alclad
31	Elbow (Rear)		20-480-3025		Alcoa 195-T6 Casting
32	Bulkhead	84.986	20-480-1048	. 051	24SO Alclad
33	Bulkhead	75.65	20-480-1043	. 051	24SO Alclad
34	Bulkhead	67.0	20-480-1044	. 051	24SO Alclad
35	Elbow	48.0-67.0	20-480-3032	. 051	24SO Alclad
36	Bulkhead	57.4	20-480-1041	. 051	24SO Alclad
37	Stiffener	43.1	20-480-1020	. 051	24SO Alclad
38	Bulkhead	49.0	20-480-1077	. 051	24SO Alclad
39	Bulkhead	38.0	20-480-1034	. 051	24SO Alclad
40	Upper Bulkhead	34.98	20-480-1072	. 032	24SO Alclad
41	Stiffener	28.8	20-480-1018	. 051	24SO Alclad
42	Bulkhead	23.60	20-480-1026	. 051	24SO Alclad
43	Bulkhead	17.75	20-480-1027	. 051	24SO Alclad
44	Bulkhead	14.45	20-480-1062	. 051	24SO Alclad
45	Duct		20-480-1061	. 051	24SO Alclad
46	Leading Edge Carburetor Air Scoop	10.12	20-480-3020		Alcoa 13 Die Casting
47	Skin		20-480-1042	. 051	24SO Alclad

* For repairs to hat sections, see figure 107.
** All 24 SO to be heat treated to 56,000 pounds per square inch after forming.

FIGURE 228-ENGINE COWL-HAT SECTION REPAIR

AN 01-25EA-3

TABLE 81
 MATERIALS FOR FAIRING AND COWLING REPAIR

Spec. No.
24ST
24ST
24ST
24ST
24ST
24ST
24ST
671-D-4AD
671-D-5AD
AN442-AD4
AN442-AD5
LS1127-4
LS1127-5

Stock Size
Sheet, aluminum alclad .020
Sheet, aluminum alclad .025
Sheet, aluminum alclad . 032
Sheet, aluminum alclad .036
Sheet, aluminum alclad .040
Sheet, aluminum alclad . 051
Sheet, aluminum alclad .064
Rivet, brazier head $\quad 1 / 8$
Rivet, brazier head $\quad 5 / 32$
Rivet, flathead
Rivet, flathead
Blind rivet, cherry
Blind rivet, cherry

SECTION IX GENERAL REPAIR

1. REPAIR OF SECTIONS FABRICATED FROM ALCLAD SHEET.

a. GENERAL.- Because there are many sections which cannot be covered in the detailed repairs, the following general repairs for sections fabricated from sheet are given. These repairs provide the information necessary for the repair of sections not treated specifically in the text, and are subdivided into three types. It must be realized that all cases could not be covered; however, from the information provided it should be possible to effect repairs for many of the bent up sections of the ship.

CAUTION

THESE REPAIRS ARE TO BE USED ONLY WHEN THE REPAIR FOR THE PARTICULAR DAMAGE IS NOT TREATED ELSEWHERE IN THE TEXT.
b. GENERAL REPAIR -TYPE I.-This type applies to flats of bulkheads, frames, webs, etc., where the damaged area after cleanup is greater than 1 inch from a flange, edge of a lightening hole, stiffener or bead.
(1) NEGLIGIBLE DAMAGE. ... Dents free from cracks, abrasions, and sharp corners may be neglected. These dents must be bumped out wherever possible to prevent their developing into cracks. With the exception of the tail cone bulkheads (section III, paragraph 4. e.), holes and cracks which, after cleanup, can be circumscribed by a circle whose diameter is ' x the web depth and which cannot exceed 1 inch. may be considered negligible providing:
(a) They must be at least 1.5 inches from the edge of a sheet, a flange, or a stiffener.
(b) After cleanup they must be at least .63 inch from the nearest rivet. Rivets in the vicinity of the damage must be inspected to determine whether they have been loosened or sheared.
(2) DAMAGE REPAIRABLE BY PATCHING. Damage not considered negligible may be patched as follows:
(a) Clean up the damage maintaining a .5
radius on all comers using a spiral reamer or a round file.
(b) Determine the gage of the damaged material.
(c) Having determined the gage of the material, refer to table 82. This table gives the number of rows of rivets, the type of rivets, and the rivet spacing required for the repair of 24 ST Alclad sheet for various gages. The specified rivet pattern must extend completely around the patch.
(d) Lay on a piece of 24 ST Alclad sheet whose gage is the same as, or heavier than, that of the damaged sheet. Attach, picking up the required rivet pattern. Be sure that a minimum edge distance of 2.5 times the rivet diameter is maintained on all rivets.
(e) Figure 229 shows the application of the above type of repair to an .040 24ST Alclad sheet.
c. GENERAL REPAIR TYPE II.-This type of repair applies to angles, web flanges, and flanges of lightening holes.
(1) NEGLIGIBLE DAMAGE. - Nicks and cracks in the edge of the flange which, when cleaned up with a round file, do not have a depth greater than $1 / 5$ the length of the damaged leg and which are a minimum of .38 inch from any rivet, may be neglected provided such nicks are at least 4 inches apart. It is necessary that the cleaned up damage be free from all sharp corners and that a minimum radius of .25 inch be used.
(2) DAMAGE REPAIRABLE BY PATCHING. Damage not considered negligible may be patched as follows:
(a) Clean up the damage with a .5 inch radius cutter and determine whether or not the damage is confined to more or less than liz the cross sectional area.
(b) Determine the dimensions of the damaged material by referring to the various figures through. out the text.
(c) Having determined the dimensions of the damage, refer to figure 229 and table 82. These show angles of various dimensions and include the number of rivets required each side of the break, depending on

TABLE 82

RIVET PATTERNS FOR GENERAL REPAIR TO SHEET STOCK

A-TYPE I REPAIR

Type, Spacing and Number of Rivets Required Per Inch of Damaged Area

	AN442 AD4		AN442 AD5		AN442 AD6		LS1127 AD-4		LSI127AD-5		LS1127AD-6	
Gage	Number of Rows	Spacing										
. 020	3	. 63					5	. 63				
. 025	3	. 75					5	. 63				
. 032	3	. 75	2	. 63			5	. 63	4	. 63		
. 040	3	. 63	2	. 63	2	. 75	5	. 63	4	. 63	4	. 75
. 051	4	. 63	3	. 75	3	. 88	5	. 63	4	. 63	4	. 75
. 064			3	. 63	3	. 88			4	. 63	4	. 75
. 081			4	. 63	4	. 88					5	. 75

B-TYPE II REPAIR

Size	Gage	AN442 AD4	Number of Complete Break AN442 AD5	Rivets Requ AN442 AD6	red Each Sid AN442 AD4	of Break One Leg Damaged AN442 AD5	AN442 AD6
	. 032	5	4		3	2	
$\mathrm{a}=.75$. 040	6	4	4	3	2	2
$\mathrm{b}=.75$. 051	8	5	4	4	3	2
	. 064	10	6	5	5	3	3
	. 081	12	8	6	6	4	3
	. 032	7	6		4	3	
$a=1$. 040	9	6	5	5	3	3
$b=1$. 051	11	7	5	6	4	3
	. 064	14	9	6	7	5	3
	. 081	17	11	8	8	6	4

whether or not the damage is confined to one or two legs of the angle.
(d) Patch or splice the member by laying in the required splice angle. The gage of this splice angle is to be of the same gage as that of the damaged materiai. This angle is preformed 24 ST Alclad sheet or bent up from 24 SO Alclad sheet and heat treated to 56,000 pounds per square inch after form-
ing. To determine the bend radius of the patch angle, refer to table 7.
(e) Figure 229 indicates how to apply this type of repair to a $1 \times 1 \times .04024$ ST Alclad angle for damage that is confined to one leg and to a complete break.
d. GENERAL REPAIR--TYPE III.-This type of repair applies to flanged webs and to channels.

2. SPLICE ANGLES SAME GAGE

AS ORIGINAL
3. SEE TABLE 7 FOR MINIMUM BEND RADII

FIGURE 229 -GENERAL REPAIR—ANGLES AND FLATS

REFERENCE: SECTION IX, PARAGRAPH ic.
FIGURE 230-GENERAL REPAIR—FLANGED WEBS AND CHANNELS

A flanged web is considered as consisting of a web and an angle.

A channel is considered as consisting of a web and two angles.
(1) NEGLIGIBLE DAMAGE. -- Negligible damage is determined by referting to the text of GENERAL REPAIR, TYPES I and II.
(2) DAMAGE REPAIRABLE BY PATCHING. - Damage not considered negligible may be patched as follows:
(a) Figure 230 shows how to break down a channel section into its assumed component parts to effect its repair. The particular case shows how to combine the .040 web repair (given in paragraph 1. b. (2) (e) of section IX), with the two $1 \times 1 \times .040$ angle repairs (given in paragraph 1. c. (2) (e) of section IX). By referring to table 82 , it is seen that the portions of the channel considered as angles can each be repaired by picking up a total of six AN442AD5 rivets each side of the break. The section of the channel considered web can be repaired by picking up two rows of AN442AD5 rivets at .63 inch spacing. The three component parts, the web, and the two angles, are then combined to give the composite splice shown in figure 230 . The material used is of the same gage as that of the damaged member and is 24 SO Alclad heat treated to 56,000 pounds per square inch after forming.
(b) Figure 231 shows how to break down a flanged web into its assumed component parts to effect its repair. The particular case shows how to combine the .040 web repair with the $1 \times 1 \times .040$ angle repair. Referring to figure 231 , it is seen that the web can be repaired by picking up two rows of AN442-AD5 rivets at . 63 inch spacing and the portion considered as an angle can be repaired by picking up six AN442-AD5 rivets each side of the break. The two component parts, the web and the angle, are then combined to give the composite splice shown in the figure. The material used is 24 SO Alclad heat treated to 56,000 pounds per square inch after forming and is the same gage as the damaged member.

2. REPAIR OF EXTRUSIONS.

a. Since there are a large number of extrusions, most of which are used in many places in the airplane, their repairs are presented in this section. Based on the form of the cross-section, the repairs fall into three groups: Figure 231 and table 83 give the data for angles; figure 232 and table 84 give the data for bulb
angles; and figure 233 and table 85 give the data for " T " sections.
b. The tables refer to the extrusions by their die number, both Alcoa and Curtiss. The particular die number of any damaged extrusion may be determined from the skeleton drawings and from the various figures.
c. The accompanying tables give the dimensions of the extrusions together with the dimensions for replacements and splices. The required number of rivets or bolts for each leg is given and should be used in all cases except where specific deviations are allowed in the text.
d. For a large number of extrusions, both steel and aluminum alloy are given for repairs and replacements. Steel is used for the following reasons:
(1) For equivalent strength, aluminum alloy sheet must be of a heavier gage than the corresponding extrusion.
(2) The bend radii of the heavier sheet stock are greater than that of the corresponding extrusion and, for replacements, difficulty may be experienced in locating the rivets properly.
(3) Splice angles nested in the original extrusion must have small bend radii so that the rivets will seat properly.
e. It is always better structurally to splice an extrusion with angles. Only in cases where this cannot be done should splice plates be used.
f. In figures 231 and 232, two positions of the splice angles are shown. Position " A " is to be favored since it gives greater strength. Position " B " may be used provided the free legs are tied to a member (for example, a web or skin). In this case, the total number of rivets or bolts called for in both legs must be used through one leg only.
\& If original extrusion stock is available, it may be used both for replacements and inserts.
h. All inserts should have a $+0,-.03$ inch tolerance in length.
i. If formed, heat-treated angle stock is not available, the aluminum alloy sheet must be bent in the annealed condition and then heat treated.
j. All steel stock is X-4130 normalized.
k. See table 7 for bend radii.

EXTRUSION

$245 T$ ALCLAD OR STEEL REPLACEMENT

SPLICE ANGLE TYPE I

SPLICE PLATES

TOTAL NUMBER OF BOLTS OR RIVETS TO EQUAL NUMBER GIVEN IN TABLE 83 FOR LEG A
-. 63 INCH FOR $1 / 8$ OR $5 / 32$ RIVETS -.63 INCH FOR $1 / 8$ OR 5/32 RIVETS
.75 INCH FOR $3 / 16$ RIVETS OR $3 / 16$ BOLTS
4. ALL FORMED 24ST ALCLAD MATERIAL TO BE MADE FROM 24SO ALCLAD HEAT TREATED TO $56,000 \mathrm{LB} / 5 \mathrm{IN}$. AFTER FORMING
5. EDGE DISTANCE ON RIVETS TO BE 2 RIVET DIAMETERS MINIMUM
6. All STEEL PARTS TO HAVE PROTECTIVE FINISH AS PER SECTION I PARAGRAPH 11

Alcoa Die No.	Original Extrusion Dimensions					Replacement Stock Dimensions								Splice Angles 24ST Alclad Unless Noted				Splice Plates 24ST Alclad Unless Noted				Attachment													
						X4130 Steel Normalized				24ST Alclad								Per Leg per Side of Splice																	
										Leg a	Leg b																								
	a	b	t_{1}	t_{2}	r	a	b	t	r					a	b	t	r					a	b	t	r	a	b	t_{1}	t_{2}	$\begin{array}{\|c\|} \hline \text { AN442 } \\ \text { AD5 } \end{array}$	$\begin{gathered} \text { AN442 } \\ \text { AD6 } \end{gathered}$	AN3	$\begin{gathered} \text { AN442 } \\ \text { AD5 } \end{gathered}$	$\begin{gathered} \text { AN442 } \\ \text { AD6 } \end{gathered}$	AN3
K77A	. 75	. 75	. 125	. 125	. 125	. 75	. 75	. 094	. 094	. 75	. 75	. 125	. 188	-	-	-	-	. 75	. 75	. 125	. 125	10	7	3	10	7	3								
K77B	1.00	1.00	. 125	. 125	. 125	1.00	1.00	. 094	. 094	-	-	-	-	-	-	-	-	1.00	1.00	. 125	. 125	13	9	4	13	9	4								
K77C	1.25	1.25	. 250	. 250	. 188	-	-	-	-	-	-	-	-	-	-	-	-	* $\left.\begin{array}{r}1.25 \\ * 1.25\end{array}\right\}$	$\left.\begin{array}{l}1.25 \\ 1.25\end{array}\right\}$	$\left.\begin{array}{l} .250 \\ .156 \end{array}\right\}$	$\begin{aligned} & .250 \\ & .156 \end{aligned}$	-	-	7	-	-	7								
K77E	1.75	1.75	. 125	. 125	. 188	1.75	1.75	. 125	. 125	1.75	1.75	. 156	. 188	${ }^{*} 1.625$	1.625	. 125	. 188	1.75	1.75	. 125	. 125	23	16	6	23	16	6								
K77F	1.25	1.25	. 125	. 125	. 188	1.25	1.25	. 094	. 094	1.25	1.25	. 156	. 188	${ }^{*} 1.125$	1.125	. 125	. 188	1.25	1.25	. 125	. 125	17	12	5	17	12	5								
K77L	1.50	1.50	. 188	. 188	. 188	1.50	1.50	. 125	. 125	-	-	-	-	*1.375	1.375	. 125	. 125	1.50 ${ }^{1.50}$ 1.50	$\left.\begin{array}{l}1.50 \\ 1.50\end{array}\right\}$	$\left.\begin{array}{l} .188 \\ .125 \end{array}\right\}$	$\begin{aligned} & .188 \\ & .125 \end{aligned}$	-	20	7	-	20	7								
K77P	2.00	2.00	. 250	. 250	. 250	-	-	-	-	-	-	-	-	-	-	-	-	*2.00	2.00	. 156	. 156	-	-	11	-		11								
K77Q	. 75	. 75	. 188	. 188	. 125	. 75	. 75	. 125	. 125	-	-	-	-	-	-	-	-	. 75	. 75	. 188	. 188	14	10	4	14	10	4								
K77R	1.50	1.50	. 125	. 125	. 188	1.50	1.50	. 125	. 125	1.50	1.50	. 156	. 188	${ }^{*} 1.375$	1.375	. 125	. 188	${ }^{*} 1.50$	1.50	. 125	. 125	20	14	6	20	14	6								
K77S	2.00	2.00	. 188	. 188	. 125	2.00	2.00	. 125	. 125	-	-	-	-		-	-	-	$\left.\begin{array}{r} 2.00 \\ * 2.00 \end{array}\right\}$	$\left.\begin{array}{l}2.00 \\ 2.00\end{array}\right\}$	$\left.\begin{array}{l}.188 \\ .125\end{array}\right\}$	$\begin{aligned} & .188 \\ & .125 \end{aligned}$	-	25	9	-	25	9								
K77V	2.00	2.00	. 125	. 125	. 250	2.00	2.00	. 125	. 125	2.00	2.00	. 156	. 188	*1.875	1.875	. 125	. 125	2.00	2.00	. 156	. 156	-	-	7	-	-	7								
K77W	1.75	1.75	. 250	. 250	. 188	-	-	-	-	-	-	-	-		-	-	-	1.75	1.75	. 250	. 250	-	-	11	-	-	11								
K78A	1.25	1.25	. 188	. 188	. 188	1.25	1.25	. 125	. 125	-	-	-	-	*1.063	1.063	. 125	. 125	$\left\{\begin{array}{l} 1.25 \\ { }^{2} 1.25 \end{array}\right\}$	$\left.\begin{array}{l} 1.25 \\ 1.25 \end{array}\right\}$	$\left.\begin{array}{l} .188 \\ .125 \end{array}\right\}$	$\begin{aligned} & .188 \\ & .125 \end{aligned}$	24	17	6	24	17	6								
K78C	. 75	. 75	. 094	. 094	. 125	. 75	. 75	. 078	. 094	. 75	. 75	. 125	. 188	* . 656	. 656	. 078	. 094	. 75	. 75	. 102	. 102	7	5	-	7	5	-								
K78F	1.00	1.00	. 094	. 094	. 125	1.00	1.00	. 078	. 094	1.00	1.00	. 125	. 188	* $\begin{array}{r}.906 \\ .906\end{array}$. 906	$\left.\begin{array}{l} .094 \\ .078 \end{array}\right\}$	$\left.\begin{array}{l} .125 \\ .094 \end{array}\right\}$	1.00	1.00	. 102	. 102	10	7	3	10	7	3								
K78J	1.00	1.00	. 063	. 063	. 125	-	-	-	-	1.00	1.00	. 081	. 125	. 938	. 938	. 064	. 094	1.00	1.00	. 081	. 081	7	5	-	7	5	-								
K78K	. 75	. 75	. 063	. 063	. 125	-	-	-	-	. 75	. 75	. 081	. 125	. 688	. 688	. 064	. 094	. 75	. 75	. 081	. 081	5	4	-	5		-								
K78M	1.00	1.00	. 188	. 188	. 125	1.00	1.00	. 125	. 125	-	-	-	-	-	-	-	-	1.00	1.00	. 188	. 188	19	13		19	13	5								
K78U	1.125	1.125	. 125	. 125	. 188	1.125	1.125	. 094	. 125	1.125	1.125	. 125	. 188	* . 875	. 875	. 094	. 094	1.125	1.125	. 125	. 125	14	10	4	14	10	4								
K78Y	1.25	1.25	. 094	. 094	. 094	1.25	1.25	. 078	. 094	1.25	1.25	. 125	. 188	1.156	1.156	. 094	. 125	1.25	1.25	. 125	. 125	13	9	5	13	9	5								
K472	. 75	. 75	. 063	. 063	. 016	-	-	-	-	. 75	. 75	. 081	. 125	. 688	. 688	. 064	. 094	. 75	. 75	. 081	. 081		4		5	4	-								
K1288	. 75	1.00	. 070	. 070	. 062	-	-	-	-	. 75	1.00	. 081	. 125	. 688	. 938	. 081	. 125	. 75	1.00	. 081	. 081	6	4	-	8	6	-								
K12037	. 625	. 625	. 063	. 063	. 063	. 625	. 625	. 063	. 063	. 625	. 625	:081	. 081	-	-	-	-	. 625	. 625	. 081	. 081	5	3	-	5	3	-								
K12680	. 75	1.5	. 125	. 130	. 188																														
				. 047		. 75	1.5	. 094	. 094	-	-	-	-	-	-	-	-	. 75	1.50	. 125	. 125	10	7	3	15	10	4								
K15262	. 50	. 75	. 063	. 063	. 094	-	-	-	-	. 50	. 75	. 081	. 125	-	-	-	-	. 50	. 75	. 081	. 081	$\dagger 5$	3	-	5	4	-								
K15276	. 60	. 60	. 050	. 050	. 050	-	-	-	-	. 60	. 60	. 064	. 094	. 563	. 563	. 051	. 094	. 60	. 60	. 064	. 064	$\dagger 5$	-	-	5	-	-								
K22893	1.25	. 75	. 062	. 062	. 125	-	-	-	-	1.25	. 75	. 081	. 125	1.188	. 688	. 064	. 094	1.25	. 75	. 081	. 081	9	6	-	5	4	-								
K22999	. 75	. 75	. 063	. 063	. 094	-	-	-	-	. 75	. 75	. 081	. 125	. 688	. 688	. 064	. 094	. 75	. 75	. 064	. 064	5	4	3	5	4	3								
734L	1.50	3.00	. 250	. 250	. 312	-	-	-	-	-	-	-	-	-	-	-	$+$	$\left.\begin{array}{r}1.50 \\ * 1.50\end{array}\right\}$	$\left.\begin{array}{l} 3.00 \\ 3.00 \end{array}\right\}$	$\left.\begin{array}{l} .250 \\ .156 \end{array}\right\}$	$\begin{aligned} & .250 \\ & .156 \end{aligned}$	-	-	8	-	--	16								
734LL	1.25	1.50	. 250	. 250	. 188	-		-	-	-	-	-	-	-	-	-	1	1.25 $* 1.25$	1.50 1.50	. 250	$\begin{aligned} & .250 \\ & .156 \end{aligned}$	-	-	8	-	-	9								
734MM	1.25	2.25	. 250	. 250	. 250	-	-	-	-	-	-	-	-	-	-		-	$\begin{aligned} & 1.25 \\ & * 1.25 \end{aligned}$	2.25 2.25	. 250	$\begin{aligned} & .250 \\ & .156 \end{aligned}$	-	--	8	-	-	14								
734 T	1.50	2.50	. 188	. 188	. 250	1.50	2.50	. 156	. 188	-	-	-	-	*1.313	2.313	. 125	. 125	1.50	2.50	. 188	. 188	-	--	8	-	-	13								
D79-0	. 625	. 625	. 125	. 125	,	(If the distance between outstanding legs must be held, it is necessary to use the same extrusion for replacements).												. 625	. 625	. 125	. 125	6	-		6	-	-								

[^2]\dagger AN442 AD4

DISTANCE BETWEEN CENTERS . 63 FOR 1/8 OR 5/32 RIVETS
TOTAL NUMBER OF BOLTS 75 FOR 3/16 RIVETS OR 3/16 OR RIVETS TO EQUAL
4. ALL FORMED 24ST ALCLAD MATERIAL TO BE MADE FROM 2450 alCLAD HEAT TREATED TO $56,000 \mathrm{LB} / \mathrm{SQ}$ IN. AFTER FORMING
5. EDGE DISTANCE ON RIVETS TO BE 2 RIVET DIAMETERS MINIMUM
6. AIL STEEL PARTS TO have PROTECTIVE FINISH AS PER SECTION I PARAGRAPH IT

NOTES:
. USE WITH TABLE 84
WHERE SPUCE EMPLOYS ORIGINAL BOLT OR RIVET PATTERN, ADDITIONAL BOLTS OR RIVETS MAY BE ADDED PROVIDED MINIMUM SPACIMG IS XEPT
3. NUMBER OF RIVETS OR BOLTS SPECIFIED IS PER LEG PER SIDE OF SPUC

TABLE 84
REPAIR TO EXTRUDED BULB ANGLES

Alcoa Die No.	Original Extrusion Dimensions					Replacements								Type I Splice Angles X4130 Steel Normalized				Splice Plates 24ST Alclad			Attachment								
						X4130 Steel Normalized				24ST Alclad								Bolts or Rivets Per Leg Per Side of Splice											
	a	b	t	r_{1}	r_{2}	a	b	t	r	a	b	t	r	a	b	t	r				a	b	t	$\begin{array}{\|c} \\ A N 442 \\ A D 5 \end{array}$	$\begin{gathered} \text { Leǵ a } \\ \text { AN442 } \\ \text { AD6 } \end{gathered}$	AN3	$\begin{array}{\|c} A N 442 \\ A D 5 \end{array}$	$\begin{gathered} \text { Leg } b \\ \text { AN442 } \\ \text { AD6 } \end{gathered}$	AN3
K778	1.313	. 750	. 094	. 141	. 141	1.313	. 750	. 094	. 094	1.313	. 750	. 156	. 188	. 938	. 656	. 078	. 094	1.313	. 750	. 125	6	4	-	3	2	-			
K4200	1.094	. 625	. 078	. 117	. 125	1.094	. 625	. 078	. 094	1.094	. 625	. 102	. 188	-	-	-	-	1.094	. 625	. 102	12	9	6	5	4	-			
K5290	1.000	. 688	. 063	. 094	. 094	-	-	-	-	1.000	. 688	. 102	. 188	. 75	. 625	. 063	. 063	1.000	. 688	. 102	5	4	-	4	3	-			
K12224	1.094	. 625	. 109	. 125	. 125	1.094	. 625	. 094	. 094	1.094	. 625	. 125	. 125	-	-	-	-	1.094	. 625	. 125	12	8	4	8	5	-			
L29083	. 750	. 625	. 050	. 080	. 050	-	-	-	-	. 875	. 625	. 064	. 094	. 54	. 575	. 063	. 063	. 750	. 625	. 081	6	4	-	4	3	-			
L29084	. 875	. 625	. 050	. 080	. 050	-	-	-	-	. 875	. 625	. 064	. 094	. 665	. 575	. 063	. 063	. 875	. 625	. 081	6	5	-	4	3	-			
L29095	1.000	. 625	. 050	. 080	. 050	-	-	-	-	1.000	. 625	. 064	. 094	. 790	. 575	. 063	. 063	1.000	. 625	. 081	7	5	-	4	3	-			
29387	. 750	. 625	. 062	. 094	. 062	-	-	-	-	. 875	. 625	. 081	. 125	-	-	-	-	. 750	. 625	. 102	5	4	-	5	4	-			
L29096	1.000	. 625	. 062	. 094	. 063	-	-	-	-	1.000	. 625	. 081	. 125	. 750	. 563	. 063	. 063	1.000	. 625	. 102	9	6	-	4	3	-			
L29097	1.125	. 625	. 062	. 094	. 062	-	-	-	-	1.125	. 625	. 081	. 125	. 875	. 563	. 063	. 063	1.125	. 625	. 102	10	7	-	5	3	-			
L29098	1.125	. 688	. 080	. 125	. 080	1.125	. 688	. 078	. 094	1.125	. 688	. 102	. 188	. 795	. 608	. 078	. 094	1.125	. 688	. 102	11	8	5	6	5	-			
L29099	1.250	. 688	. 080	. 125	. 080	1.250	. 688	. 078	. 094	1.125	. 688	. 102	. 188	. 920	. 608	. 078	. 094	1.125	. 688	. 102	14	10	6	6	5	-			
L29093	. 500	. 500	. 05	. 062	. 040	1.250	.	.	,	. 50	. 625	. 064	. 094	.	-	-	-	. 500	. 500	. 081	4	-	-	3	-	-			
13641	1.000	. 875	. 062	. 078	. 094	-	-	-	-	1.00	. 875	. 081	. 125	. 782	. 813	. 063	. 063	1.000	. 875	. 102	8	6	-	5	3	-			
14256	. 875	. 500	. 050	. 080	. 080	-	-	-	-	. 875	. 625	. 064	. 094	-	-	-	-	. 875	. 500	. 081	6	5	-	4	3	-			
15643	1.000	. 750	. 051	. 094	. 094	-	-	-	-	1.000	. 750	. 081	. 125	. 760	. 700	. 063	. 063	1.000	. 750	. 081	6	5	-	4	3	-			
K22422	. 770	$.563$	Leg a .040 Leg b . 068	. 078	. 062	-	-	-	-	. 770	. 563	. 081	. 125	-	-	-	-	. 750	$.563$	Leg a .064 Leg b .081	5	4	-	4	3	-			
13839	1.000	1.000	. 090	. 120	. 100	1.00	1.00	. 094	. 094	1.000	1.000	. 156	. 188	. 670	. 91	. 078	. 094	1.000	1.000	. 125	12	9	5	10	7	4			
K766	. 875	. 500	. 062	. 094	. 094	-	-	-	-	. 875	. 625	. 081	. 125	-	-	-	-	. 875	. 625	. 102	8	6	-	5	3	-			

EXTRUSION

TOTAL NUMBER OF RIVETS OR BOLTS TO EQUAL NUMBER GIVEN

DISTANCE BETWEEN CENTERS: . 63 FOR $1 / 8$ AND $5 / 32$ RIVETS 75 FOR 3/16 RIVETS AND 3/16 BOITS.

TOTAL NUMBER OF

RIVETS OR BOLTS TO -

EQUAL NUMBER
GIVEN IN TABLE

85 FOR EACH

HORIZONTAL LEG

NOTES:

1. USE TABLE 85
2. WHERE SPLICE EMPLOYS ORIGINAL BOLT OR RIVET PATTERN, ADDHTIONAL BOLTS OR RIVETS MAY BE ADDED PROVIDED MINIMUM SPACING IS KEPT
3. NUMBER OF RIVETS OR BOLTS SPECIFED IS PER LEG PER SIDE OF SPUCE
4. Alt FORMED 245T alClad material to ne MADE FROM 2450 alclad heat treated to \$6,000 LB/SQ IN. AFTER FORMING
5. EDGE DISTANCE ON RIVETS TO BE

2 RIVET DIAMETERS MINIMUM
6. All STEEL PARTS TO HAVE PROTECTIVE FINISH AS PER SECTION I PARAGRAPH 11

TABLE 85
REPAIR TO EXTRUDED TEES

Alcoa Die No.	Original Extrusion Dimensions					Repair Stock Dimensions (24ST Alclad)														Attachment					
						Replacement						Splice Angles				Splice Plates				Number of Rivets Required Per Leg Per Side of Insert					
						Angle				Plate							t_{1}	b	t_{2}	Leg a			Flange b		
	a	b	t_{1}	t_{2}	r	a	b	t_{1}	r	c	t_{2}	b								$\begin{gathered} A N 442 \\ A D 5 \end{gathered}$	$\begin{gathered} A N 442 \\ A D 6 \end{gathered}$	AN3	$\begin{gathered} A N 442 \\ A D 5 \end{gathered}$	$\begin{gathered} \text { AN442 } \\ \text { AD6 } \end{gathered}$	AN3
K1287	. 88	2.0	. 09	. 07	. 09	. 875	1.0	. 064	. 094	2.0	. 064	. 80	. 955	. 081	. 125	. 813	. 094	2.0	. 081	8	6	-	8	6	-
3094	1.55	1.25	. 05	. 05	. 094	1.55	. 625	. 040	. 094	1.25	. 04	1.5	. 625	. 051	. 094	1.4	. 064	1.25	. 064	7	5	-	4	3	-

TABLE 86
REPAIR TO EXTRUDED BULB TEES

Alcoa Die No.	Original Extrusion Dimensions						Replacement Stock														Repair Stock						Attachment					
							24ST Alclad								X4130 Steel (Normalized)						24ST Alclad						Rivets or Bolts Required Per Leǵ Per Side of Insert.					
	a	b	t	$r 1$	${ }^{2}$	${ }^{3}$	a	b	c	t_{1}	r_{1}	r^{2}	d	t_{2}	a	b	t_{1}	r	**C	${ }^{* *} t_{2}$	a	b	t_{1}	r	c	t_{2}	AD5	$\begin{gathered} \text { Leg a } \\ A D 6 \end{gathered}$	AN3	${ }_{A D 5^{I}}$	$\begin{gathered} \text { Flange } \\ A D 6 \end{gathered}$	b AN3
15263	1.0	2.1	vert. . 050 horiz. .05-.07	. 10	. 10	. 10	1.0	1.05	. 38	. 051	. 094			. 051							. 65	. 375	. 064	. 094	1.03		6	5	5	7	6	
29092	1.5	1.38	. 09	. 185	. 19	. 09	1.5	1.05	. 38	. 064	. 094	. 094	1.38	. 064	1.5	. 69	. 078	. 094	1.38	. 064	. 744	. 47	. 081	. 125	. 643		12	9	9	7	5	
29089	1.0	1.25	. 06	. 125	. 125	. 06	1.0	. 63	. 38	. 051	. 094		1.25	. 051							. 63	. 38	. 064	. 094	. 60		7	6	6	4	3	
29390	1.25	1.38	. 08	. 155	. 155	. 08	1.25	. 69	. 38	. 064	-. 094	. 094	1.38	. 064	1.25	. 69	. 063	. 063	1.38	. 064	*. 69	. 44	. 081	. 125	1.38	. 081	8	7	7	5	4	
29091	1.25	1.38	. 09	. 185	. 185	. 09	1.25	. 69	. 38	. 064	. 094	. 094	1.38	. 064	1.25	. 69	. 078	. 094	1.38	. 064	*. 59	. 47	. 081	. 125	1.38	. 094	10	8	8	7	5	
29193	1.0	1.9	. 09	. 125	. 125	. 09	1.0	. 95	. 38	. 064	. 094	. 094	1.9	. 064	1.0	. 95	. 078	. 094	1.9	. 064	. 59	. 31	. 081	. 125	. 906		6	5	5	10	7	
29391	1.25	2.5	vert. 1.0 horiz. .07-. 10	. 175	. 175	. 18	1.25	1.25	. 38	. 064	. 094	. 094	2.5	. 064	1.25	1.25	. 078	. 094	2.5	. 064	. 69	. 50	. 064	. 064	1.2		10	7	7	12	8	

[^3]

SPLICE PLATES
TYPE II

TOTAL NUMBER OF RIVETS OR BOLTS TO EQUAL NUMBER EQUAL NUMBER GIVEN IN TABL
85 FOR EACH 85 FOR EACH
HORIZONTAL LEG

DISTANCE BETWEEN CENTERS:
TOTAL NUMBER OF
RIVES OR BOLTS TO
RIVETS OR BOLTS TO
EQUAL NUMBER GIVEN
.63 FOR $1 / 8$ AND $5 / 32$ RIVETS .75 FOR $3 / 16$ RIVETS AND $3 / 16$ BOLTS IN TABLE 86 FOR LEG A

NOTES:
SAME AS ON SHEET 1 OF 2

REFERENCE: I. SECTION IX PARAGRAPH 2
2. TABLE 85

SECTION X
 MISCELLANEOUS

1. FUEL AND OIL TANKS.

a. GENERAL.
(1) FUEL TANKS.-A separate fuel system is provided for each engine. Three welded tanks are installed in each outer wing panel. The skin material along the length of the tank is $5251 / 2 \mathrm{H}$ Aluminum alloy while the ends of the tank are 5280 Aluminum alloy. The No. 1 tank is located forward of the 30 percent spar and has a capacity of 236 US (196.6 IMPERIAL) gallons. The No. 2 tank is located behind the 30 percent spar and has a capacity of 292 US (243-3 IMPERLAL) gallons. The No. 3 tank is located forward of the rear or 70 percent spar and has a capacity of 175 US (145.8 IMPERIAL) gallons. All tanks have an expansion space of 3 percent of tank capacity.
(2) OIL TANKS.-A separate and complete oil system is provided for each engine. The tanks are constructed of formed 3 SO and $3 \mathrm{~S} 1 / 4 \mathrm{H}$ aluminum alloy, with welded seams. The lateral cross section of each tank is a"tear drop" shape. The total volume of each tank is 44.8 U.S. gallons (37.4 Imperial gallons). but the filler opening is located below the top of the tank so that the oil capacity to which the tank can be filled is 39.8 U. S. gallons (33 Imperial gallons).

The surface of each oil tank is covered with a heat insulating material that is sprayed on. This type of insulation is made by the Minnesota Mining and Mfg . Co. The solvent recommended for use with this material is white or aviation gasoline.
b. CLEANING OF TANKS BEFORE REPAIR. -The cleaning process for the fuel and oil tanks is the same. Remove the damaged tank from the airplane and drain out all of the fuel or oil. Flush the tank for 15 minutes with hot water entering the bottom of the tank and overflowing at the top. Then steam the interior of the tank for a minimum of 30 minutes by entering the steam through the top and allowing the steam and condensate to flow out the bottom. Dry the tank by blowing compressed air through the tank. If steam is not available, the tank should be flushed with hot water as described above for at least one hour.

The tank should be repaired as soon as possible after cleaning and at no time should the tank be allowed to stand longer than 30 minutes before repairing.
c. REPAIR TO CRACKS.-Remove the paint from an area of about 3 inches all around the crack by
the use of a solvent or paint remover. In the case of the oil tank the heat insulation material must be first removed. This may best be done by cutting away as much of the material as possible with a knife and then removing the remainder adhering to the tank by dissolving with gasoline or toluol.

The most efficient repair for cracks in welded tanks is accomplished by cutting away the cracked area, leaving a rectangular hole to be filled by a butt welded insert. However since this repair is difficult to make it is recommended that the following method be used.

Drill each end of the crack with a number 40 drill and fill the crack with a full width bead of 43 S aluminum alloy welding wire. File or grind the excess weld material flush with the tank surface and apply a welded patch extending at least one inch beyond each end of the filled-in crack. Caution should be exercised to remove excess flux before refinishing.
d. REPAIR TO HOLES.-Remove the paint or heat insulation material from around the damaged as outlined above. If the damage is irregular in shape, clean up the damaged area in the form of a rectangular hole keeping a . 5 inch corner radius. Make a patch of the same material used in tank .125 inch thick. Hand fit the patch to fit flush with the surface of the tank, refer to figure 234. Hold in place with cleco clamps and tack weld with $43 S$ Aluminum alloy welding wire. Remove clamps, finish butt weld around patch. Clean off welding flux with 10 percent solution of sulphuric acid. Then flush with water in order to remove all sulphuric acid. Treat welded area with a solution of water 1 gallon, mixed with 6 to 8 ounces of potassium dichromate. Apply with clean cloth swab. Thoroughiy dry with heated air. Apply a medium brush coat of fuel tank slushing compound specification No. 3595 , to patched and surrounding area. Dry thoroughly with heated air (minimum 1 hour) to remove all solvent in the slushing compound before exposure to fuel. Paint the exterior of the tank with zinc chromate primer, specification No. AN-TT-P-656.
e. REPAIR TO DENTS.-Dents within the limits shown in figure 235A. will not structurally impair a welded fuel tank. Larger dents should be "bumped" out when accessible or the dented area reinforced by patching.

FIGURE 234-BUTT WELD FLAT PATCH FITTED IN PLACE PRIOR TO WELDING

2. OIL COOLANT RADIATOR.

a. GENERAL.-The inner and outer brass shells and the valve flange casting of the oil cooler are assembled by silver soldering. The core tubes are held together, one tube to all its adjacent tubes, and the core assembly complete to the shell, by means of a lead tin solder.
b. CLEANING BEFORE REPAIR.-Before any type of repair work may be done, the oil cooler must first be drained of oil and then thoroughly cleaned. Carbon tetrachloride or trichlorethylene are the best solvents for cleaning oil coolers and should be used approximately at the boiling points of the liquids. The liquid should be pumped through the cooler by a handpump, transfer pump, or a power driven pump. As the liquid leaves the cooler, it should be strained to catch any particles of carbon, metal, etc. If any particles of bearing metal are found, the cooler must be scrapped. After the cooler has been thoroughly cleaned, the interior should be flushed with hot run-
ning water and then steamed for a period not less than ! hour. The steam should pass downward through the cooler and the cooler should be so placed that the condensed steam will drain freely from the bottom.
c. TESTING FOR LEAKS. - After the cooler has been cleaned, close all openings except one to which not more than 75 pounds per square inch of air pressure is to be applied. Submerge the cooler in clean warm water and slowly apply air pressure. Leaking tubes will be disclosed by bubbles of air coming from each end of the tube. Mark the tube with a wire clip. If the leak appears around the jacket or the core face, it can usually be stopped by soldering without disturbing any of the assembled parts. The cooler should be retested for leaks after any repair.

d. DAMAGE TO ONE TUBE.

(1) REMOVAL OF DAMAGED TUBE.-Make up at least two special tube pulling irons as follows:

Square off the end of a plain 3 pound soldering iron. Drill a $3 / 8$ inch hole in the squared end to a depth of $11 / 4$ inches. Sweat solder a plece of $7 / 32$ inch diameter copper stock $11 / 2$ inches long into the hole. See figure 235 for pulling iron.

Heat the two tube pulling irons in a small gas fired furnace. While the irons are heating, clean the two ends of the tube to be removed with concentrated hydrochloric acid and then swab with zinc chloride flux. The cleaning and fluxing should be done with a small hair brush or swab. Push a small piece of wire of sufficient length to stick out each end of the tube to be removed. This will aid in identifying the corresponding tube ends. After the irons have become hot enough, insert one of the irons into the tube end, removing the wire as the iron is inserted. Remove the wire from the tube and insert the other iron in the end of the tube from which the wire was withdrawn. Apply a pushing pressure with first one iron and then the other until the solder bond has been loosened. Push one end of the tube out from the face of the core and pull the tube out with a pair of pliers.
(2) REPLACING NEW TUBE.-Flux each end of the new tube and tin with a tin lead solder on the hex ends only. Take the tube pulling iron and round out the opening on each face of the core where the old tube was removed so that the new tube may be easily inserted. Then flux the openings in the core where the old tube has been removed and insert the new tube. Use a pair of sharp nose pliers and reform the hexagons of the tubes adjacent to the new tube.

After refluxing, use the standard soldering iron and solder over the face of the core with a back and forth motion of the iron.
e. DAMAGE TO LARGE SECTIONS OF THE, CORE.- To remove a large section of the core, play an oxyacetylene flame around the damaged tubes on both faces of the core. When the solder bond has been loosened quickly remove the damaged section.
f. REPAIR OF CORE SURFACE LEAKS.Core surface leaks may be repaired by fluxing the surface of the core at the point of leakage with a zinc chloride flux; and then using a hot soldering iron, apply a back and forth motion and solder over the point of leak.
g. DENTS IN SHELL.-Large dents in the shell may be corrected by applying an air pressure of 30 to 40 pounds per square inch to the inside of the cooler; and using an oxyacteylene flame, apply heat carefully to the dent. The air pressure on the inside will force the shell back into the proper shape. Sharp dents may sometimes be pulled out by soldering the end of the silver solder wire to the dent and pulling the shell into position.
h. HOLES IN SHELL.-Holes that are $1 / 4$ inch or less in diameter may be patched by using a piece of .040 or .050 gage brass and soft soldering over the hole. Large holes in the shell may be repaired by silver soldering. The core must be properly protected from excessive heating by the use of wet cloths.

FIGURE 235-TUBING REPAIR—PULIING IRON

FIGURE 235A — REPAIR TO WELDED FUEL TANK

$3 / 800$.

$7 / 16$ O. D.

$1 / 2$ O.D.

5/8 0. D.

$3 / 4 \quad 0 . \mathrm{D}$.

$7 / 8$ O. D.

10. D.

i. CLEANING OIL COOLER AFTER REPAIR.

 -Test the repairs by closing all openings except one. To this opening slowly apply a test pressure 10 pounds per square inch and submerge in clean warm water. Any defect in the repair will be disclosed by bubbling. If the repair is acceptable, thoroughly flush the cooler inside and out with hot water. If the cooler is to be stored, it should be steamed as outlined above. The steaming may be omitted if the cooler is to be installed on the airplane for immediate use. Thoroughly dry the cooler by immersing in a tank of clean SAE 20 light engine oil at a temperature of 121 degrees C. (250 degrees F). The cooler should be agitated thoroughly until all bubbling ceases. This will indicate that all the water is evaporated and the interior of the cooler is completely coated with oil. If the cooler is to be stored, it should be drained and all openings closed.
3. TUBES AND TUBING REPAIRS.

a. GENERAL.-The tubing used in this airplane is made of 52 SO aluminum alloy, stainless steel, or copper. Damaged lines should be replaced by new line assemblies if possible, but if total replacement is impossible, the damaged line may be repaired by the use of inserts and standard AN-818 fittings or AN884 hose.

Lines that have the flared type joints must be repaired by inserts having flared joints. Figure 236 shows the flaring dimensions for various size tubes. Lines that have the beaded type joints should be repaired by inserts having beaded joints. Figure 237 shows the dimensions for beaded tube ends.

b. REPAIR OF FLARED END TUBING.-Cut

 out the damaged portion of the tube, burr the cut ends of the tube, and clean. Slip the correct size AN818 nut and AN- 819 sleeve over each end of the cuttube. Flare both ends of the tube as outlined in this section, paragraph 3. d. Apply Parker Sealube to the
I threads of both nuts and screw in an AN-815 union to each end. Cut an insert to the required length. Burr and clean both ends of the insert and then slip on an
| AN - 818 nut and AN-819 sleeve over each end. Flare the ends of the insert as outlined in this section, paragraph 3. d. Apply sealube to the nuts and screw the insert in the proper position. The repair is shown in figure 238.
c. REPAIR OF BEADED END TUBING.Cut out the damaged portion of line as shown in figure 239. Burr and clean the two ends of the remaining tube. Cut a piece of tubing $1 / 2$ inch shorter than the removed section to use as an insert. Burr and clean the two ends of the insert. Bead the ends of the origi\| nal tube and the insert. Cut two pieces of AN-884 hose to the correct length and slip two clamps over the ends of each of the two pieces of hose. Push the two pieces of hose over the ends of the original tube to a sufficient distance to allow the insert to be slipped in place. Slip the hose connections back over each end of the insert until they are equally divided over the joint.
d. FLARING TUBE ENDS. -The tools used for flaring tube ends are a grip die and a flaring tool. The grip die is composed of two steel blocks held side by side with pilot pins that are pressed into one block and fit corresponding holes in the other blocks. Countersunk holes are drilled into the blocks, each block taking $1 / 2$ of the drill diameter. The diameter of the holes vary so as to fit all sizes of tubes. See figure 240 for grip die. The flaring tools are made of steel bars that are tapered at one end so as to fit into the countersunk holes of the grip die. Place the tube to be flared into the correct size hole with a length of tube equal to $1 / 2$ the diameter of the tube extruding through the countersunk side of the die. Place the end of the flaring tool into the end of the tube and tap

C Beaded Exhaust Manifold Clamps

Standard dimensions for beaded clamps for use with beaded exhaust stack section ends.

B Exhaust Stack Sections

Beaded ends of exhaust stack sections to have dimensions as shown.

Fuel, Oil, Vent and Coolant Lines
A Dimensions to be as specified on Army-Navy Aeronautical Design Drawing No. AND19060 and AND10065.
 HIGH PRESSURE TUBING

FIGURE 238-REPAIR FOR FLARED END TUBES

FIGURE 239 - REPAIR FOR BEADED END TUBES

FIGURE 240-GRIP DIE AND FLARING TOOL
on the flat end of the tool with a hammer until the tube is flared out to the shape of the die.

4. CONTROL CABLES.

a. GENERAL.-The control cables are made of corrosion resistant steel. The cables are either 7×19 or 7×7 extra flexible steel type, and vary from $1 / 16$ inch to $1 / 4$ inch in diameter. The termimals are swaged on to the cables in accordance with Specification No. AN-T-2. The cable chart gives the information needed for the fabrication of replacements of damaged cables. The various types of terminals are shown in figure 241 and the chart is given in table 87.
b. NEGLIGIBLE DAMAGE.-If not more than six wires are broken in any 1 -inch length of 7×19 cable, the cable may be considered serviceable. If more than six wires are broken in any 1 -inch length, the 7×19 cable should be replaced. Broken wires are not permitted in 7×7 cables. At every 50-hour inspection (Navy, 60-hour), check cables for broken wires.

c. FABRICATION OF REPLACEMENT

 CABLES.-If possible, all damaged cables should be replaced by prefabricated cables that were sent out as spare parts. But if prefabricated cables are not available, replacements may be made by the use of terminals that are either swaged, spliced, or soldered to the cables. Cables that are $3 / 32$ inch or larger in diameter may be spliced to the terminal by the 5 -Tuck method of splicing as outlined in the U. S. Army Specification No. 98-25515. (Navy Specification No. PS-6.) Cables that are less than $3 / 32$ inch in diameter must be attached to the end ifttings by wrap soldering as outlined in the U. S. Army Specification No. 98-25513. (Navy Specification No. PS-2.)(1) SWAGED TERMINALS.-Where facilities permit, damaged cables should be replaced by swaging the correct terminals to the new cables. The correct cable assembly length, together with the type terminals may be found in the cable chart.
(2) AN668 TERMINALS (NAF 310621 CLASS B).-In cases where swaging facilities are limpossible, a substitute for this type of terminal may be made as follows: A standard AN-135 turnbuckle assembly consisting of a barrel, a cable eye and a pin eye, and a standard AN-100 thimble will serve satisfactorily for this type terminal.
(3) AN667 TERMINALS (NAF 310621 CLASS C).-A substitute for this type terminal may be fabricated as follows: Use a standard AN130 turnbuckle assembly consisting of a barrel,
cable eye and fork in conjunction with a standard AN-100 thimble.
(4) AN669 TERMINALS (NAF 310621 CLASS D).-This type of terminal may be substituted by using a standard AN-160 or AN-161 fork and a standard AN-111 cable bushing.

5. SOUNDPROOFING REPAIRS.

a. GENERAL.-The soundproofing located in the cabin of the nose section is manufactured by Seamans Paper Company or equivalent. See figure 242 for materials and combinations. The materials are:
(1) Resisto-Hyde, colored cockpit green.
(2) Q-1 $1 / 8$ inch stitched Seapack, both sides covered with flame-proof gauze.
(3) Q-2 $1 / 4$ inch stitched Seapack, both sides covered with flame-proof gauze.
(4) No. 5 Kwilko $1 / 2$ inch stitched, both sides covered with flame-proof gauze.
(5) No. 10 Kwilko 1 inch stitched, both sides covered with flame-proof gauze.

The various combinations of these materials are:
(1) Resisto-Hyde and Q-1 stitched together.
(2) Resisto-Hyde and Q-2 stitched together
(3) Q-1 covered on both sides with ResistoHyde stitched together.
(4) Resisto-Hyde, Q-1 and No. 5 Kwilko stitched together.
(5) Q-1, No. 10 and No. 5 Kwilko stitched together.
(6) Q-1, No. 5 Kwilko stitched together.

The adhesive used is made by Seamans Paper Company, No. 055 or equivalent.
b. APPLICATION OF SOUNDPROOFING.Clean the inside surface of the cabin and then spray on No. 055 adhesive to the skin, stringers and rings. Allow this to dry approximately 5 minutes and add the insulation. Hold the insulation in place until set; and add lining using adhesive along rings and brackets, and self tapping screws through edges of lining. All lining using ResistoHyde must have bound edges. Fastening screws are spaced approximately 3 inches apart on outside edges of lining and 6 inches apart for all inside fastenings. When installing Resisto-Hyde, pull only across the quilted stitching and not along the direction of sewing.

Curtiss-Wright Drawing Numbers	Function	Location	Length	Dia.	Material Ex. Flex Cable	Tension (Pounds)	$\begin{aligned} & \text { Fig. } \\ & \text { No. } \end{aligned}$	End Fitting	End Fitting
20-460-1042-5	Ldg. Gear Valve-Down	Nose Section	148.060	. 094	7×7	20	-4	\#RA1802 Amer. C. \% C.	AN669-L3 L.H.
20-460-1042-10	Ldg. Gear Valve-Up	Nose Section	154.750	. 094	7×7	20	-4	\#RA1802 Amer. C. \& C.	AN669-L3 L.H.
20-460-1041-28	Ldg. Gear Valve-Down	Center Section	96.310	. 094	7×7	20	-4	\#RA1802 Amer. C. \% C.	AN669-L3 L.H.
20-460-1041-29	Ldg. Gear Valve-Up	Center Section	83.500	. 094	7×7	20	-4	\#RA1808 Amer. C. \& C.	AN669-L3 L.H.
20-360-1123-7	Ldg. Gear Uplatch-Left	Center Section-Forward	67.500	. 094	7×7	20	-3	AN667-3	AN669-L3 L.H.
20-360-1123-8	Ldg. Gear Uplatch-Right	Center Section-Forward	49.000	. 094	7×7	20	-3	AN667-3	AN669-L3 L.H.
20-360-1124-1	Ldg. Gear Uplatch	Center Section	122.190	. 125	7×19	20	-6	AN668:4	AN667-4
20-310-1082-2	Ldg. Gear Downlatch-Left	Center Panel	154.630	. 094	7×7	20	-2	AN669-L3 L.H.	AN668-3
20-310-1082-3	Ldg. Gear Downlatch-Right	Center Panel	147.750	. 094	7×7	20	-2	AN669-L3 L.H.	AN668-3
20-310-1082-4	Ldg. Gear Uplatch-Right	Center Panel	127.060	. 094	7×7	20	-2	AN669-L3 L.H.	AN668-3
20-310-1082-5	Ldg. Gear Uplatch-Left	Center Panel	119.380	. 094	7×7	20	- 2	AN669-L3 L.H.	AN668-3
20-360-1123-5	Ldg. Gear Downlatch-Left	Center Panel	50.250	. 094	7×7	20	-3	AN667-3	AN669-L3 L.H.
20-360-1123-6	Ldg. Gear Downlatch-Right	Center Panel	24.120	. 094	7×7 7×19	${ }_{20}^{20}$	-3	AN667-3 AN668-4	${ }_{\text {AN668-4 }}^{\text {AN }}$ L.H.
20-313-3015-3	Ldg. Gear Emergency Control	Center Panel	385.250 321.600	. 125	7×19 7×19	20 20	-5	AN668-4 AN668-4	AN668-4 AN668-4
$\begin{aligned} & 20-313-3015-5 \\ & 20-313-3015-8 \end{aligned}$	Ldg. Gear Emergency Control Ldg. Gear Emergency Control	Center Panel Center Panel	321.600 439.470	. 125	7×19 7×19	20 20	-5 -5	AN668-4 AN668-4	AN668-4 AN668-4
20-313-3015-10	Ldg. Gear Emergency Control	Center Panel	379.400	. 125	7×19	20	-5	AN668-4	AN668-4
20-460-1042-2	Tail Wheel Lock	Nose Section	405.125	. 094	7×7 7×7	30 30	-4	\#RA1802 Amer. C. 8 C.	AN669-L3 L.H.
20-360-1118-2	Tail Wheel Lock	Center Section	271.750	. 094	7×7			AN669-L3 R.H.	AN667-3
20-360-1123-4	Tail Wheel Uplatch	Center Section-Forward	18.500	. 094	7×7	None Specified	-3	AN667.3	AN669-L3 L.H.
20-310-1082-7	Tail Wheel Uplatch	Center Section	453.560	. 094	7×7	None Specified	-2	AN669-L3 L.H.	AN668-3
20-360-3006-4	Tail Wheel Uplatch	Tail Section-Aft	22.750	. 094	7×7	None Specified	-3	AN669-S3 L.H.	AN667-3
20-360-1115-1	Tail Wheel Tie Up	Special Tools	64.000	. 250	7×19	None Specified	-5	AN668-8	AN668-8
$\begin{aligned} & 20-687-3014-1 \\ & 20-687-3015-1 \end{aligned}$	Glider Release Control Glider Release Control	Forward Tail Section	$\begin{aligned} & 727.62 \\ & 137.250 \end{aligned}$	$\begin{aligned} & .063 \\ & .063 \end{aligned}$	$\begin{aligned} & 7 \times 7 \\ & 7 \times 7 \end{aligned}$	None Specified None Specified	$\begin{aligned} & -7 \\ & -2 \end{aligned}$	$\begin{aligned} & \text { AN669-2 R.H. } \\ & \text { AN669-2 L.H. } \end{aligned}$	$066847+0168719$ AN668-2
20-590-1030-1	Lower Parking Brake	Nose Section	46.3125 45.688	. 094	7×7 7×7	None Specified $15+5 \%$	-11 -4	\#RA1802 Amer. C. \& C.	AN669-S3 L.H. + AN 165-16S + AN155-16S
20-590-1031-1	Upper Parking Brake	Nose Section	45.688	. 094	7×7	$15 \pm 5 \%$	-4	\#RA1802 Amer. C. \& C.	AN669-S3 L.H.
20-460-1042-9	Cowl Flap Open-L. \% R R.	Nose Section	${ }_{293}^{269.750}$. 0994	7×7	30 30	-4	\#RA1802 Amer. C. \& C.	
20-460-1042-11	Cowl Flap Closed-L. \& R	Nose Section	293.130	. 094	7×7		-4	\#RA1802 Amer. C. \& C.	
20-460-1041-14	Cowl Flap Open-Right	Center Panel	${ }_{1}^{176.500}$. 0994	7×7 7×7	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	-4		\#RA1802 Amer. C. \& C. \#RA1802 Amer. C. 8 C.
- $20-460-1041-15$	Cowl Flap Closed-Right	Center Panel	186.750	. 094	7×7	30	-4	AN669-L3 L.H.	\#RA1802 Amer. C. \& C.
20-460-1041-17	Cowl Flap Closed-Left	Center Panel	163.000	. 094	7×7	30	-4	AN669-L3 L.H.	\#RA1802 Amer. C. \& C.
20-460-1042-17	Aux. Flaps-Open and Closed	Left and Right Nacelle	64.625	. 0964	7×7 7×7	None Specified	-4 -10	\#RA1802 Amer. C. \& C.	AN669-L3 L.H.
20-750-3045-1	Aux. Cowl Flaps	Left and Right Nacelle	Approx.	. 062	7×7	None Specified	-10		
20-460-1042-12	Oil Cooler Flap-Closed-Left	Nose Section	169.300	. 094	7×7	30	-4	\#RA1802 Amer. C. \% C.	AN669-L3 L.H.
20-460-1042-12	Oil Cooler Flap-Open-Left	Nose Section	169.300	. 094	7×7	30	-4	\#RA1802 Amer. C. \% C.	AN669-L3 L.H.
20-460-1042-13	Oil Cooler Flap-Closed-Right	Nose Section	190.130	. 094	7×7	30	-4	\#RA1802 Amer. C. \% C.	AN669-L3 L.H.
20-460-1042-13	Oil Cooler Flap-Open-Right	Nose Section	190.130	. 094	7×7	30	-4	\#RA1802 Amer. C. \& C.	AN669-L3 L.H. ${ }^{\text {RA1802 Amer }}$ C 8 C
20-460-1041-30	Oil Cooler Flap-Open-Left	Center Panel	254.750	. 094	7×7	30	-4		
20-460-1041-31	Oil Cooler Flap-Open-Right	Center Panel	219.750 254.000	. 0974	7×7 7×7	30 30	-4	AN669-L3 L.H. AN669-L3 L.H.	\#RA1802 Amer. C. \& C. \#RA1802 Amer. C. \& C
$\begin{aligned} & 20-460-1041-32 \\ & 20-460-1041-33 \end{aligned}$	Oil Cooler Flap-Closed-Left Oil Cooler Flap-Closed-Right	Center Panel Center Panel	$\begin{aligned} & 254.000 \\ & 220.310 \end{aligned}$	$\begin{aligned} & .094 \\ & .094 \end{aligned}$	$\begin{array}{r} 7 \times 7 \\ 7 \times 7 \end{array}$	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	-4	$\begin{aligned} & \text { AN669-L3 L.H. } \\ & \text { AN669-L3 L.H. } \end{aligned}$	\#RA1802 Amer. C. \& C. \#RA1802 Amer. C. \& C.
20-460-1042-6	Prop.-High-Right	Nose Section	267.630	. 094	7×7	30	-4	\#RA1802 Amer. C. \% C.	AN669-L3 L.H.
20-460-1042-14	Prop.-High-Left	Nose Section	265.630	. 094	7×7	30	-4	\#RA1802 Amer. C. \& C.	AN669-L3 L.H.
20-460-1041-10	Prop.-High-Right	Nose Section	186.500	. 094	7×7	30	-4	AN669-L3 L.H.	\#RA1802 Amer. C. \& C.
20-460-1041-12	Prop.-High-Left	Center Panel	177.880	. 094	7×7	30	-4	AN669-L3 L.H.	\#RA1802 Amer. C. \& C.
20-460-1042-8	Prop.-Low-Left and Right	Center Panel	285.250	. 094	7×7	30	-4	\#RA1802 Amer. C. 86 C.	AN669-L3 L.H.
20-460-1041-11	Prop.-Low-Right	Center Panel	171.880	. 094	7×7	30	-4	AN669-L3 L.H.	\#RA1802 Amer. C. \& C.
20-460-1041-13	Prop.-Low-Left	Center Panel	160.940	. 094	7×7	30	-4	AN669-L3 L.H.	\#RA1802 Amer. C. \& C.
20-460-1042-15	Ail Filter-Open and Close	Nose Section	107.625	. 094	7×7	30	-4	\#RA1802 Amer. C. \& C.	AN669-L3 L. H .
20-460-3149-1	Air Filter Control	Center Panel-Right Side	${ }^{245.562}$. 094	7×7	30	-1	AN669-L3 L.H.	AN669-L3 L.H.
20-460-3149-2	Air Filter Control	Center Panel-Left Side	234.250	. 094	7×7	30	-1	AN669-L3 L.H.	AN669-L3 L.H.
20-460-1042-16	Air Filter	Nacelle-Right Hand	49.875	. 094	7×7 7×7	30 30	-4		
20-460-1042-18	Air Filter	Nacelle-Left Hand	50.875	. 094	7×7	30	-4	\#RA1802 Amer. C. \& C.	
20-570-1344-2	Accum. Valve Shut-Off- F^{\prime} ' ${ }^{\text {d }}$ d	Center Section	100.5	. 0663	7×7 7×7		-2		
20-570-1344-3	Accum. Valve Shut-Off-F'w'd	Center Section	116.50	. 063	7×7	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	-2	AN668-2 AN669-2 L.H	AN668-2
退20-570-1345-2	Accum. Valve Shut-Off-Aft Accum. Valve Shut-Off-Aft	Center Section Center Section	120.56 106.56	. 0663	7×7 7×7	30 30	-2	AN669:2 L.H.	AN668-2

AN 01-25LA-3
CABLE CHART
TABLE 87

Curtiss-Wright Drawing Numbers	Function	Location	Length (Inches)	Dia.	Material Ex. Flex Cable	Tension (Pounds)	Fig. No	End Fitting	End Fitting
20-530-1209-1	Aileron $\mathrm{Up}-\mathrm{R} .88 \mathrm{~L}$.	Outer Panel	230.000	250	7×19	180-200	-2	AN688-8	AN669-8 R.H.
20-530-1210-1	Aileron Down-R. \& L.	Outer Panel	317.375	. 188	7×19	180-200	-2	AN668-6	AN669-S 6 R.H.
20-530-1211-1	Aileron Up-R. \& L	Center Section	223.440	. 250	7×19	180-200	${ }^{-1}$	AN669-8 L.H.	AN669-8 L.H.
20-530-1212-1	Aileron Down-R. \& L.	Center Section	${ }^{135.250}$. 188	7×19	180-200	-1	AN669-S6 L.H.	AN669-L6 L.H.
20-530-1266-1	Aileron-Right Bank	Center Section-Pilot and CoPilot	221.313 22.563	.156 .156	7×19 7×19	${ }^{90-100}$	-3	AN667-4	AN669-L5 L.H.
20-530-1267-1	Aileron-Left Bank	Center Section-Pilot and CoPilot	221.563	. 156	7×19	90-100	-1	AN669 S-5 L.	AN669-L5 L.H.
20-530-1220-2	Aileron-Left Bank	Nose Section-Pilot	101.375	. 156	7×19	90-100	-2	AN668-5	AN669-S5 L.H.
20-530-1220-3	Aileron-Left Bank	Nose Section-CoPilot	113.125	. 156	7×19	$90-100$	-2	AN668-5	AN669-S5 L.H.
20-530-1220-4	Aileron-Right Bank	Nose Section-Pilot	143.250	. 156	7×19	90-100	-2	AN668-5	AN669-S5 L.H.
20-530-1220-5	Aileron-Right Bank	Nose Section-CoPilot	${ }^{141.375}$. 156	7×19	$90-100$	-2	AN668-5	AN669-S5 L.H.
20-530-1246-2	Aileron Tab-Right Bank	Outer Panel-Right	278.250	. 094	7×7	20 ± 2	-2	AN668-3	AN669-S3 R.H.
20-530-1246-3	Aileron Tab-Right Bank	Outer Panel-Left	418.875	. 094	7×7	20 ± 2	-2	AN668-3	AN669-S3 R.H.
20-530-1246-4	Aileron Tab-Left Bank	Outer Panel-Right	${ }^{306.000}$. 094	7×7	20 ± 2	-2	AN668-3	AN669-S3 R.H.
${ }^{20-530-1246-5}$	Aileron Tab-Left Bank	Outer Panel-Left	396.750	. 094	7×7 7×7	20 ± 2	- -4	${ }_{\text {AN668-3 }}$ AN669 ${ }^{\text {S }}$	AN669-S3 R.H.
${ }_{2}^{20-530-1236-3}$	Aileron Tab-Right Bank Aileron Tab-Left Bank	Outer Panel Outer Panel	277.620 163.750	. 0994	7×7 7×7	20 ± 2 20 ± 2	-4	AN669-S3 L.H.	\#RA1802 Amer. C. \& C.
${ }_{20-530-1226-4}$	Aileron Tab-Left Bank	Nose Section-Pedestal Aft	1636.750 2360	.094 .094	7×7 7×7	20 ± 2 20 ± 2	-4	AN669-S3 L.H. ${ }_{\text {\# }}^{\text {\# }}$ (1802 Amer. C .8 C.	\#RA1802 Amer. C. \& C. AN669-L3 L. H.
20-530-1225-4	Rudder-Right	Nose Section-Pilot	101.813	. 125	7×19	90-100	-2	AN668-4	AN669-S4 L.H.
20-530-1225-5	Rudder-Right	Nose Section-CoPilot	97.813	. 125	7×19	90-100	-2	AN668-4	AN669-S4 L.H.
20-530-1225-6	Rudder-Left	Nose Section-Pilot	86.625	. 125	7×19	90-100	-2	AN668-4	AN669-S4 L.H.
20-530-1225-7	Rudder-Left	Nose Section-CoPilot	84.063	. 125	7 $\times 19$	90-100	${ }^{-2}$	AN668-4	ANS69-S 4 L.H.
${ }_{20}^{20-530-1152-2}$	Rudder-Left Rudder-Left	Center Section-Inboard	294.250 306.313	. 125	7×19 7×19	$90-100$ $90-100$	-1 -1	AN669-S4 L.H.	ANō69-L4 L.H.
- ${ }_{20}^{20-530-1152-3}$	Rudder-Left	Center Section-Outboard	306.313 326.750	. 125	7×19 7×19	$90-100$ $90-100$	-1 -3	${ }_{\text {AN667-4 }}$ AN. 6 L.	AN659-L4 L.H.
20-530-1153-3	Rudder-Left	Center Section-Inboard	314.938	. 125	7×19	$90-100$	-3	AN667-4	AN669-L4 L.H.
20-530-1217-6	Rudder-Right	Tail Section-Inboard	328.438	. 125	7×19	90-100	-1	AN669-L4 L.H.	AN669-L4 L.H.
20-530-1217-7	Rudder-Right	Tail Section-Outboard	316.375	. 125	7×19	90-100	-1	AN669-L4 L.H.	AN669-L4 L.H.
20-530-1217-8	Rudder-Left	Tail Section-Inboard	354.563	. 125	7×19	90-100	-1	AN669-L4 L.H.	AN669-L4 L.H.
20-530-1217-9	Rudder-Left	Tail Section-Inboard	342.625	. 125	7×19	90-100	-1	AN669-L4 L.H.	AN669-L4 L.H.
20-530-1225-8	Rudder Run Around	Nose Section	56.500	. 125	7×19	90-100	-2	AN669-S4 L.H.	AN668-4
${ }^{20-530-1230-1}$	Rudder Run Around	Nose Section-Pedestal Aft Nose Section-Peder	30.063	. 125	7×19	90-100	-2	AN669-S4 L.H.	AN668-4
$\begin{array}{\|l\|} 20-530-1226-2 \\ 20-530-1247-1 \end{array}$		Nose Section-Pedestal Aft Center Section	202.623 581.813	. 0904	7×7	20 ± 2	-4	\#RA1802 Amer. C. \% C.	AN669-L3 L.H.
${ }^{20-530-1236-2}$	${ }_{\text {Rudder }}$ Rudder Tab	Center Section Tail Section	581.813 151.030	. 0944	7×7 7×7	20 ± 2 20 ± 2	-1	AN669-S3 R.H.	\#RA1802 Amer. C. \& C.
20-530-1225-1	Elevator-Up	Nose Section-Outboard	88.875	. 125	7×19	90-100	-2	AN668-4	AN669-S4 L.H.
20-530-1225-2	Elevator-Down	Nose Section	116.875	. 125	7×19	90-100	-2	AN668-4	AN669-S4 L.H.
20-530-1225-3	Elevator-Up	Nose Section-Inboard	107.750	. 125	7×19	90-100	-2	AN668-4	AN669-S4 L. H.
20-530-1252-2	Elevator-Down	Center Section-Outboard	294.250	. 125	7×19	90-100	-1	AN669-S4 L.H.	AN669-L4 L.H.
20-530-1252-3	Elevator-Down	Center Section-Inboard	306.313	. 125	7×19	$90-100$	-1	AN669-S4 L.H.	AN669-L4 L.H.
20-530-1254-2	Elevator-Up	Center Section-Outboard	307.750	. 125	7×19	90-100	-1	AN669-S4 R.H.	AN669-L4 L.H.
20-530-1254-3	Elevator-Down	Center Section-Inboard	314.500	. 125	7×19	90-100	${ }^{-1}$	AN669-S4 R.H.	AN669-L4 L.H.
20-530-1217-2	Elevator-Up	Tail Section-Inboard	374.750	. 125	7×19	$90-100$	-1	AN669-L4 R.H.	AN669-L4 L.H.
20-530-1217-3	Elevator-Up	Tail Section-Outboard	386.813	. 125	7×19	90-100	${ }^{-1}$	AN669-L4 R.H.	AN669-L4 L.H.
${ }^{20-530-1217-4} \mathbf{2 0 - 5 3 0 - 1 2 1 7 - 5}$	Elevator-Down	Tail Section-Inboard	370.625	. 125	7×19	90-100	-1	AN669-L4 R.H.	AN660, 4 L L.H.
${ }_{20-530-1226-3}^{20-53-1217-5}$	Elevator-Down	Tail Section-Outboard	382.750	. 125	7×19	90-100	${ }^{-1}$	AN669-L4 R.H.	AN669-L4 L.H.
$\begin{aligned} & 20-530-1226-3 \\ & 20-530-1226-5 \end{aligned}$	Elevator Tab-Nose Up Elevator Tab-Nose Down	Nose Section-Pedestal Aft Nose Section-Pedestal Aft	260.813 250.250	. 0994	7×7 7×7	20 ± 2 20 ± 2	-4	\#RA1802 Amer. C. 8 C. \#RA1802 Amer. C.	AN669-L4 L.H.
20-530-1245-2	Elevator Tab-Nose Up	Rear Section	${ }_{557.750}$. 094	7 7×7	20 ± 2	${ }_{-2}$	\#RA1802 Amer. C. \% C. AN669-L3 R.H.	${ }_{\text {AN } 668-3}$
20-530-1245-3	Elevator Tab-Nose Down	Rear Section	565.750	. 094	7×7	20 ± 2	-2	AN669-L3 R.H.	AN668-3
${ }^{20-530-1236-5}$	Elevator Tab-Right	Tail Section	${ }_{1}^{161.560}$. 094	7×7	20 ± 2	-4	AN669-S3 L.H.	\#RA1802 Amer. C. 8\% C.
20-530-1236-6	Elevator Tab-Left	Tail Section	153.930	. 094	7×7	20 ± 2	-4	AN669-S3 L.H.	\#RA1802 Amer. C. \& C.
20-460-1042-3	Flap Valve-Up	Nose Section	${ }_{299.313}$. 094	7×7	$30+0,-5$	-4		AN669-L3 L.H.
20-460-1042-4	Flap Valve-Down	Nose Section	214.250	. 094	7×7	$30+0,-5$	-4	\#RA1802 Amer. C. \& C.	AN669-L3 L.H.
${ }^{2} \mathbf{2 0 - 4 6 0 - 1 0 4 1 - 2} \mathbf{2 0 - 4 6 0 - 1 0 4 1 - 3}$	Flap Valve-Up	Center Panel	171.938	. 094	7×7	$30+0,-5$	-4	AN669-L3 L.H.	\#RA1802 Amer. C. \% C.
${ }^{\text {20-540-1111-1 }}$	${ }_{\text {Flap Control }}$	Center Panel Center Panel	154.875 71.500	. 0944	7×7 7×7	$30+0,-5$ $30+0,-5$	-4 -9		\#RA1802 Amer. C. \% C.

Curtiss-Wright Drawing Numbers	Function	Location	Length (Inches)	Dia.	Material Ex. Flex Cable	Tension Pounds	$\begin{aligned} & \text { Fig. } \\ & \text { No. } \end{aligned}$	End Fitting	End Fitting
$\begin{aligned} & \hline 20-570-1344-4 \\ & 20-570-1345-4 \\ & 20-570-1345-5 \\ & 20-580-3127-1 \end{aligned}$	Heater Fuel Valve Cont.-F'w'd Heater Fuel Valve Cont.-Aft. Heater Fuel Valve Cont.-Aft Heater Duct Valve Cont.	Center Section Center Section Center Section Center Section	$\begin{array}{r} 96.680 \\ 89.320 \\ 88.520 \\ 115.875 \end{array}$	$\begin{aligned} & .063 \\ & .125 \\ & .125 \\ & .062 \end{aligned}$	$\begin{aligned} & 7 \times 7 \\ & 7 \times 19 \\ & 7 \times 19 \\ & 7 \times 7 \\ & \hline \end{aligned}$	None Specified None Specified None Specified None Specified	$\begin{aligned} & -2 \\ & -2 \\ & -2 \\ & -3 \end{aligned}$	AN668-2 AN669-2 L.H. AN669-2 L.H. AN669-2 R.H	AN669-2 R.H. AN668-2 AN668-2 AN667-2
$20-460-1042-6$ $20-460-1022-7$ $20-460-1041-22$ $20-460-1041-23$ $20-460-1041-24$ $20-460-1041-25$	Supercharger-Low-L. \& R. Supercharger-High-L. \& R. Supercharger-High-R.Rht Supercharger-Low-Right Supercharger-High-Left Supercharger-Low-Left Sof	Nose Section Nose Section Center Panel Center Panel Center Panel Center Panel	267.630 249.000 181.940 167.000 185.560 170.140	$\begin{aligned} & .094 \\ & .094 \\ & .094 \\ & .094 \\ & .094 \\ & .094 \end{aligned}$	$\begin{array}{lll} 7 & \times 7 \\ 7 & \times & 7 \\ 7 & \times 7 \end{array}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & -4 \\ & -4 \\ & -4 \\ & -4 \\ & -4 \\ & -4 \end{aligned}$	*RA1802 Amer. C. \& C. -RA1802 Amer. C. \& C. AN669-L3 L.H. AN669-L3 L.H. AN669-L3 L.H. AN669-L3 L.H.	AN669-L3 L.H. AN669-L3 L.H. 4 RA 1802 Amer. C. \& C. RA1802 Amer. C. \& C. RA1802 Amer. C. \& C. RA1802 Amer. C. \& C.
$20-460-1042-6$ $20-460-1042-8$ $20-400-1041-4$ $20-460-1041-5$ $20-460-1041-26$ $20-460-1041-27$	Mixture-Rich-L. \& R Mixture-Lean-L. \& R Mixture-Lean-Left Mixture-Rich-Left Mixture - Lean-Right Mixture-Rich-Right	Nose Section Nose Section Center Panel Center Panel Center Panel Center Panel	$\begin{aligned} & 267.630 \\ & 285.250 \\ & 170.630 \\ & 188.750 \\ & 162.690 \\ & 180.630 \end{aligned}$.094 .094 .094 .094 .094 .094	$\begin{aligned} & 7 \times 7 \\ & 7 \times 7 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	-4 -4 -4 -4 -4 -4	${ }^{4}$ RA1802 Amer. C. 8 C. \#RA1802 Amer. C. \& C. AN669-L3 L.H. AN669-L3 L.H. AN669-L3 L.H. AN669-L3 L.H.	AN669-L3 L.H. AN669-L3 L.H. *RA1802 Amer. C. \& C RA1802 Amer. C. 8% C RA1802 Amer. C. \& C. RA1802 Amer. C. \& C.
$\begin{array}{\|l\|} \hline 20-460-1042-6 \\ 20-460-1042-8 \\ 20-460-1041-6 \\ 20-460-1041-7 \\ 20-460-1041-8 \\ 20-460-1041-9 \\ \hline \end{array}$	Throttle Open-L. \& R. Throttle-Closed-L. \& R. Throttle-Open-Right Throttle-Closed-Right Throttle-Open-Left Throttle-Closed-Left	Nose Section Nose Section Center Panel Center Panel Center Panel Center Panel	$\begin{aligned} & 267.630 \\ & 285.250 \\ & 187.060 \\ & 169.560 \\ & 181.380 \\ & 163.380 \end{aligned}$.094 .094 .094 .094 .094 .094	$\begin{aligned} & 7 \times 7 \\ & 7 \times 7 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & -4 \\ & -4 \\ & -4 \\ & -4 \\ & -4 \\ & -4 \end{aligned}$	\#RA1802 Amer. C. \& C \#RA1802 Amer. C. \& C. AN669-L3 L.H. AN669-L3 L.H. AN669-L3 L.H AN669-L3 L.H.	AN669-L3 L.H. AN669-L3 L.H. RA1802 Amer. C. \& C. RA1802 Amer. C. \& C. *RA1802 Amer. C. \& C. 4 RA 1802 Amer. C. $\&$ C.
20-460-1042-6 $20-460-1042-7$ $20-460-1041-18$ $20-460-1041-19$ $20-460-1041-20$ $20-460-1041-21$	Carb. Heat-Hot-L. \& R. Carb. Heat-Cold-L. \& R Carb. Heat--Ho-R Right Carb. Heat-Cold-Right Carb. Heat--Hot-Left Carb. Heat-Cold-Left	Nose Section Nose Section Center Panel Center Panel Center Panel Center Panel	$\begin{aligned} & 267.630 \\ & 249.000 \\ & 162.130 \\ & 187.560 \\ & 164.750 \\ & 189.500 \end{aligned}$	$\begin{aligned} & .009 \\ & .094 \\ & .094 \\ & .094 \\ & .094 \\ & .094 \end{aligned}$	$\begin{aligned} & 7 \times 7 \\ & 7 \times 7 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & -4 \\ & -4 \\ & -4 \\ & -4 \\ & -4 \\ & -4 \end{aligned}$	\#RA1802 Amer. C. \& C RA1802 Amer. C. \& C. AN669-L3 L.H. AN669-L3 L.H. AN669-L3 L.H. AN669-L3 L.H.	AN669-L3 L.H. AN669-L3 L.H. \#RA1802 Amer. C. \& C. 4RA1802 Amer. C. \& C. \#RA1802 Amer. C. \& C. \#RA1802 Amer. C. \& C.
$20-460-1051-2$ $20-460-1051-2$ $20-460-1051-3$ $20-460-1051-3$ $20-460-1051-8$ $20-460-1051-8$ $20-460-1051-9$	Engine Control Engine Controls	Engine - Right and Left Engine-Right and Left	$\begin{aligned} & 10.750 \\ & 25.120 \\ & 12.310 \\ & 24.750 \\ & 11.000 \\ & 11.000 \\ & 23.750 \end{aligned}$.094 .094 .094 .094 .094 .094 .094	$\begin{aligned} & 7 \times 7 \\ & 7 \times 7 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{r} -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -10 \end{array}$	AN669-S3 R.H. ${ }^{*}$ RA1 802 Amer. C. $\&$ C. 4RA1802 Amer. C. \& C. AN669-S3 R.H AN669-S3 R.H. "RA1802 Amer. C. \& C. \#RA1802 Amer. C. \& C.	${ }^{4}$ RA1802 Amer. C. \& C. AN669-S3 L.H. AN669-S3 L.H. \#RA1802 Amer. C. $\&$ C. RA1802 Amer. C. \& C. AN669-S3 L.H. *RA1302 Amer. C. \& C.
20-460-3026-25	Fuel Selector Cock Control	Nose Section	137.750	. 062	7×7	30	-1	AN669-2 L.H.	AN669-2 R.H.
20-460-3026-27	Fuel Selector Cock Control	Nose Section	177.250	. 062	7×7	30	-1	AN669-2 L.H.	AN669-2 R.H.
20-460-3026-33	Fuel Selector Cock Control	Nose Section Nose Section	153.500 123.125	. 062	7×7 7×7	30 30	${ }_{-1}$	${ }_{\text {AN }}$ AN69-2 6 L. $\mathrm{H} . \mathrm{H}$.	AN668-2 R.H.
20-460-3026-35	Fuel Selector Cock Control	Nose Section	159.625	. 062	7×7	30	-1	AN669-2 L.H.	AN669-2 R.H.
20-460-3026-37	Fuel Selector Cock Control	Nose Section	143.875	. 062	7×7	30	-1	AN669-2 L.H.	AN669-2 R.H.
${ }_{2}^{20-460-3026-39} \mathbf{2 0 - 4 6 0 - 3 0 2 6 - 4 1}$	Fuel Selector Cock Control	Nose Section	172.000	. 062	7×7	30	-1	AN669-2 L.H.	AN669-2 R.H.
- ${ }_{20-460-3026-43}$	Fuel Selector Cock Control Fuel Selector Cock Control	Nose Section Nose Section	191.625 227.375	. 062	7×7 7×7	30 30	${ }_{-1}{ }_{-1}$	AN669-2 L.H. ${ }_{\text {AN669-2 L.H. }}$	AN669-2 R.H. ${ }_{\text {AN669-2 }}^{\text {R.H. }}$
20-460-3026-45	Fuel Selector Cock Control	Nose Section	164.750	. 062	7×7	30	${ }^{-1}$	AN669-2 L.H.	AN669-2 R.H.
+ $20-460-3026-47$	Fuel Selector Cock Control	Nose Section	170.875	. 062	7×7	30	-1	AN669-2 L.H.	AN669-2 R.H.
$\begin{aligned} & 20-460-3026-49 \\ & 20-460-3026-51 \\ & \hline \end{aligned}$	Fuel Selector Cock Control Fuel Selector Cock Control	Nose Section Nose Section	$\begin{aligned} & 209.500 \\ & 161.750 \end{aligned}$	$.062$	7×7 7×7	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & -1 \\ & -1 \end{aligned}$	$\begin{aligned} & \text { AN669-2 L.H. } \\ & \text { AN669-2 L.H. } \end{aligned}$	AN669-2 R.H.
*20-520-1012-1	Auto-Pilot Follow-Up Control	Nose Section	174.0625	. 062	7×7	None Specified	-8	AN668-2	AC566A6-4 + AC38A5104-1 + AC995-41-2
20-520-1012-2	Auto-Pilot Follow-Up Control	Nose Section	198.00	. 062	7×7	None Specified	-8	AN668-2	AC566A6-4 + AC 38 A5104-1 + AC995-41-2
20-520-1012-3	Auto-Pilot Follow-Up Control	Nose Section	207.250	. 062	7×7	None Specified	-8	AN668-2	AC566A6-4+AC38A5104-1+ AC995-41-2
20-520-1012-5	Auto-Pilct Follow-Up Control	Nose Section Nose Section	${ }_{200.5625}^{174.4}$. 0662	7×7 7×7	None Specified None Specified	-8		AC566A6-4+AC38A5104-1 + AC995-41-2
20-520-1012-6	Auto-Pilot Follow-Up Control	Nose Section	206.8125	. 062	7×7	None Specified	-8	AN668-2	AC566A6-4 + AC38A5104-1 + AC995-41-2
20-411-3012-1	Starter-Pull	Nose Section	33.50	. 062	7×7	None Specified	-12	20-411-3011	87-66-742-14-12+74226-1 + AN315-4R + EX46820-22

$*-1,-2,-3$ up to AC41-5204
it $-4,-5,-6$ AC41-12280 and up.

RESISTO-HYDE, Q-I AND NUMBER FIVE KWILKO STITCHED TOGETHER

Q-11/ INCHES STITCHED SEAPAK COVERED BOTH SIDES WITH FLAMEPROOF GAUZE.

NUMBER 10 KWILKO ONE INCH Stitched covered both sides with flameprocf gauze

RESISTO-HYDE AND Q-2 STITCHED TOGETHER

Q-T NUMBER 10 AND NUMBER FIVE KWILKO STITCHED TOGETHER

WWNWNWNWN

Q- $21 / 4 \mathbb{N} C H E S$ STITCHED SEAFAK COVERED BOTH SIDES WITH FLAMEPROOF GALIZE.

Q-I AND NUMBER 5 KWILKO STITCHED TOGETHER

Q. 1 COVERED ON BOTH SIDES WITH RESISTO-HYDE STITCHED TOGETKER

FIGURE 243-METHOD OF STRAIGHTENING ANGLES

SECTION XI DISASSEMBLY OF THE WING AND FUSELAGE

1. GENERAL.

If the amount of damage to the center panel is such as not to warrant repair or if it is so sprung as to make it too difficult to restore it to its original shape, the panel with floor section should be removed from the fuselage and replaced. To do this it is necessary to remove the portion of the fuselage shell assembly below the center panel, thus leaving a weakened section of fuselage at this point. In order to support the fuselage and restrain it from excessive deflection, a series of contour jigs must be built for both the nose and aft sections of the structure.

2. REQUIRED JIGS.

a. FUSELAGE NOSE JIG. Figure 244.-This jig extends from station 70.7 to station 235 and has three fuselage supports: one at either end and one at station 150.75. The figure gives also two alternate jig positions, one at station 107 and the other at station 194: The table gives the vertical offset from the floor line and the radius of the jig for each of these stations. It is necessary at all times to maintain the end support points but the center support may be moved to one of the alternate jig positions. The detail construction of the jig is shown and should be adhered to as far as possible. Its design is based on a fairly hard wood (such as white oak), and structural steel bolts. If modifications are desired because of material difficulties, appropriate increases in section will be required based on the relativematerialstrengths.
b. FUSELAGE INTERMEDIATE JIG. Figure 245. -The intermediate jig is of the same construction as the nose jig and extends from station 460.5 to station 704 supporting the fuselage at three points. The middle support is shown at station 583.5 but may, if necessary, be located at the alternate points: station 522 or 633. The included table gives the required dimensions for forming the contour boards. All pertinent dimensions and overall lengths of the jig are given but the length of the individual members may easily be determined in the field.
c. FUSELAGE TAIL JIG. Figure 246.-The tail jig differs from the forward jigs in that it supports the fuselage by means of the stabilizer and the glider tow tube. It is necessary that the locations of the supports be held within the following tolerances: fore and aft and outboard, + or $-1 / 4$ inch. Vertically, + or $-1 / 8$ inch.
d. WING CENTER PANEL. Figure 248.

The center panel is supported at four points: two just inboard of the nacelle at station 107.5 and two inboard of the fuselage at station 41.5. Contour boards for the lower surface are cut out as indicated and padded with one inch of material. Since the crosssection of the wing is constant, these contour boards are identical. These boards are made integral with the jig. The same jig may be used both for removal and replacement of the center panel.

3. PROCEDURE OF JIGGING FOR DISASSEMBLY.

a. Remove power plant installations.
b. Remove all stowage equipment from fuselage.
c. Remove outer panels as per AN 01-25LA-2, section IV.
d. Remove fuselage plating under wing.
(1) Remove all lines and equipment from the region between the plating and the wing.
(2) Shore up plating by means of wood horses.
(3) Detach all stringer splices in this region.
(4) Drill out rivets along the forward and aft ends of the plating (station 276 and 399). The plating. runs to the top surface of the wing.
(5) Drill out rivets at the front and rear beam attachments.
(6) Drill out rivets through lower attach angle and fuselage.
(7) Lower plating from fuselage.
e. Disconnect all lines running from the fuselage to the wing.
f. Set up tail hoist as per AN 01-25LA-2 and hoist airplane to level position.
g. Level off a region sufficiently large to allow the jigs to seat squarely.
h. Jack center panel jig into place making sure the contour board supports line up with their respective ribs. This is done by putting a jack in each of the four corners of the jig, and having the pad of the jack bear against a 4×4 beam placed under the cross members. The jack is then raised to its extended po-
sition and a series of 4×4 blocks are placed under each corner as shown in figure 249. The jig is then lowered onto the blocking and the jacks collapsed. With additional 4×4 blocks as necessary for support, laying them on the blocking which supports the jig, move the base of the jacks to a higher level and repeat the process. This is done until the jig rests snugly against the wing.
i. Maintaining the fuselage floor line in a horizontal position, the ship is raised by simultaneous jacking and hoisting until it is a few inches above the floor height given in figure 250 .
j. The forward and aft jigs are then moved in from the ends being careful to line up the support points accurately with the corresponding points on the fuselage.
k. Lower the jacks and hoist so that the fuselage jigs carry the entire load then extend the jacks again so that the center panel weight is largely taken off the fuselage attachment.

1. At this point the landing gear should be removed to decrease the loads which must be handled. If this is not feasible, the gear must be retracted in order to drop the panel.

4. REMOVAL OF WING.

a. Remove wing fuselage fairing.
b. Disconnect forward and aft floors from the center panel floor.
c. Drill out any rivets tying the floor above the wing to the fuselage.
d. Drill out rivets through track and fiber aligning blocks at each end of the flooring over the wing and move the blocks so that they will not interfere during removal.
e. Drill out rivets through upper attach angle and fuselage.
f. Remove bolts through wing fuselage fittings.
g. Lower wing using the reverse of the procedure outlined under 3 . h. above.
h. The jig and wing are moved out sideways on rollers.

NOTE

TO HELP PREVENT FUSULAGE DEFLECTIONS, THE FUSELAGE PLAT. ING SHOULD BE PUT BACK AND ATTACHED WITH SCREWS. USE ONE SCREW TO EVERY FOUR RIVET HOLES THROUGH THE FUSELAGE.

5. ATTACHMENT OF NEW WING PANEL.

a. Remove fuselage plating.
b. Raise wing into position as under h. in 'Procedure of Jigging for Disassembly."
c. Prior to raising the wing, plumb lines should be dropped from the attachment fittings to assure the aligning of the parts. When raised, the wing jig may be moved slightly for further alignment by hammering the jig with a sledge.
d. The bolts through the attachment fittings are then inserted. No one bolt should be tightened completely with the others loose but they should all be tightened in small degrees successively so that no wracking of the frame will occur.
e. The upper attach angle is then riveted on using the existing skin holes in the fuselage as a drilling template.
f. Using the standard wing jacks on the jacking pads at station 192, remove the center panel jig.
8. Replace the fuselage plating using the plating as a template to drill the rivet holes in the wing and lower attach angle.
h. Raise the airplane off the jigs by jacking and hoisting and remove the jigs from under the fuselage.
i. Maintaining the horizontal attitude, lower the airplane so that the main gear rests on the ground.
j. Remove the wing jacks and lower the tail.
k. Attach the forward and aft flooring to the wing. If the original track aligning fiber blocks cannot be put back into place, new blocks may be inserted as described in section III, paragraph $6 b$.

6. FUSELAGE DAMAGE.

Any damage to the fuselage in the region of the wing should be repaired in accordance with section III before a new panel is attached.

7. TAIL HOIST.

Methods of hoisting the tail and the wing assume no cranes of the right size to be available. If such is not the case, the problem of hoisting becomes relatively simple using the standard hoisting slings and attachments,

CAUTION

IT IS VERY NECESSARY THAT THERE BE NO DEFLECTION OF THE FUSE-

LAGE DURING THE ENTIRE DISASSEMBLY PROCEDURE. OTHERWISE IT WILL BE IMPOSSIBLE TO ALIGN THE RIVET HOLES IN ASSEMBLY.

8. JIGGING.

Figures 251 through 258 show various holding jigs for the control surfaces and the outer panel. These are so designed as to hold the surfaces in alignment.

9. ALIGNMENT.

The airplane alignment should be checked against figure 259.

figure 244-fuselage nose Jic

TABLE 88
MATERIALS FOR CONSTRUCTION OF FUSELAGE NOSE JIG (Figure 244)

BOLTS
Quantity Size

100	$1 / 2 \times 10 \mathrm{in}$.
15	$1 / 2 \times 10.2 \mathrm{in}$.
65	$1 / 2 \times 9 \mathrm{in}$.
15	$1 / 2 \times 6!2 \mathrm{in}$.
50	$1 / 2 \times 714 \mathrm{in}$.
40	$1 / 2 \times 53 / 4 \mathrm{in}$.
20	$1 / 2 \times 4 \mathrm{in}$.
610	l/2 in.

LUMBER

Quantity	Stock	Length
4	2×4	12 ft .0 in.
1	2×6	8 ft .0 in.
1	2×6	10 ft .0 in.
1	2×6	12 ft .0 in.
14	2×6	14 ft .0 in.
2	2×6	16 ft .0 in.
2	2×8	8 ft .0 in.
2	2×8	10 ft .0 in.
20	2×8	12 ft .0 in.
2	6×6	10 ft .0 in.
1	6×6	$8 \mathrm{ft} .0 \mathrm{in}.$.
6	1×8	14 ft .0 in.

TABLE 89

MATERIALS FOR CONSTRUCTION OF FUSELAGE INTERMEDIATE JIG

(Figure 245)

BOLTS

Quantity	Size
35	$1 / 2 \times 11 / 2 \mathrm{in}$.
65	$1 / 2 \times 10 \mathrm{in}$.
15	$1 / 2 \times 9^{3} 4 \mathrm{in}$.
65	$1 / 2 \times 9 \mathrm{in}$.
50	$1 / 2 \times 71 / 4 \mathrm{in}$.
15	$1 / 2 \times 61 / \mathrm{in}$.
50	$1 / 2 \times 53 / 4 \mathrm{in}$.
20	$1 / 2 \times 4 \mathrm{in}$.
630	$1 / 2 \mathrm{in}$.

LUMBER

Quantity	Stock	Length
2	2×4	8 ft .0 in.
2	2×6	8 ft .0 in.
2	2×6	10 ft .0 in.
2	2×6	12 ft .0 in.
10	2×6	14 ft .0 in.
8	2×6	16 ft .0 in.
14	2×8	$8 \mathrm{ft} 0 in.$.
6	2×8	10 ft .0 in.
18	2×8	12 ft .0 in.
1	6×6	$8 \mathrm{ft} 0 in.$.
1	6×6	10 ft .0 in.
1	6×6	$12 \mathrm{ft} .0 in.$.
6	1×8	8 ft .0 in.

figure 245-fuselage intermediate Jic

NOTE
USE I/2" DIA BOLT WITH WASHER EACH SIDE $2^{\prime \prime}$ MIN END DISTANCE 1 MIN EDGE DISTANCE SPACE AT $2^{\prime \prime}$ CENTERS MIN.
FIGURE 247-TAIL HOISTING FRAME

FIGURE 246-FUSELAGE TAIL JIG

TABLE 90

MATERIALS FOR CONSTRUCTION OF FUSELAGE TAIL JIG

(Figure 246)

BOLTS
Quantity Size
$25 \quad 1 / 2 \times 91 / 4 \mathrm{in}$.
$30 \quad 1 / 2 \times 73 / 4 \mathrm{in}$.
$30 \quad 1 / 2 \times 6$ in.
$51 / 2 \times 53 / 4 \mathrm{in}$.
$180 \quad 1 / 2 \mathrm{in}$.

LUMBER
Quantity
machine bolts
machine bolts machine bolts machine bolts washers

Stock
2×4
2×6
2×6
2×8
4×4
4×4

Length

14 ft .0 in.
8 ft .0 in .
14 ft .0 in .
8 ft .0 in .
14 ft .0 in . 16 ft .0 in .

TABLE 91

MATERIALS FOR CONSTRUCTION OF TAIL HOISTING FRAME
(Figure 247)

BOLTS
Quantity Size
$3 \quad 1 / 2 \times 14 \mathrm{in}$.
$5 \quad 1 / 2 \times 13 \mathrm{in}$.
$10 \quad 1 / 2 \times 11 \mathrm{in}$.
$20 \quad 1 / 2 \times 91 / 4 \mathrm{in}$.
$40 \quad 1 / 2 \times 73 / 4 \mathrm{in}$.
$5 \quad 1 / 2 \times 43 / 4 \mathrm{in}$.
170 1/2in.
MISCELLANEOUS

LUMBER
machine bolts
machine bolts
machine bolts
machine bolts
machine bolts
machine bolts
washers

Quantity
6
2
4
8
2
6
1
8
4
$1 / 2 \mathrm{in}$. rod- 6 ft .0 in .
$6 \times 5 / 16 \times 63 / 8$ in. steel plate
$1 \mathrm{ft} .3 \mathrm{in} . \times 8 \times 5 / 16$ in. steel plate

Stock
2×4
2×4
2×4
2×8
2×8
2×8
2×8
4×4
4×4

Length
10 ft .0 in.
12 ft .0 in.
14 ft .0 in .
8 ft .0 in .
10 ft .0 in .
12 ft .0 in.
14 ft .0 in .
10 ft .0 in .
16 ft .0 in .

FRAME-(ONE REQ)

NOTE,

BLOCK UNDEA-ERNCS A CENTERS OF BRACING WHERE REQUIRED
USE EIN DIA. BOLTS WITHASHER EACH SID

TABLE 92

MATERIAL FOR CONSTRUCTION OF WING CENTER PANEL JIG

(Figure 248)

BOLTS

Quantity Size

$25 \quad 1 / 2 \times 111 / 4 \mathrm{in}$.
$25 \quad 1 / 2 \times 11 \mathrm{in}$.
$251 / 2 \times 93 / 4 \mathrm{in}$.
$20 \quad 1 / 2 \times 91 / 4 \mathrm{in}$.
$1001 / 2 \times 73 / 4 \mathrm{in}$.
$10 \quad 1 / 2 \times 71 / 4 \mathrm{in}$.
$30 \quad 1 / 2 \times 6 \mathrm{in}$.
$101 / 2 \times 51 / 4 \mathrm{in}$.
$45 \quad 1 / 2 \times 4 \mathrm{in}$.
$580 \quad 1 / 2 \mathrm{in}$.

LUMBER
machine bolts washers

Quantity

7	2×8
4	2×8
2	2×8
14	2×8
1	4×4

Length
10 ft .0 in .
12 ft .0 in .
16 ft .0 in.
18 ft .0 in.
16 ft .0 in
12 ft .0 in

TABLE 93

MATERIAL FOR CONSTRUCTION OF WING OUTER PANEL HOLDING JIG

(Figure 251)

HOLTS
\mid Quantity

$|$| Size | |
| ---: | :--- |
| 135 | $1 / 2 \times 4 \mathrm{in}$. |
| 15 | $1 / 2 \times 12 \mathrm{in}$. |
| 100 | $1 / 2 \times 101 / 4 \mathrm{in}$. |
| 100 | $1 / 2 \times 83 / 4 \mathrm{in}$. |
| 75 | $1 / 2 \times 6 \mathrm{in}$. |
| 50 | $1 / 2 \times 53 / 4 \mathrm{in}$. |
| 30 | $1 / 2 \times 4 \mathrm{in}$. |

MISCELLANEOUS

LUMBER
machine bolts

4 ft .0 in. $\times 4 \times 1 / 4 \mathrm{in}$. steel plate
$35 / 8 \mathrm{in}$. rod- 20 ft .0 in .
$40 \quad 5 / 8 \mathrm{in}$. nuts
2 in . O.D. steel pipe-2 ft. 2 in .
Quantity

Quantity
1
6
6
1
2
2
1
6
16
2
12
4
1
5
4
6
9
14

Length

18 ft .0 in .
16 ft .0 in .
18 ft .0 in .
10 ft .0 in .
12 ft .0 in .
16 ft .0 in .
18 ft .0 in .
16 ft .0 in .
10 ft .0 in .
12 ft .0 in .
10 ft .0 in .
12 ft .0 in .
8 ft .0 in .
$10 \mathrm{ft}$.0 in .
12 ft .0 in .
$14 \mathrm{ft}$.0 in .
16 ft .0 in .
18 ft .0 in .

AN 01-25LA-3

 (190.0| STA | 1 | | ${ }^{1}$ |
| :---: | :---: | :---: | :---: |
| 22 | $17^{\prime}-4$ | 3-4 $4^{\frac{3}{4}}$ | 4-2. |
| 82 | ${ }^{15} 1010 \frac{3}{4}{ }^{\text {a }}$ | 3-2 $\frac{3}{4}$ | $4^{-1} 0^{\circ}$ |
| 142 | 14-5 ${ }^{\prime \prime}{ }^{\prime \prime}$ | 3-0 3^{4}. | $3^{\prime}-10^{\circ}$ |
| 232 | $12 \cdot 3 \frac{5}{19}$ | 2'- | ${ }^{3}-6 \frac{1}{4}{ }^{4}$ |
| 322 | $10^{\prime \prime}-1{ }^{\frac{7}{8}}$ | 2-5 $\frac{1}{4}$ " | 3-2 $\frac{1}{2}$ |
| 412 | $\mathrm{B}^{\prime} \mathrm{O}^{\circ}$ | ${ }^{\prime}$ '- $-3 \frac{1}{4}$ | 3-0 $\frac{1}{2}$ |

TYPICAL FRAME

TABLE 94

OUTER PANEL STATION CONTOUR TABLE

Station 22.0			Station 82.0			Station 142.0 Dist.			Station 232.0			Station 322.0			Station 412.0		
Dist. Aft	Upper	Lower	Dist. Aft	Upper	Lower	Dist. Aft	Upper	Lower	Dist. Aft	Upp	Lower	Dist. Aft	Uppe	Lower	Dist. Aft	Uppe	Lower
0	$-.18$	$-.18$	0	$-.66$	$-.66$	0	-1.13	-1.13	0	-1.86	-1.86	0	-2.57	-2.57	0	-3.32	-3.32
2.40	7.11	-3.46	2.18	5.77	-3.57	1.97	4.43	-3.67	1.64	2.42	-3.83	1.32	0.40	-3.99	1.00	-1.60	-4.15
4.79	9.33	-5.03	4.36	7.77	-4.94	3.93	6.19	-4.84	3.28	3.83	-4.69	2.64	1.48	-4.54	1.99	-0.87	-4.39
9.58	12.34	-6.89	8.72	10.47	-6.53	7.86	8.60	-6.17	6.57	5.80	-5.63	5.27	3.01	-5.09	3.98	0.21	-4.55
14.37	14.38	-8.25	13.08	12.34	- 7.68	11.79	10.29	-7.10	9.85	7.21	-6.24	7.91	4.15	-5.37	5.96	1.08	-4.51
19.17	15.91	-9.30	17.44	13.74	-8.55	15.72	11.57	-7.79	13.13	8.32	-6.66	10.55	5.07	-5.52	7.96	1.80	-4.38
28.75	17.78	-10.95	26.17	15.51	-9.89	23.58	13.24	-8.82	19.70	9.84	-7.22	15.82	6.43	-5.62	11.94	3.03	-4.02
38.34	18.73	-12.15	34.89	16.46	-10.83	31.44	14.19	-9.50	26.27	10.79	-7.52	21.10	7.39	-5.53	15.92	3.97	-3.57
47.92	19.12	-12.85	43.61	16.90	-11.34	39.30	14.68	-9.83	32.84	11.36	-7.57	26.37	8.04	-5.30	19.91	4.71	-3.03
57.50	19.10	-13.20	52.33	16.97	-11.57	47.16	14.83	-9.93	39.40	11.63	-7.48	31.65	8.44	-5.02	23.89	5.23	-2.57
76.67	18.22	-13.00	69.78	16.31	-11.27	62.88	14.39	-9.53	52.54	11.53	-6.92	42.20	8.66	-4.32	31.85	5.78	-1.72
95.84	16.44	-11.98	87.22	14.81	-10.29	78.60	13.18	-8.60	65.67	10.73	-6.06	52.74	8.28	-3.52	39.81	5.82	-0.98
115.01	14.11	-10.43	104.66	12.79	-8.88	94.32	11.48	-7.33	78.81	9.50	-5.00	63.29	7.53	-2.68	47.78	5.48	-0.30
134.18	11.26	-8.46	122.11	10.29	-7.12	110.04	9.32	-5.78	91.94	7.86	-3.77	73.84	6.41	-1.76	55.74	4.88	0.26
153.34	8.05	-6.06	139.55	7.44	-5.02	125.76	6.83	-3.97	105.39	5.91	-2.41	85.18	5.00	-0.84	63.71	3.95	0.73
172.51	4.33	-3.16	157.00	4.12	-2.51	141.48	3.90	-1.86	118.84	3.57	$-.88$	96.52	3.24	0.11	71.67	2.64	1.13
182.10	2.29	-1.61	165.72	2.28	-1.18	149.34	2.27	$-.74$	125.56	2.56		102.19	2.24	0.57	75.74	1.88	1.30
191.68	0.07	0.08	174.44	0.28	0.28	157.20	. 49	- 49	132.29	. 80	. 80	107.86	1.11	1.11	77.70	1.45	1.45

NOTE: Dimensions given under "UPPER" and "LOWER" are from the chord plane to the inside of padding.
REFERENCE:-Figure 251.

FIGURE 251-WING OUTER PANEL HOLDING JIG-SHEET 2 OF 2 SHEETS

END VIEW SHOWING CGOSS BEAY POSITION FCR YORK ON LOWER SURFACE OF RIGHT HAND AILERON.

STA. 172.6
END VIEW SHOWING GROSS BEAM POSITION FOR WORK ON LOWER SURFACE OF LEFT HAND APLEAON.

END YEW SHOW AS CROSS BEAK POSITION FDR WOAK ON UPPER SURFAGE OF RIGHT HANG AILERON

END VIEW SHOWING CROSS BEAM POSITION FOR WOAK ON UPPER SURFAGE OF LEFT HANO AILERON.

NOTES'
. ALL MEMBERS ARE 2'x 4" STOCK.
2. USE $1 / 2^{"}$ BOLTS WITH WASHER EACH SIDE,
3. CUT NOTCH TO FIT TRAILJNG EDGE

CONTOUR, DEPTH APPROXIMATELY $3^{\prime \prime}$

FIGURE 252-AILERON HOLDING JIG

figure 253-FLAP HOLDING JIG-CENTER PANEL

$$
\begin{aligned}
& \text { NOTES, } \\
& \text { r- USE I/2" BOLTS WITH WASHER EACH } \\
& \text { SIDE. } \\
& \text { 2- FRAME AS SHOWN IS FOR WORK ON } \\
& \text { LEFT STABILIZER, UPPER SURFACE A } \\
& \text { FOR RIGHT STABILIZER, LOWER SURFACE. } \\
& \text { USE OPPOSITE HAND FRAME FOR } \\
& \text { OTHER SURFACES. } \\
& \text { 3- UPPER END OF STABILIZER IS TO BE. } \\
& \text { WEDGED IN FRAME AS SHOWN. } \\
& \text { 4- LOWER END OF STABILIZER IS TO BE } \\
& \text { BOLTED THROUGH MATCH ANGLE AND } \\
& 2^{\circ} \times 6^{"} \text { AS SHOWN. }
\end{aligned}
$$

FIGURE 256-FIN HOLDING JIG

\%

notes
1 USE $2^{-} \times 4^{\circ}$ STOGK FOR ALL MEMEEAS
2 USE $1 / 2^{\circ}$ GOLTS WITH WASHER EAGH SIDE
3 CUT HOTCH TO FIT TRALLING EDGE CONTOUR
DEPTH APPROXIMATELY 3
raise and rotate beams as Shown for
WORK ON OPPDSITE SIDE reverse beams for might elevator

FIGURE 256-FIN HOLDING JIG

FIGURE 259-AIRPLANE ALIGNMENT DIAGRAM

TABLE 96

AMERICAN（NATIONAL）STANDARD SCREW THREADS

							$\begin{aligned} & \text { W. } \\ & \text { W్ } \\ & \text { W. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$				
1／4	20	0.1850	0.0650	0.0063	0.027	2	41／2	1.7113	0.2887	0.0278	2.302
51／15	18	0.2403	0.0717	0.0069	0.045	21／4	41／2	1.9613	0.2887	0.0278	3.023
$3 / 8$	15	0.2936	0.0814	0.0078	0.068	21／2	4	2.1752	0.3248	0.0313	3.719
$7 / 16$	14	0.3447	0.0923	0.0089	0.093	23／4	4	2.4252	0.3248	0.0313	4.620
1／2	13	0.4001	0.0999	0.0096	0.126	3	$31 / 2$	2.6288	0.3712	0.0357	5.428
$9 / 15$	12	0.4542	0.1078	0.0104	0.162	31／4	31／2	2.8788	0.3712	0.0357	6.510
5，	11	0.5069	0.1181	0.0114	0.202	31／2	31／4	3.1003	0.3997	0.0385	7.548
$3 / 4$	10	0.6201	0.1299	0.0125	0.302	33／4	3	3.3170	0.4330	0.0417	8.641
7／8	9	0.7307	0.1443	0.0139	0.420	4	3	3.5670	0.4330	0.0417	9.963
1	8	0.8376	0.1624	0.0156	0.550	41／4	$27 / 8$	3.7982	0.4518	0.0435	11.329
11／6	7	0.9394	0.1856	0.0179	0.694	41／2	23／4	4.0276	0.4724	0.0455	12.753
11／4	7	2.0644	0.1856	0.0179	0.893	43／4	25／8	4.2551	0.4949	0.0476	14.226
13／12	6	1.1585	0.2165	0.0208	1.057	5	21／2	4.4804	0.5196	0.0500	15.763
$11 / 2$	6	1.2835	0.2165	0.0208	1.295	51／4	21／2	4.7304	0.5196	0.0500	17.572
15／8	51／2	1.3888	0.2362	0.0227	1.515	51／2	$23 / 8$	4.9530	0.5470	0.0526	19.267
13／4	5	1.4902	0.2598	0.0250	1.746	53／4	23／8	5.2030	0.5470	0.0526	21.262
17／8	5	1.6152	0.2598	0.0250	2.051	6	21／4	5.4226	0.5774	0.0556	23.098

TABLE 97
BRITISH ASSOCIATION SCREW THREADS

		$\begin{aligned} & \text { 今心 } \\ & \text { 台 } \end{aligned}$
6.0	0.236	1.00
5.3	0.209	0.90
4.7	0.185	0.81
4.1	0.161	0.73
3.6	0.142	0.66
3.2	0.126	0.59
2.8	0.110	0.53
2.5	0.098	0.48
2.2	0.087	0.43
1.9	0.075	0.39
1.7	0.067	0.35
1.5	0.059	0.31
1.3	0.051	0.28

0.0394	4.8
0.0354	4.22
0.0319	3.73
0.0287	3.22
0.0260	2.81
0.0232	2.49
0.0209	2.16
0.0189	1.92
0.0169	1.68
0.0154	1.43
0.0138	1.28
0.0122	1.13
0.0110	ก．96

	1.20
	1.00
	0.90
	0.79
	0.70
	0.62
	0.54
	0.48
	0.42
	0.37
	0.33
	0.29
	0.25

出
0.25
0.23
0.21
0.19
0.17
0.15
0.14
0.12
0.11
0.10
0.09
0.08
0.07

0.0098	0.90
0.0091	0.72
0.0083	0.65
0.0075	0.56
0.0067	0.50
0.0059	0.44
0.0055	0.37
0.0047	0.34
0.0043	0.29
0.0039	0.25
0，0035	0.22
0.0031	0.19
0.0028	0.17

Full Diameter
In Inches
1
$\begin{array}{ll}1 / 4 & 25 \\ 5 / 16 & 22\end{array}$
Threads Pe
20
18
16
16
14
14
12
12
11
10
9
$11 / 4$
13/8
$11 / 2$
$15 / 8$
$13 / 4$
2
21/4
$21 / 2$
23/4
3
$31 / 4$
31/2
$33 / 4$
4
$41 / 2$
5
51/2
6

TABLE 98
BRITISH STANDARD FINE SCREW THREADS

Full Diameter In Inches	Number of Threads Per Inch	Pitch in Inches	Diameter at Bottom of Thread. Inches
1/4	25	. 0400	, 1988
5/16	22	. 0455	. 2543
$3 / 8$	20	. 0500	. 3110
$7 / 16$	18	. 0556	. 3664
1/2	16	. 0625	. 4200
$9 / 16$	16	. 0625	. 4825
5/3	14	. 0714	. 5335
$11 / 16$	14	. 0714	. 5960
$3 / 4$	12	. 0833	. 6433
13/16	12	. 0833	. 7058
7/8	11	. 0909	. 7586
1	10	. 1000	. 8719
11/8	9	. 1111	. 9827
11/4	9	. 1111	1.1077
$13 / 8$	8	. 1250	1.2149
11/2	8	. 1250	1.3399
$15 / 8$	8	. 1250	1.4649
13/4	7	. 1429	1.5670
2	7	. 1429	1.8170
21/4	6	. 1667	2.0366
$21 / 2$	6	. 1667	2.2866
23/4	6	. 1667	2.5366
3	5	. 2000	2.7439
$31 / 4$	5	. 2000	2.9939
31/2	4.5	. 2222	3.2154
33/4	4.5	. 2222	3.4654
4	4.5	. 2222	3.7154
41/2	4	. 2500	4.1798
5	4	. 2500	4.6798
51/2	3.5	. 2857	5.1341
6	3.5	. 2857	5.6341

[^0]: *Apply to Airplanes No. AF41-5159 to AF41-5183 only. The Dash Number Following Applies to Succeeding Airplanes.

[^1]: *Alcoa Die No. L29087

[^2]: X4130 Normalized Steel, U.T.S. $=90,000 \mathrm{lb} . / \mathrm{sq}$. in

[^3]: * Type I repair. (Remainder are type II).
 ** 24 ST Alclad.

