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The MNEMOSENE project aims at demonstrating a new computation-in-memory (CIM) based on 
resistive devices together with its required programming flow and interface. To develop the new 
architecture, the following scientific and technical objectives will be targeted: 

• Objective 1: Develop new algorithmic solutions for targeted applications for CIM architecture. 

• Objective 2: Develop and design new mapping methods integrated in a framework for efficient 
compilation of the new algorithms into CIM macro-level operations; each of these is mapped 
to a group of CIM tiles. 

• Objective 3: Develop a macro-architecture based on the integration of group of CIM tiles, 
including the overall scheduling of the macro-level operation, data accesses, inter-tile 
communication, the partitioning of the crossbar, etc. 

• Objective 4: Develop and demonstrate the micro-architecture level of CIM tiles and their 
models, including primitive logic and arithmetic operators, the mapping of such operators on 
the crossbar, different circuit choices and the associated design trade-offs, etc. 

• Objective 5: Design a simulator (based on calibrated models of memristor devices & building 
blocks) and FPGA emulator for the new architecture (CIM device combined with conventional 
CPU) in order demonstrate its superiority. Demonstrate the concept of CIM by performing 
measurements on fabricated crossbar mounted on a PCB board. 

A demonstrator will be produced and tested to show that the storage and processing can be integrated 
in the same physical location to improve energy efficiency and also to show that the proposed 
accelerator is able to achieve the following measurable targets (as compared with a general purpose 
multi-core platform) for the considered applications: 

• Improve the energy-delay product by factor of 100X to 1000X 

• Improve the computational efficiency (#operations / total-energy) by factor of 10X to 100X 

• Improve the performance density (# operations per area) by factor of 10X to 100X 
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Preface  

In WP 1, promising applications for a CIM architecture were investigated. These applications 
are widely used in many platforms and require processing large amounts of data. The potential 
improvement in terms of energy and performance were highlighted in the same work package. 
WP2 and WP3 focused on the (automatic) extraction of kernels suitable for execution on a 
CIM accelerator and the definition of a system-on-chip encompassing modern-day state-of-
the-art compute units and integrating them with the CIM accelerator, respectively. While WP4 
mainly focused on the memristor technologies to implement application relevant operations 
(identified in WP1), there was still a gap between the works in WP2, WP3, and WP4. In 
Deliverable D4.6, we proposed a simulator to fill this gap and we presented the initial CIM tile 
architecture, the CIM simulator, as well as an initial investigation into potential performance 
and energy results of this initial CIM tile architecture. In this deliverable (D4.7), we further 
refined the CIM tile architecture, adapted the CIM simulator accordingly and present more 
detailed performance and energy results and demonstrate how the design-space exploration 
(between different memristor technologies) can be performed using our CIM simulator. 
 

 Introduction  

Emerging applications such as neural networks, databases, and image processing are widely 
used in different platforms including real-time embedded systems, back-end data centers, etc. 
These applications require processing large amounts of data that is usually located far away 
from the processing units. Consequently, performance and power consumption of the systems 
which fulfill these processing needs have become crucial and draw increasingly more 
attention. Currently, traditional von-Neumann architectures have been stretched to attain 
adequate performance at reasonable energy levels but are clearly showing limitations for 
further improvements. The main limitation is the conceptual separation of the processing unit 
and its memory, which makes the data movement between memory and processing unit the 
main performance and energy bottleneck. The solution to overcome this is to employ the 
Computation-in-Memory (CIM) approach that proposes the utilization of (new) technologies 
that allows for both storage and computing within the same (storage) structure. This is 
achieved by exploiting special characteristics of emerging non-volatile memories called 
memristors such as resistive RAM (ReRAM), phase change memory (PCM), and spin-transfer 
torque magnetic RAM (STT-RAM). No matter which technology is used for fabrication, 
memristor technology has great scalability, high density, near-zero standby power, and non-
volatility. Accordingly, memristor technology with the aforementioned characteristics opens up 
new horizons toward new ways of computing and computer architectures.  

Until now, the main focus of researchers was to enhance the characteristics of memristor 
devices such as latency and endurance [1] [2] [3] [4] [5]. Researchers have already proposed 
different innovative circuit designs based on memristor devices to exploit their capabilities of 
co-locating computation and storage together [6] [7] [8] [9] [10] [11] [12] [13]. Moreover, within 
a single memory array as well as at inter-array level huge parallelism can be flexibly achieved 
as each memory tile becomes a powerful computation core. It was demonstrated that due to 
these two main features of memristor-based designs, significant energy and performance 
improvement can be gained [14]. It is widely accepted that the dot-product (and, in turn, the 
matrix-matrix multiplication) operation is the most suited for the memristor-based designs. 
Consequently, convolutional and deep neural network are the potential applications that have 
been widely studied by the researchers to exploit memristive crossbar structures [15] [16] [17] 
[18] [19] [20]. However, researchers have also proposed other types of operations, e.g., 
Boolean operations [21] [22] [23] or arithmetic operations like additions [24]. More information 
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on available research regarding device characteristics and potential applications for in-
memory computing can be found in [25] [26]. 

Having said this, there is no work in the research community that allows for easy 
comparison of these supported operations at the application-kernel level between 
different technologies nor is it possible to emulate complex operations, e.g., matrix-
matrix multiply, when the underlying technology does not allow for direct implementation. 
Furthermore, the interactions between the analog memory array and its supporting 
digital periphery is largely overlooked. Efficient organization of peripheries is crucial. 
Otherwise, it alleviates the energy gain achieved by the memory crossbar. As an example, 
computation over integer numbers is required by most applications. However, since limited 
levels can be stored in one memristor cell, a number should be distributed over cells, which 
requires some extra processing outside the crossbar to get a meaningful result. This clearly 
shows the importance of organization for periphery circuits. In our prior work, presented in 
Deliverable 4.6, a new instruction set architecture (ISA) is introduced with the objectives of (1) 
orchestrating digital and analog components of memristor tiles and (2) bridging the gap 
between high-level programming languages and the CIM architecture. Our compiler written in 
C++ generates low-level instructions based on high-level kernels, which are supposed to 
execute on the CIM tile. The compiler is aware of the architecture configuration, the technology 
constraints, and the datatype size requested by the application. In addition, in order to 
accomplish design space exploration targeting performance and energy, we designed a 
modular simulator written in SystemC.  

In this report, we describe:  
1. an extension of our CIM-tile architecture to allow operations in the digital periphery 

and the analog array operate in parallel through pipelining. The pipelined stages are 

unbalanced due to the analog components which can have widely varying latencies.  
2. our proposed addition unit, explained in D4.5, and evaluate it using our in-memory 

simulator. This addition structure was tailored for crossbar array to aid an in-memory 

crossbar to perform additions targeting integer matrix-matrix multiplication (MMM). 

The proposed design utilizes minimum-sized adders and is customizable in order to 

support varying numbers of ADCs.  

3. how our in-memory simulator produces energy numbers for our tile components 

including crossbar. In order to have a more accurate number for the crossbar, the 

simulator enhanced to produce a data-dependent energy number.  

4. the special features and optimizations of the STT-MRAM crossbar for binary logic 

and MMM operations.  
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 Background on Initial CIM-tile architecture  

In this section, we provide a short summary of what was presented in D4.6. We briefly explain 

the CIM-tile architecture and its analog as well as digital components. In addition, the nano-

instructions defined to organize the interactions between these components will be reviewed. 

 Overall Tile architecture 

 

CPU

Cache levels

DRAM

External Memory

CIM tiles

 

Figure 1: Potential high-level computer architecture using CIM tiles 

 

A CIM tile can be either employed as a standalone accelerator or integrated to the 
conventional computer architecture. In the latter case, there are different ways to employ CIM 
tiles. Figure 1 depicts one potential way in which a CIM tile can be seen as an off-/on-chip 
accelerator from the CPU. As mentioned earlier, we focus on the CIM-P 1T1R structure in 
which the (computational) results of the (memory) array operations are captured in the (digital) 
periphery. Figure 2 presents the architecture of the CIM tile that includes the required 
components and signals which can control digital or analog data. The operations that can be 
executed on the crossbar are divided into two categories: 1) write and, 2) read and 
computational operations. The computational operations include addition, multiplication, and 
logical operations.  
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Figure 2: The overall CIM-tile architecture 

1) Write operation:  

In order to program the crossbar, we need to pass the data and the location where it has to 
be written into the crossbar. The data itself has to be stored into the Write Data (WD) register 
whose length depends on the width of the crossbar as well as the number of levels supported 
by the memristor cells. The information regarding the location of data will be written into the 
Row Select (RS) and Write Data Select (WDS) registers. The RS register is employed to 
activate the row and the WDS register indicates the columns in which data has to be written. 
According to the data stored in these registers, three types of Digital Input Modular (DIM) 
required to translate digital voltage to the crossbar operating voltage. These drivers are 
connected to the source and gate of each crossbar access transistor and the third one is 
connected to the bit-lines of the crossbar.  

 

2) Read/computational operation: 

In this category, the operations generate an output and it has to be read by the periphery 
circuits in the architecture. The generated output can be the outcome of either a normal 
memory read or computational operation. In contrast to the write operation, there is no need 
to fill the WD and WDS registers. The RS register again is used for row activation. However, 
among computation operations, matrix-matrix multiplication (MMM) is a little different than 
others in the sense that the RS not only has to indicate the active rows, but also can be 
considered as the data for one of the matrices. When the operation is performed inside the 
crossbar, the generated analog output has to be captured by the Sample & Hold (S&H) unit. 
Subsequently, the results are converted to the digital domain using ADCs which are shared 
among multiple columns.  
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 Nano-instruction set architecture (nano-ISA) 

 

Table 1: List of nano-instructions 

Nano-instruction Opcode Immediate  Application 

Row Select RS Data to fill RS register Write/Computation 

Write Data WD Data to fill WD register Write 

Write Data Select WDS Data to fill WDS register Write 

Function Select FS Function mode  Write/Computation 

Do Array DoA - Write/Computation 

Do Sample DoS - Computation 

Columns Select CS Data to fill CS register Computation 

Do Read DoR - Computation 

 
As discussed in Deliverable D4.6, a complex sequence of steps need to be performed in the 
CIM tile that can be different depending on the (higher-level) CIM tile operation, e.g., 
read/write, dot-matrix multiplication, Boolean operations, and integer matrix-matrix 
multiplication. Similar to the concept of microcode, we introduce an instruction-set architecture 
for our CIM tile that would allow for different schedules for different CIM tile operations. The 
“Controller" in Figure 2 is responsible for translating these instructions to the actual control 
signals (highlighted in green). The list of instructions is presented in Table 1. Detail information 
and description of nan-instruction can be found in Deliverable D4.6.  

To translate high-level operations intended for the CIM tile into a sequence of nano- 
instructions which have to be executed within the CIM tile, we wrote a new compiler, called 
low-level compiler according to Figure 3. The high-level operations (e.g., MMM) are provided 
by the high-level compiler which is responsible to search for the operations within the 
application program that can be performed using the memristor crossbar. The high-level 
compiler was presented in WP2 and is out of the scope of this report. Based on the 
requirements or constraints that come from either the tile architecture or technology side, our 
low-level compiler translates high-level operations to nano-instructions. As depicted in Figure 
3, this information is written to the configuration file and passed to the compiler. It is important 
to note that the sequence of instructions generated by the compiler changes whenever the tile 
configuration changes. Therefore, by putting this complexity into the compiler, we try to keep 
the controller as simple as possible. More information about the low-level compiler was 
presented in Deliverable D4.6. In addition, the content of configuration file and the parameters 
were defined there, will be explained in the following sections.  
 

High-level 
compiler

Low-level 
compiler

Configuration 
file

Simulator

Instruction 
file

Performance 
number

Application
Energy number

Debugging  (Waveforms, 
Computational result, 

crossbar content)  

Figure 3: The overall system flow 
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 CIM-tile pipelining 

The operations in the digital periphery and the analog array can be divided into the following 
stages: (indicated by different colors in Figure 4) 

1. Set up stage (digital): all the control registers (and write data register) are initialized 
2. Execution stage (analog): perform the actual operation in the analog array 
3. Read out stage (digital): convert the analog results into digital values 
4. Addition stage (digital): perform the necessary operations for the integer matrix-matrix 

multiplication 
These stages sequentially follow each other while performing higher level operations 
translated to a sequence of instructions in our ISA. It should be clear that the pipelining 
described here is different from the traditional instruction pipelining. In the latter, the latency 
of each stage should be matched with each other in order to have a balanced pipeline. In the 
CIM tile, the latency of the operation performed in the analog array is expected to be much 
longer than the latency of a single clock cycle in the digital periphery. Therefore, it is important 
that the right signaling is performed between the stages in order to enable pipelining. The 
introduced execution model to pipeline the operations within the CIM tile, will allow for trade-
off investigations between different NVM technologies and the (speed of the) digital periphery. 
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Figure 4: pipelining of the CIM- tile 

In contrast to traditional processors where the execution of instructions is split into different 
stages to enable pipelining, our tile architecture associates different instructions to each tile 
stage. In the first stage, registers should be filled with new data and the drivers have to be 
configured. In the second stage, to activate the crossbar using DoA instruction, the operation 
latency for the previous activation must elapse. The latency of the crossbar, which depends 
on its technology as well as the operation supposed to be executed, can be captured by either 
a counter or done signal generated by the circuit itself. Based on the operation which can be 
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write and read/computational, done signals issued by the crossbar and S&H unit should be 
used to synchronize the first two stages, respectively. In the third stage, the latency of the 
Read stage depends not only on the latency of ADCs, but on the number of columns that have 
to be read as well. Accordingly, groups of columns are read by ADCs sequentially and this 
stage would be available for the next S&H activation after the last columns already translated 
to the digital domain. 

 

 Background on the addition unit 

In this section, we briefly review the proposed addition unit (see Figure 4) presented in 
Deliverable 4.5. 

Matrix-matrix multiplication (MMM) is a prevalent operation in many applications that needs 
processing over numbers representing in a form of one existing datatypes. The presented 
scheme is supporting integer as a fundamental datatype. To do MMM, the multiplicand has to 
be mapped to the crossbar. However, (i) since there is a limitation over the number of bits that 
can be stored in one memristor cell, the elements of multiplicand have to be distributed over 
several cells. In addition, (ii) due to the constraint on the number of levels that can be 
supported for the crossbar inputs, in a similar way, each element of multiplier has to be given 
to the crossbar in several steps. Finally, (iii) in the case that ADCs do not have enough 
resolution to be able to activate all the required crossbar rows at the same time, we also need 
to perform it in several steps. According to the aforementioned limitations, in each step, an 
intermediate result for the MMM is produced. However, in order to get the final result, extra 
digital processing has to be considered, which is happening inside the addition unit.  

The proposed addition unit comprises a maximum of three stages: 

1- By giving one bit (or more depends on technology) of the multiplier to the crossbar 
input, the addition between the outcome of each column (already performed by the 
crossbar) is done in a way that minimum size of adder and register is required. In 
the case that the ADC cannot support enough precision, a pre-phase is employed 
for this stage to first get the final result for each column.  

2- Getting the intermediate result for one bit of multiplier in the first step, when the 
next bit is given to the crossbar, the outcome should be summed up with the 
intermediate result obtained from previous bit-positions. Similar to the first stage, 
the addition in this stage is done in a way that minimum size adder and register are 
employed.  

3- Finally, considering the mapping of integer number to the crossbar, if part of a 
number (just some of the columns representing an entire number) shared with an 
ADC, the third stage is essential to do the addition between the final outcome of all 
the previous steps already taken per ADC (addition per ADC).  

For detailed information about the addition unit, please read the deliverable 4.5. In this report, 
we evaluate the proposed structure using our tile simulator in terms of energy and 
performance.   
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 CIM-tile micro-simulator and compiler enhancement  

The proposed CIM architecture is generalized making it capable of targeting different 

technologies with different configurations of the peripheral circuit. The simulator, written in 

SystemC, models the architecture presented in Section 0 and generates performance and 

energy numbers by executing applications. The simulator takes as input the program 

generated by the compiler (presented in Section 2.2 and Deliverable D4.6) which is currently 

stored as simple (human-readable) text. Besides the program, to simplify design space 

exploration, the configuration of architecture has to be sent to the simulator via a configuration 

file in which the user is able to specify many parameters. The simulator produces as output 

the following: (1) energy and performance numbers, (2) content of the crossbar (over time), 

(3) waveforms of all control signals, and (4) the computational results. All outputs are written 

into text files to be used for further evaluation.  

The simulator has been written in a modular way, which helps us to easily modify or replace 

the components shown in the tile architecture with new designs/circuits. In our cycle accurate 

fully parameterized simulator, each components has its own characteristics like energy, 

latency, and precision written into the configuration file. Table 2 shows all the parameters that 

can be set in the file to be used for the early stage design space exploration. Furthermore, the 

first of its kind feature of our simulator is the ability to calculate energy number according to 

the data provided by the application. Existing simulators estimate average energy number 

regardless of data. Our simulator takes into account the data stored in the array to estimate 

the energy consumption in the crossbar and its drivers. This is achieved by taking into account 

the data stored in the crossbar cell resistance level, the number of activated rows, and the 

equivalent resistance of the crossbar. The power consumption of the crossbar and read drivers 

regarding read/compute operations is given in Equation 4 where 𝑅𝑟𝑐 is the resistance level of 

the memristor cell located in row “r” and column “c”, 𝑃𝐷𝐼𝑀𝑟𝑒𝑎𝑑 is the read drivers power, and 

𝑉(𝑟𝑒𝑎𝑑) is the read voltages. In general, 𝑅𝑟𝑐 and 𝑉(𝑟𝑒𝑎𝑑) are members of two sets contain 

possible resistance and voltage levels, respectively. Furthermore, activation is a binary value 

that indicates whether row “r” is activated and contributes to the power of the crossbar or not. 

Considering read and compute operations, the summation is performed for the selected rows 

and all the columns. In addition, for simplicity, the resistance of access transistors, as well as 

bit-lines, are ignored. The power consumption of write operations is shown in Equation 5 

where 𝑃𝐷𝐼𝑀𝑤𝑟𝑖𝑡𝑒 is the write drivers power. 𝑉(𝑤𝑟𝑖𝑡𝑒) and 𝐼(𝑤𝑟𝑖𝑡𝑒) are the write voltage and 

programming current, respectively. In general, 𝑉(𝑤𝑟𝑖𝑡𝑒) is a member of a set including 

different write voltage levels. Finally, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑐 determines whether the column “c” is 

activated and would contribute to the crossbar energy or not. The summation is performed 

over the selected columns in just one activated row. The energy consumption of 

read/computational as well write operations are shown in Equations 6 and 7, respectively, in 

which 𝑇𝑋𝑏𝑎𝑟(𝑤𝑟𝑖𝑡𝑒) as well as 𝑇𝑋𝑏𝑎𝑟(𝑟𝑒𝑎𝑑) are the latency of the crossbar for write and 

read/computational operations. The latency of the crossbar for read/computational operations 

depends on the peripheral circuits used to capture or read the analog values generated by the 

crossbar. Using S&H unit to capture the result, its capacitance is charged with different 

gradient according to the equivalent resistance of the crossbar. Therefore, the result should 

be captured at the right time when there is a maximum voltage difference on the capacitance 

of S&H unit for different crossbar equivalent resistances, which helps to be distinguished by 

the ADC easily. It is worth to mention that the equations are data-dependent and provide the 

worst-case energy numbers for the crossbar and its drivers. 
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Table 2 List of parameters used in the configuration file 

 crossbar and drivers analog peripheries  digital peripheries  

Structure - Number of rows/columns 
- Cell levels 

- Number of ADCs 
- precision of ADCs 

- Clock frequency 
- datatype size 

Energy - cell write energy 
- cell read energy 
- write driver energy 
- read driver energy 

- ADC energy per conversion  
- SH energy per sample  

- energy per adder in  
addition unit  

time - write latency 
- read latency 

- ADC latency 
- SH latency 

- RS filling cycle 
- WD filling cycle 
- WDS filling cycle 
- CS filling cycle 

 

𝑃(𝑟𝑒𝑎𝑑,𝑐𝑜𝑚𝑝𝑢𝑡𝑒) =  ∑ 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑟 ∗ ( ∑
𝑉2(𝑟𝑒𝑎𝑑)

𝑅𝑟𝑐
+ 𝑃𝐷𝐼𝑀𝑟𝑒𝑎𝑑

#𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑐=1

)

#𝑟𝑜𝑤𝑠

𝑟=1

 

𝑅𝑟𝑐 ∈ {𝐿1, 𝐿2, … , 𝐿𝑛}    −   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑟 ∈ {0,1}  −   𝑉(𝑟𝑒𝑎𝑑) ∈ {𝑉(𝑟1), 𝑉(𝑟2), … , 𝑉(𝑟𝑛)} 

(4) 

𝑃(𝑤𝑟𝑢𝑡𝑒)𝑟
= ∑ (𝑉(𝑤𝑟𝑖𝑡𝑒) ∗ 𝐼(𝑤𝑟𝑖𝑡𝑒) + 𝑃𝐷𝐼𝑀𝑤𝑟𝑖𝑡𝑒

) ∗ 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑐

#𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑐=1

 

𝑉(𝑤𝑟𝑖𝑡𝑒) ∈ {𝑉(𝑤1), 𝑉(𝑤2), … , 𝑉(𝑤𝑛)} 
(5) 

𝐸(𝑟𝑒𝑎𝑑,𝑐𝑜𝑚𝑝𝑢𝑡𝑒) = 𝑃(𝑟𝑒𝑎𝑑,𝑐𝑜𝑚𝑝𝑢𝑡𝑒) ∗ 𝑇𝑋𝑏𝑎𝑟(𝑟𝑒𝑎𝑑,𝑐𝑜𝑚𝑝𝑢𝑡𝑒)
 

(6) 

𝐸(𝑤𝑟𝑖𝑡𝑒) = 𝑃(𝑤𝑟𝑖𝑡𝑒) ∗ 𝑇𝑋𝑏𝑎𝑟(𝑤𝑟𝑖𝑡𝑒)
 

(7) 

 

Due to the execution model and flexibility of our instructions, the simulator is able to add the 
energy of ADCs which are active during the program execution to the total energy of the tile. 
Besides the hardware implementation of our digital controller, which can provide an accurate 
number for this unit, a more advanced model for the energy and performance of the crossbar 
are our main focus for future work. In addition, thanks to our low-level compiler, the simulator 
can perform computation with different integer datatype sizes at the same time using the 
structure proposed in Section 0. 
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 Evaluation  
The defined CIM tile architecture, ISA, compiler, and simulator allows for various design space 
explorations. In this section, we will present several of these explorations that are currently 
possible with our tools. In addition, we evaluate our proposed addition scheme in terms of 
performance and energy number and compare it with the reference design.   
 

 Simulation setup 
Energy and performance model 

The values used in our experiments regarding the (technology) parameters are summarized 

in Table 3. The needed values related to the digital periphery were obtained by using Cadence 

Genus targeting the standard cell 90nm UMC library. The values related to the three targeted 

technologies (ReRAM, PCM, and STT-MRAM) were taken from [27] [28] [29] [30] [31] [32]. 

For all the experiments, we assume the size of the crossbar is 256 by 256 and its input 

precision. is one bit. The latency of the crossbar is defined from the moment the input voltage 

is applied and crossbar rows get accessed until the capacitance of S&H is charged. This time 

also depends on the sensing mechanism and ADC circuitry. In addition, the cycles required to 

fill the tile registers are computed based on the crossbar size and we assumed the data-buses 

to be 32 bits wide. The energy and latency values for the ADCs were taken from [33]. 

Table 3: Value of parameters used for the experiments 

Component Parameters Spec 

Memristive  
devices 

 ReRAM PCM STT-MRAM 

Cell levels 2 2 2 

LRS 5K 20K 5K 

HRS 1M 10M 10k 

Read voltage 0.2V 0.2V 0.9V 

Write voltage 2V 1V 1.5V 

Write current 100 uA 300 uA 200 uA 

Read time 10 ns 10 ns 10 ns 

Write time 100 ns 100 ns 60 ns 

Crossbar 

Structure 1T1R 

Num. columns 256 

Num. rows 256 

DIM 

 Read DIM Write DIM 

number 256 256 

power 1 mW 1mW 

ADC 

power 2.6 mW 

Precision 8 bits 

Latency 1.2 GSps 

Carry-look ahead  
Adder 

 
Energy  

(per computation) 
Latency 

8 bits 0.01 pJ 1 ns 

16 bits 0.03 pJ 2.2 ns 

24 bit 0.08 pJ 3.2 ns 

40 bits 0.25 pJ 5.6 ns 

72 bits 0.78 pJ 9.8 ns 
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Benchmark 

As a benchmark, the linear-algebra kernel “GEMM” from the Polybench/C benchmark suite 

was chosen. In this kernel, first, the multiplicands are written into the crossbar (write operation) 

and then the actual multiplication (compute operation) is performed. This benchmark was 

chosen as it intensively utilizes the memory array given that we want to perform DSE targeting 

different technologies for the memory array. 

 Simulation result 

In this section, we will present several design-space explorations that are currently possible 
using our simulator. The insights obtained from these analyses will lead designers to take 
better decisions for the actual implementation. 
In Figure 5, we plotted the (normalized) execution time of running the GEMM benchmark 
targeting three different technologies for the crossbar array, namely PCM, ReRAM, and STT-
MRAM. The simulations were performed assuming a 1 GHz clock frequency for the digital 
periphery and an 8-bit ADC resolution. We can clearly observe that the number of ADCs 
greatly impacts the execution time. By adding more ADCs, the total execution time can be 
reduced as the cycles needed to read out the data from the crossbar array can be reduced. 
Although STT-MRAM has faster write time, due to the less number of write operations to 
program the crossbar compared to the computational operations, the improvement on the 
execution time is negligible. An interesting observation is that the performance does not 
improve much when moving from 32 to 64 ADCs. This can be explained by the fact that at 
some point, the latency of the read stage is no longer dominant and further reducing the 
readout time has little impact on the total execution time. Finally, regardless of the number of 
ADCs, the energy consumption is almost constant (small fluctuation due to the data 
randomness) since the number of conversions is always fixed. 
 

 

Figure 5: The impact of number of ADCs on execution 
time of GEMM benchmark 
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Figure 6: Performance improvement due to the unbalanced pipelining of tile used ReRAM/PCM device for 
GEMM benchmark 

 

The latency of the operations in the (analog) crossbar array is a constant number. Therefore, 
it is interesting to determine how fast the digital periphery should be clocked in order to ‘match’ 
this latency in order to make the pipeline more balanced. In the following investigation, we 
have fixed the number of ADCs to 16 and ran the GEMM benchmark at different frequencies. 
Figure 6 clearly shows that performance improvements can be gained by raising the frequency 
of the digital periphery. However, increasing the clock frequency beyond 1 GHz does not result 
in much better execution times as the analog circuits (relatively) are becoming the bottleneck. 
This DSE allows a designer to make the different stages of the tile more balanced. A positive 
side-effect is that pipelining more balanced stages will usually lead to better performance 
improvements over an non-pipelined design. 
 

 

Figure 7: Contribution of different components to the energy consumption for GEMM benchmark 

 

Figure 7 depicts the relative energy spent in the different modules when running the GEMM 
benchmark for 16 ADCs and using an 8-bit datatype. We can clearly observe that the largest 
energy consumer is still the crossbar and its drivers. In the PCM case, the relative energy 
consumption of the ADCs and crossbar are close to each other (compared to other 
technologies). The reason for this is that the power consumption of PCM is relatively lower 
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compared to the ReRAM technology due to the higher cell resistance (see Table 3). This in 
turn increases the relative energy consumption of the ADCs. 
 

 

Figure 8: Contribution of each pipeline stage on the latency of the tile considering different clock frequencies 
 

Figure 8 depicts the relative time that the GEMM application spends in each of the 4 stages 
plotted against the frequency of the digital periphery. We can clearly observe that with a low 
frequency, the read and setup stage are completely dominant in the total latency. By 
increasing the clock frequency to 10MHz, the latency of the setup and read stages reduces. 
Still, their relative contribution remains unchanged. As the clock frequency is increased more, 
the latency of the analog components starts to rise (relatively). In addition, the relative 
contribution of the read stage to the total latency is almost fixed. Since many columns share 
an ADC, the read stage, which is composed of analog (latency of ADC) and digital (decoding 
latency) latency, inherently imposes much latency regardless of clock frequency. This 
information can be used to determine the number of pipeline stages for the actual 
implementation. 
 

 

Figure 9: Effect of number of ADCs on the latency of pipeline stages in 100 MHz clock frequency 

Figure 9 depicts the relative time that the GEMM application spends in each of the 4 stages 
plotted against the number of utilized ADCs. It should be clear that increasing number of 
ADCs, the number cycles spend in the read out stage is greatly reduced. Consequently, we 
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can observe that the relative contribution of the setup stage to the total latency grows 
accordingly. The contribution of the other stages to the total latency is almost negligible. 

Proposed addition scheme 

In the following, we will evaluate our proposed addition scheme compared to the reference 
design. In the reference design, we assume that a single adder to perform accumulation 
between shared columns and different bit positions of the multiplier are connected to each 
ADC. The size of the adder is fixed and must be chosen based on the largest possible value 
resulting from the MMM - it is specified in Equation 8. This means that the value produced by 
the ADC is merely an intermediate result that must be summed up into the accumulator – 
remember that only a single bit of the multiplier is multiplied with the multiplicand and each 
ADC read-out correspond only to a single bit-position of the multiplicand. Due to the previously 
stated manner of summation, the intermediate results must be shifted by the correct number 
of positions (based on the bit-positions of the multiplier and the multiplicand) before entering 
the adder. 
 

𝐴𝑑𝑑𝑒𝑟 𝑠𝑖𝑧𝑒 =  
             𝑖𝑛𝑡 𝑠𝑖𝑧𝑒(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟)  +  𝑖𝑛𝑡 𝑠𝑖𝑧𝑒(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑛𝑑) +  𝑙𝑜𝑔2(𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑟 ℎ𝑒𝑖𝑔ℎ𝑡) 

(8) 

 

 

Figure 10: Execution time for different integer datatype sizes 

 

 

Figure 11: Energy consumption of addition unit for different datatype sizes 
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Reading data from the crossbar’s columns (read out phase) is inherently slow mainly because 
of the shared ADC between multiple columns and can be considered as the bottleneck of the 
architecture. However, as the size of adder grows, its latency can be dominant over the latency 
imposed by ADC. Considering the proposed design in our experiment, since the crossbar has 
256 rows, the maximum size of the first two adders is always 8-bit regardless of datatype size. 
Therefore, there is no extra overhead on the latency of read out phase. Rather, in the reference 
design and according to the Equation 6, the required size of adder is much larger. Accordingly, 
considering a 1 ns latency for the ADC, as the size of adder increased more than 8-bit, it 
becomes the bottleneck of the system and makes the read out phase more costly. 

Figure 10 depicts the execution time of the kernel (including writing to the crossbar). In this 
experiment, we assume that the size of the integer numbers matches the number of columns 
shared by one ADC. According to the figure, the size of the first two adders for the proposed 
design are always constant (here 8-bit). Rather, as the datatype size increases, a larger adder 
has to be employed for the reference design. Considering an 8-bit datatype size in Figure 10, 
a 24-bit adder has to be used for the reference design, which imposes a 3 times bigger latency 
than an ADC. However, due to the abundance of ADCs, the entire readout phase is not the 
bottleneck of the system (see Table 3: Value of parameters used for the experiments for the crossbar 

latency). Therefore, there is no performance improvement at this point. Figure 11 shows the 
energy improvement achieved by the proposed design. Although the number of computations 
is always the same, they are performed with smaller adders, which has a quite good impact 
on the energy consumption of the addition unit. Finally, the impact of the number of ADCs on 
the execution time and energy of the addition unit using 32-bit datatype size are presented in 
Figure 12. As the number of ADCs increases, the performance is improved. In addition, 
although more adders are employed, their size is decreased, which leads to less energy 
consumption. 
 

 

Figure 12: Energy consumption of addition unit and execution time of the benchmark for different number of ADCs 
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 IMEC nano-simulator for CIM-A/P tiles 

 IMEC nano-simulator for CIM-A/P instantiated for STT-
MRAM technology 

 

Making an accurate hardware aware simulator for CIM block is an important goal of 

MNEMOSENE. Hardware aware simulator provides valuable insight for architectural 

exploration in different abstraction levels. In imec, our focus is close to technology operations. 

Therefore, we worked on a nano-simulator which abstracts the functionality of STT-MRAM 

memory cells along with its peripherals. Figure 13 illustrates the different hierarchical levels in 

the MNEMOSENE architecture template as defined in WP3. It also shows the position of the 

imec nano simulator in the global simulation platform. In particular, it directly interfaces with 

the micro-architecture simulator which is developed in WP3. The latter abstracts the 

functionality up to number of clock cycles required for read and write, total area, total energy 

for reads and writes for different memory dimensions. The IMEC nano-simulator provides 

these numbers in a parametrized way. 

 

Figure 13: A complete overview of MNEMOSENE simulator platform and position of the imec nano-simulator 

The Imec nano simulator mainly wraps the behaviour of the memory cells, sense amplifiers, 

address decoder, and row/column driver lines. To illustrate the functionality with a real memory 

technology and to provide quantitative numbers for delay, energy and area we have 

instantiated it for the realistic STT-MRAM macro which has been developed at IMEC for scaled 

technology nodes [refs]. All the important components are parametrized and the delay, energy 

and area have been calibrated based on measurement of fabricated test structures. 

Our Imec nano-simulator is accurate and at the same time faster than low-level circuit 

simulations. Additionally, to be able to provide it to all the other partners, the simulator should 

be packed like a black-box to not reveal protected confidential information about the IMEC 
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memory technology. This new simulator is written in python and converted to a secure 

executable file to run independently without any third-party tools. 

Using this simulator, it is possible to simulate the STT-MRAM cells plus the peripherals to 

explore metrics like energy consumption and latency for any application. It is possible to add 

other relevant metrics if it is required.  

For simulations of the STT-MRAM cells and the sense amplifiers, we extract the data and 

equations from the analog simulations which were previously reported in D4.5. Currently, 

those data are limited to read/write instructions. We can add energy/latency data for CIM-A 

instructions (like in-memory binary operations) when the CIM-A simulation results are 

available. 

In addition to STT-MRAM cells and sense amplifiers, the imec nano-sim includes a model for 

memory peripherals like address decoder and drivers. Specifically, we have modelled a 

version of our Address Calculation Accelerator (ACA). This unit performs address processing 

inside memory which will be explained in detail in the following sections.  

Figure 14 shows the input/output files of the black-box nano-simulator. Table 4 explains the 

input/out files.  

Table 4:  input/outputs files of nano-simulator 

Instruction file Input Contains the instruction list (with/without ACA 
extension) to the memory 

Configuration file Input Contains the configurations of the STT-MRAM 
memory, the path to the memory image file, instruction 
file, and result file  

Memory image file In/Out Stores the content of the memory before, after, and 
during the simulation. 

Results file Output Contains the detailed results of the simulation, 
including energy/power/time consumption of each 
element in the simulation 
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Figure 14 Input/Output files of the black-box nano-simulator 

Figure 15 shows an example of the configuration file. Here the user should define the 

configurations of the STT-MRAM core as well as the locations to load/store other interfacing 

files. The initial state of memory affects the switching power/latency. Therefore, it is possible 

to always start from a zero state by activating the init_boolian in the configuration file.   

 

 

Figure 15 An example of the configuration file 

 

Figure 16 template of the instruction file 

Figure 16 shows the template of the instruction files with currently supported instructions. 

Every instruction comes with a set of operands. For Read instruction, it is only the address. 

For write instruction, it is the address and the write data. Nano-sim also supports ACA 

instructions for burst read (ACAR) and write (ACAW). We will discuss its operands later in this 

document.  

We have used some constants parameters in the nano-sim which is defined by the 

STT_MRAM technology. Below are those parameters: 

#Memory configurations constants (fit for imec STT_MRAM) 

G= 16          #bit slice multiplexer factor 
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N= 2           #number of sub-arrays 

if(D>64):  N=4 #number of sub-arrays    

P= 0.75        #duty cycle (pulse high time) 

T= 26.71       #clock period in [ns] 
 

#Global constants 

Fr = 37.443834e6;   #reference clock frequency 

Pr = 0.75;          #reference clock duty cycle 
 

The energy and access time consumed by each operation should be embedded inside the 

simulator by using the provided equations. The following subsections discuss the main 

supported operations in nano-sim.   

7.1.1. Memory read  

Read energy is mostly dominated by the sense amplifiers. Static power consumption during 

reading is calculated with Equation 1: 

Equation 1 

𝑃𝑟𝑠𝑡𝑐 =  
𝑃0 × (𝑊 + 𝑊0) × (𝐷 + 𝐷0 × 𝑁) × 𝐹0

(𝐹0 + 𝐹𝑟)
 

 

Dynamic read energy consumption per each word is calculated with Equation 2: 

 

Equation 2 

𝐸𝑟𝑑𝑦𝑛  =  
𝑃0 × (𝑊 + 𝑊0) × (𝐷 + 𝐷0 × 𝑁)

(𝐹0 + 𝐹𝑟)
 

 

Read access time is calculated with Equation 3: 

Equation 3 

𝑇𝑟 =  𝑇𝑎 +  𝑇𝑏 × (𝑊𝑎𝑎) 

Where the parameters which are used in these equations are as follow: 

Ta = 2.93e-9 

Tb = 0.06e-9 

aa = 0.83 

P0 = 0.526e-6 

W0 = 17.00 

D0 = 9.741 

F0 = 5.78e6 

 

7.1.2. Memory Write 

STT_MRAM cells consume energy to change their internal state. Therefore write energy is 

expected to be more than read-energy. However, when the writing of data does not include a 

change of state (for example writing ‘1’ into a memory cell which is already ‘1’), the power 

consumption will be limited to drive the bit-lines.  
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In conclusion, write energy should be calculated differently in these 4 scenarios: 

1- Writing ‘1’ in a cell which is already ‘1’ (non-flipping 11) 

2- Writing ‘1’ in a cell which is already ‘0’ (flipping 10) 

3- Writing ‘0’ in a cell which is already ‘1’ (flipping 01) 

4- Writing ‘0’ in a cell which is already ‘0’ (non-flipping 00) 

 Static write power in nano-sim is calculated with Equation 4 

Equation 4 

𝑃𝑤𝑠𝑡𝑐  =  
(𝑛01 + 𝑛11) × 𝑃01 × (𝑊 + 𝑊01) × (𝐷 + 𝐷01 × 𝑁) × 𝐹01

(𝐹01 + 𝐹𝑟)
 

+
(𝑛10 + 𝑛00) × 𝑃00 × (𝑊 + 𝑊01) × (𝐷 + 𝐷01 × 𝑁) × 𝐹01

(𝐹01 + 𝐹𝑟)
 

Static power is the same for flipping or non-flipping writes. However, static power is only 

consumed when the clock signal is high. As the clock duty cycle is a parameter of the memory, 

we adjust the static power as shown in Equation 5 

Equation 5 

𝑃𝑤𝑠𝑡𝑐 ←  𝑃𝑤𝑠𝑡𝑐 ∗ 𝑃/𝑃𝑟 

Dynamic energy consumption is calculated with Equation 6: 

Equation 6 

𝐸𝑤_𝑑𝑦𝑛 =  
(𝑛01 + 𝑁𝐹𝐹 × 𝑛11) × 𝑃01 × (𝑊 + 𝑊01) × (𝐷 + 𝐷01 × 𝑁)

(𝐹01 + 𝐹𝑟)

+
(𝑛10 + 𝑁𝐹𝐹 × 𝑛00) × 𝑃01 × (𝑊 + 𝑊01) × (𝐷 + 𝐷01 × 𝑁)

(𝐹01 + 𝐹𝑟)
 

The write time changes based on the value which is written in the cell. 

Equation 7 

𝑇𝑤1  =  (𝑇𝑎1  +  𝑇𝑏1 × (𝑊𝑎𝑎1  )) 

Equation 8 

𝑇𝑤0  =  (𝑇𝑎0  +  𝑇𝑏0 × (𝑊𝑎𝑎1)) 

 

Equation 7 calculates the write time when writing ‘1’ into the cell while Equation 8 calculates 

the write time for writing ‘0’. As the write instruction is a word-level instruction, the word write 

time is defined by the maximum write time of all the cells.  

Followings are the parameters used in these equations: 

#For anti-parallel to parallel switch (1 -> 0) 

Ta_0 = 3.76e-9 

Tb_0 = 0.0016e-9 

aa_0 = 1.76 

P0_0 = 1.259e-6 

W0_0 = 66.44 

D0_0 = 1.729 
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F0_0 = 197e6 
#For parallel to anti-parallel switch (0 -> 1) 

Ta_1 = 5.59e-9 

Tb_1 = 4.08e-9 

aa_1 = 0.0 

P0_1 = 1.628e-6 

W0_1 = 45.94 

D0_1 = 2.001 

F0_1 = 99e6 
#General parameters 

NFF = 0.5 #non-flipping factor 
n_00=0.0  #number of bit writes from 0 to 0 
n_01=0.0  #number of bit writes from 0 to 1 
n_10=0.0  #number of bit writes from 1 to 0 
n_11=0.0  #number of bit writes from 1 to 1 

 

Total energy consumption is calculated by the summation of dynamic energy with static energy 

(static power multiply by run time).  

Whenever a memory write happens, nano-sim updates the memory image file. Therefore we 

keep track of all the changes during simulation. Memory image file is a CSV file where every 

line of it contains the data for every row of the physical memory.  

7.1.3. BUS energy 

Even though energy consumption over the memory bus is not part of the nano-sim scope as 

shown in Error! Reference source not found., we have added the option to include the BUS 

energy in the results. This is because we wanted to show how much our address calculation 

accelerator improves energy efficiency. Using the experimental results in [34], we concluded 

that in 65nm technology with 150MHz clock frequency, every bit-transfer in the TCDM BUS 

consumes around 0.18pJ. This number is used in our simulations.   

 

7.1.4. CIM-P Address Calculation Accelerator 

ACA is an additional unit that can be used instead of a conventional address decoder. The 

idea is rather than calculating the access word address in the processor and sending a series 

of addresses to the memory, this process happens inside the memory. In section 7.2 we 

explained ACA in more detail.  

ACA is a fully digital circuit and mainly made of a control unit (state machine) and two shift 

registers, one with the size of the number of rows (R) and another one with the size of the 

number of columns (C), as illustrated in Figure 17. To include the ACA in our nano-sim, we 

measured the power consumption of the logic block with digital circuit simulations.  



MNEMOSENE D4.7 – Refined CIM microarchitecture 

25 
 

 

Figure 17 ACA circuit block diagram and position in the full memory macro 

As the dominant source of power consumption is the shift registers, we used Error! Reference 

source not found., Equation 10, and Equation 11 to calculate the static power, energy to load 

the registers, and energy to shift the registers.  

Equation 9 Static power 

𝑃𝑠𝑡𝑐  =  2.0 × 10−9 × (𝑅 + 𝐶) 

Equation 10 Load Energy 

𝐸𝑙𝑑   =  2.0 × 10−15 × ((𝑅 × 𝐿𝑑_𝑅) + (𝐶 × 𝐿𝑑_𝐶)) 

Equation 11 Shift energy 

𝐸𝑠ℎ𝑡  =  3.0 × 10−15 × ((𝑅 × 𝑆ℎ_𝑅) + (𝐶 × 𝑆ℎ_𝐶)) 

Where Ld_R and Ld_C are active for every register load instruction and Sh_R and Sh_C are 

active for every register shift instruction. It worth mentioning that only the  𝐸𝑠ℎ𝑡 is dedicated for 

ACA while 𝑃𝑠𝑡𝑐 and 𝐸𝑙𝑑 is also consumed when a normal address decoder is in place.  

Figure 18 shows an example of the output file from the nano-sim. It includes relevant 

information like the energy and access time of each component.      

 

Figure 18 An example of the result file (down) 



MNEMOSENE D4.7 – Refined CIM microarchitecture 

26 
 

7.1.5. CIM-A Accelerators 

It is possible to include the information about the CIM-A operations into the nano-sim. In that 

case, the read and write of the data has to be replaced by a modified read and write where 

also logic or arithmetic operations are incorporated. For our nano-simulator, this simply means 

including a wider set of memory operations in the list, and to add the corresponding delay, 

area and energy results on top of already available read and write operations. 

Due to time limitations, we have not yet performed this integration in the MNEMOSENE scope 

so we cannot show quantitative results at this stage. 

 Optimized CIMP-tile for address calculation 

One of the main goals in Mnemosyne is to reduce the data transfer between the memory and 

the processor cores. An important part of transferred information is the memory word address 

which the processor wants to access. Normally each packet of data that moves between a 

processor and a memory in a general processor SoC (Figure 19) contains 3 important parts: 

Instruction Target word address Operands 

 

For example, in a conventional system to write in a line of memory, we provide the target word 

address to be written. Then instruction is the “write instruction” and the operand is the “write 

data”. When performing an in-memory process, it is possible to give higher-level instructions 

to the memory block. For example, an instruction can include a binary AND between the 

Operand and the content of the target word address.   

 

Figure 19 A general processing SoC 

The overhead of the “target address word” in every transaction can be considerable (especially 

for low word resolutions which is a new fashion in edge applications). Address bits scale up 

with the number of words in the memory and adds considerable overhead to each memory 

transaction. For example, to access an 8-bit word in a relatively small 1MB memory, it is 

required to transmit an address with 20 bits.  

For the important domain of streaming applications, it is always required to access regular or 

semi-regular repetitive accesses to one- or more-dimensional arrays and other composite data 

types. This will be translated at the memory hardware-level into a stream of consecutive 

addresses in the memory (which is called burst access for the full regular situation). In this 

case, it is much more efficient to just send the first address and the number of accesses in the 

burst and to calculate the explicit address locally in the memory. This optimization can easily 

make the processor-memory communication in terms of address and control commands 

negligible, with savings up to a factor 100 (as we will show in the results). But it requires a 

disruptive hardware modification in the periphery of the memory macro. The basic hardware 

concepts have been reported in the earlier deliverable D4.4. 
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To generalize this concept, an application may require a semi-regular access pattern to the 

memory which is not necessarily consecutive burst access. For example, as it is illustrated in 

Figure 20, applying a 3x3 kernel on a 2D image which is mapped linearly in the memory 

requires reading 3 separated sections of the memory. This is not fully regular any longer 

because especially at the image boundaries the repetition is disturbed. Moreover, in many 

streaming applications, the neighbourhood to be extracted from the full image (or array in 

general) is not fully dense and holes are present in the pattern. We also want to support such 

semi-regular but still repetitive patterns. 

As described in detail in previous deliverables (D4.4 and D4.6), we have come up with an 

optimized circuit scheme (an imec IP) to reduce the number of transactions required for 

address transfer by the implementation of a hardware-accelerated logic block to generate a 

complex pattern of addresses locally inside the memory. Besides, we have started with the 

implementation of a modelling and simulation framework to support such CIM-P modifications 

at the nano-simulation level. 

 

 

 

 

 

 

 

 

Figure 20 Access memory pattern for a 2D convolution. Apply a 2D kernel in a 2D image (Left). Equivalent 
access pattern for 1D mapping in the memory (right) 

 

Our Address Calculation Accelerator (ACA) contains two shift registers (row and column 

registers) and control logic as it is shown in Figure 21. The control logic block (FSM) 

understands the packed ACA instructions and unpacks them. ACA can generate sequences 

both in rows and columns when multiple words are stored in one row. Additionally, it is possible 

to select only part of a word (like masking) when required as shown in Figure 22.  
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Figure 21 Address Calculation Accelerator block 

 

 

To use ACA, the processor should pack several memory access patterns in a form of an ACA 

instruction. We assume this is happening offline during compile time. In this case, the compiler 

is aware of ACA instructions. Therefore there is no run-time process required to pack the 

memory accesses.  

When using ACA, many small transactions can be packed in the following format: 

Instruction ACA Operands Operands 

 

ACA operands are used by the ACA unit to unpack the sequence of addresses. This means 

the instructions compiled in the processor should be packed using an ACA aware compiler. 

The following table lists the operands that are used for ACA: 

row_start(s) The start position(s) of the row 

row_inc The amount of increment on the row in every step 

row_cycles The number of shift cycles for the row shift-register 

col_start(s) The start position(s) of the column 

col_inc The amount of increment on the column in every step 

col_cycles The number of shift cycles for the column shift-register 

ins_repeat The number of reaping this instruction 

 

4 3 2 1 

Figure 22 Partial selection of a row/colunm in ACA 
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In the current implementation, we have a single start position for row and column. When 

selecting several row/columns, it is required to have several row_start / col_start operands. It 

is also important that the memory core can accept such a configuration. For example, to 

perform in-memory binary operations between two rows of the memory, we should have two 

row_start active bits.  

We are aware that a single cycle shift registers can be expensive to implement for a larger 

scale. Therefore, it is possible to restrict the row_inc/col_inc numbers to simplify the hardware. 

Additionally, As the speed of digital peripheral normally is faster than the memory access time, 

it is possible to perform the shift operation in several digital clock cycles. For example, if the 

digital clock frequency is 1GHz and memory access time is 10ns, shifting the active bit in the 

shift register can take 10 clock cycles before the memory is ready for the next access.  

 CIM-P ACA compiler 

When using memory with in-memory process capability (for example in a platform same as 

Figure 13), the processor can outsource some part of the computation to the CIM block. In 

this case, the CIM block accepts higher-level instructions. To perform this kind of computation 

and processor-CIM communication, the program compiler of the processor needs to be aware 

of the CIM features.  

As we introduced the ACA logic block in the CIM, we also needed to compile the application 

with an ACA aware compiler. Rather than modifying the existing compilers, we have made a 

separate ACA compiler that operates after a conventional compiler. The responsibility of the 

ACA compiler is to detect the access patterns to the memory and packed them by using the 

ACA instructions. The current version of the ACA compiler is performing a simple search. 

Therefore, it may be slow for big applications and it may miss some of the more complex 

patterns. Further optimization of this compiler should be done in future work.  

 

Figure 23 The flow of using ACA compiler and black-box nano-simulator 
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Figure 24 A simple example of input and outputs of the ACA compiler 

Figure 23 shows the flow of using the ACA compiler and the nano-sim. ACA compiler 

compresses the instructions which require memory access with a specific pattern. Figure 24 

shows an example of the input and output of the ACA compiler. In this example, we only use 

read/write instructions but ACA is not limited to these instructions. ACA compiler only searches 

for memory access patterns and does not interfere with the instruction which is supposed to 

be executed inside the memory.  

 

 Results from application case studies for CIM-P 

In this section, we show some of the results of our experiments by using our IMEC black-box 

nano-simulator instantiated for the ACA compiler.  

7.4.1. Synthetic application case 

As the first experiment, we tried to integrate this nano simulator with the TUe micro-simulator 

for a very small synthetic application. Following is the result.  

 

 

 

 

 

 

 

 

7.4.2. Basic implementation of guided filter application 

To obtain a realistic and representative case study from the streaming data and signal 

processing domain, we have collaborated with the IPI group of Prof. Wilfried Philips and Prof. 

Integration with TUe simulator: 

STT_MRAM 

• Total energy = 181 nJ 
• Total time = 45 µS 

ACA 

• ACA energy = 1.01 nJ 
• Instructions compression ratio over the BUS = 518X 
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Bart Goossens at UGent & IMEC, Belgium. They work on advanced image processing 

algorithms and together we have chosen a representative image processing technique called 

“guided image filtering” [35]. This application uses two images as input and guide and performs 

repetitive operations on the input image using the guided filter as shown in Figure 25. In our 

case, the sizes of the input image, guided filter, and output are the same.  

 

 

Figure 25 Guided image filtering application [36] 

 

This application follows the pipeline shown in Figure 26 to process an input image. 

 

 

Figure 26  The pipeline of the guided image filtering application. JBF stands for “Joint Box Filter”  

 

As mentioned before, ACA can reduce the number of individual transactions over the BUS by 

packing/unpacking the addresses. In these experiments, we measured the number of 

individual transactions before and after using ACA compression. Please note that we only 

compress the address/instruction fields and operands are required to be transferred in the 

packet without any compression. Additionally, we run the experiments for different input sizes, 

as it affects the compression ratio.  

Table 5 shows the results of using the nano-simulator with ACA compression for different 

image sizes in the guided filter application. Also, note that the simulation results also depend 

on the initial memory state (for example input image in this case) as the energy/time 

consumption is different when switching from ‘1’ to ‘0’ and from ‘0’ to ‘1’ in an STT-MRAM 

memory cell.  
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Table 5 Results of implementation of guided image filtering in nano-sim 

Image size: 𝟑𝟐 × 𝟑𝟐 

Kernel 
The normal 
number of 

access 

Compresses 
number of access 

(ACA) 

Compression 
Ratio 

STT-
MRAM 
Energy 

(nJ) 

ACA 
Energy 

(nJ) 

Total 
time 
(µs) 

Input 33793 5953 18% 496 12 109 

Guide 36865 5954 16% 289 13 118 

Tmp0 
(Hor0) 

147457 5954 
4.0% 

2456 176 551 

Tmp1 
(Ver0) 

73729 5954 
8.0% 

1228 46 275 

Tmp2 
(Hor1) 

73729 5954 
8.0% 

1224 46 275 

Output 
(Ver1) 

3073 1 
0.03% 

118 1 30 

Total 368646 29770 8% 5811 294 1358 

 
 

Image size: 𝟐𝟓𝟔 × 𝟐𝟓𝟔 

Kernel 
The normal 
number of 

access 

Compresses 
number of access 

(ACA) 

Compression 
Ratio 

STT-
MRAM 
Energy 

(nJ) 

ACA 
Energy 

(nJ) 

Total 
time 
(µs) 

Input 2162689 219649 10% 31738 5615 6910 

Guide 2359297 219650 10% 18482 6069 7539 

Tmp0 
(Hor0) 

9437185 219650 
2.3% 

157170 88838 35248 

Tmp1 
(Ver0) 

4818593 219650 
4.5% 

78584 22762 17624 

Tmp2 
(Hor1) 

4718593 219650 
4.6% 

78586 22751 17724 

Output 
(Ver1) 

196609 1 
0% 

7553 456 1901 

Total 23692966 1098250 4.6% 372113 146491 86946 

 

When we scale up the memory sizes, the compression ratio increases. However, as can be 

seen, the ACA energy also increases. It is because we have implemented a fully flexible single 

cycle shift-registers. Therefore, the hardware complexity increases when we increase the size 

of the shift registers due to the intensive amount of wiring (any D-FF should connect to all the 

others). As it is mentioned before, it is possible to limit the shift amount in hardware or use 

multiple cycles to shift. This way the ACA circuit will be more scalable.   

 

7.4.3. Software pipelining of guided filter application 

 

In the previous execution method, we process each kernel sequentially. However, as it is clear 

from Figure 26, it is possible to execute them in parallel by exploiting a software pipelining 
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concept. As all the kernels execute similarly with the unique access pattern to the memory, in 

the parallel execution, we can use a longer word line in the memory to feed all the processes 

in parallel. The outcome is shown in Figure 27.  

 

Figure 27 Parallel read/write from a wide memory in guided image filtering 

In the software-pipelining format, one long word of the memory is read, processed, and write 

back to the memory. In this way, we save even more in address transactions. Processing one 

long word can take one or several cycles, dependent on the target compute architecture. In 

this case, ACA only needs to generate one address per line which results in a  reduced cycle 

count and hence a higher performance and also energy efficiency for the address generation 

and the address and data communication network. However, the energy consumption for the 

memory access itself and the arithmetic instructions on the processor cores mainly remains 

the same. So the biggest gains are expected on the overall throughput and latency combined 

with a medium gain on the total energy consumption. 

 

Table 6 results of guided image filtering when using software pipelining  

Image size The normal number 
of access 

Compresses number of 
access (ACA) 

Compression 
Ratio 

32x32 368646 5958 1.6% 

256x256 23692966 219654 0.92% 

 

A more conventional computing architecture like a GPU can easily exploit software pipelining 

due to a high level of parallelism with SIMD (Single Instruction Multiple Data) structures. 

However, irregular memory access (same as most advanced image and video processing 

kernels), will cause inefficiency in SIMD processing and reduces the processor utilization. This 

problem can be solved by using an ACA like address decoding scheme.  

Table 6 shows the compression ratio when using ACA. We will focus on the 256x256 image 

size to analyse this in more detail. Our parallel software pipelining based mapping can 

increase address instruction count by a factor of 5  when compared to the mapping from the 

more conventional loop kernel CUDA code which was discussed in Table 2 in subsection 4.2. 
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Note though that this heavily optimized software pipeline version is not feasible for GPU 

architectures as they are proposed today. Our colleagues from UGent have confirmed this. 

On top of this, even the compression of 22x for the CUDA code mapping in Table 2, is not 

directly reachable with any commercial GPU mapping, even for the most parallel GPU engines 

of today. Hence, we expect that compared to state-of-the-art GPUs, the guided filtering 

application can have at least  10x less address instructions.  This compression will hence 

increase performance significantly. It also saves address instruction execution and address 

bus communication energy but we do not have a detailed model yet of the entire 

microarchitecture to allow us to accurately calculate that energy saving. 

 

 Conclusion 

In conclusion, Nano-sim will make it feasible to run fast experiments with imec STT_MRAM 

technology. Even though the current release only supports memory read/write and ACA 

instructions, we can flexibly add further instructions to the CIM-A or CIM-P tile in the future. 

This platform can be useful for both internal use in imec and its partners, and for external use 

at the MNEMOSENE partners. 

Evolving the new architectures by using compute in memory is a breakthrough in computer 

architecture. As most of the energy in STOA computer systems is consumed by data 

movement, compute in memory reduces total energy for a given performance target. It allows 

us to bring compute and memory close to each other and perform highly parallel computing. 

Besides, using NVM memory technologies reduces the power leakage of the system, 

especially when the SoC is memory dominant.  

The main challenge in the CIM-A type compute-in-memory is the application level gain which 

is not yet sufficient compare to conventional technologies. One problem with using NVM is 

high energy consumption during write operations. This feature makes the technology 

infeasible for the write dominant applications. Many of the CIM-A instructions and architectures 

are built around NVM technologies. Therefore, for write-dominant applications, the in-memory 

process may not bring reasonable performance gain. However, processing in peripherals or 

near memory processing can be applied also to such memory technologies and then the 

context changes.  

Another problem of CIM-A is the nature of analog signals. As the operations are done in the 

analog domain, it is prone to noise and variations. In this case, the application should be robust 

against these variations and it will be difficult to acquire standards for use in critical 

applications like health-care. This problem is more intense when using multi-level cells.  

In future work, we should focus on the detailed micro-architecture level of CIMA and CIMP 

with realistic T/E models as well as the more application demonstrators. In this way, in imec, 

we are going to explore different microarchitecture-circuit-technology choices (STCO), 

including promising emerging memory options (especially MRAM and IGZO-DRAM) and 

global design PPAC trade-off exploration space. 
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8 Reflection and outlook beyond the project  

In this report, our CIM tile architecture as well as the nano-instructions were presented. It 

should be noted that their definition is strongly influenced by the need to develop a simulator 

that allows for quick design space exploration between different memristor technologies  

investigated in the MNEMOSENE project. Furthermore, a simulator is more suited to be 

integrated with other simulators used/adapted/developed in other work packages. Our 

research performed and outlined in this deliverable is merely the starting point of more 

research and development in order to bring memristors to the market. Already at this moment, 

we are looking for future project (beyond MNEMOSENE) that will further improve and extend 

our work in MNEMOSENE. There are already several potential research directions and 

development tracks that we have identified and will pursue with the MNEMOSENE partners 

even after the end of this project. Examples are: multi-tile communications and prototyping of 

spiking neural networks using memristors. 
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