

Project:

MNEMOSENE
(Grant Agreement number 780215)

“Computation-in-memory architecture based on resistive devices"

Funding Scheme: Research and Innovation Action

Call: ICT-31-2017 "Development of new approaches to scale functional performance of
information processing and storage substantially beyond the state-of-the-art technologies

with a focus on ultra-low power and high performance"

Date of the latest version of ANNEX I: 17/09/2020

D4.7– Refined CIM microarchitecture

Project Coordinator (PC): Prof. Said Hamdioui

Technische Universiteit Delft - Department of Quantum and
Computer Engineering (TUD)

Tel.: (+31) 15 27 83643

Email: S.Hamdioui@tudelft.nl

Project website address: www.mnemosene.eu

Lead Partner for Deliverable: IMEC

Report Issue Date: 31/10/2020

Document History

 (Revisions – Amendments)

Version and date Changes

07-05-2020 First draft version

30-06-2020 Second draft version

26-11-2020 Third and full draft version

22-12-2020 Final version reviewed by project coordinator

Dissemination Level

PU Public X

PP Restricted to other program participants (including the EC Services)

RE Restricted to a group specified by the consortium (including the EC Services)

CO Confidential, only for members of the consortium (including the EC)

The MNEMOSENE project has received funding

from the European Union’s Horizon 2020

Research and Innovation Programme under grant

agreement No 780215

mailto:S.Hamdioui@tudelft.nl
http://www.mnemosene.eu/

MNEMOSENE D4.7 – Refined CIM microarchitecture

2

The MNEMOSENE project aims at demonstrating a new computation-in-memory (CIM) based on
resistive devices together with its required programming flow and interface. To develop the new
architecture, the following scientific and technical objectives will be targeted:

• Objective 1: Develop new algorithmic solutions for targeted applications for CIM architecture.

• Objective 2: Develop and design new mapping methods integrated in a framework for efficient
compilation of the new algorithms into CIM macro-level operations; each of these is mapped
to a group of CIM tiles.

• Objective 3: Develop a macro-architecture based on the integration of group of CIM tiles,
including the overall scheduling of the macro-level operation, data accesses, inter-tile
communication, the partitioning of the crossbar, etc.

• Objective 4: Develop and demonstrate the micro-architecture level of CIM tiles and their
models, including primitive logic and arithmetic operators, the mapping of such operators on
the crossbar, different circuit choices and the associated design trade-offs, etc.

• Objective 5: Design a simulator (based on calibrated models of memristor devices & building
blocks) and FPGA emulator for the new architecture (CIM device combined with conventional
CPU) in order demonstrate its superiority. Demonstrate the concept of CIM by performing
measurements on fabricated crossbar mounted on a PCB board.

A demonstrator will be produced and tested to show that the storage and processing can be integrated
in the same physical location to improve energy efficiency and also to show that the proposed
accelerator is able to achieve the following measurable targets (as compared with a general purpose
multi-core platform) for the considered applications:

• Improve the energy-delay product by factor of 100X to 1000X

• Improve the computational efficiency (#operations / total-energy) by factor of 10X to 100X

• Improve the performance density (# operations per area) by factor of 10X to 100X

LEGAL NOTICE

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use,

which might be made, of the following information.

The views expressed in this report are those of the authors and do not necessarily reflect those of the European

Commission.

© MNEMOSENE Consortium 2020

MNEMOSENE D4.7 – Refined CIM microarchitecture

3

Table of Contents

 Introduction .. 4

 Background on Initial CIM-tile architecture ... 6

 Overall Tile architecture .. 6

 Nano-instruction set architecture (nano-ISA) ... 8

 CIM-tile pipelining .. 9

 Background on the addition unit ... 10

 CIM-tile micro-simulator and compiler enhancement .. 11

 Evaluation .. 13

 Simulation setup ... 13

 Simulation result ... 14

 IMEC nano-simulator for CIM-A/P tiles ... 19

 IMEC nano-simulator for CIM-A/P instantiated for STT-MRAM technology 19

7.1.1. Memory read ... 22

7.1.2. Memory Write .. 22

7.1.3. BUS energy ... 24

7.1.4. CIM-P Address Calculation Accelerator ... 24

7.1.5. CIM-A Accelerators ... 26

 Optimized CIMP-tile for address calculation .. 26

 CIM-P ACA compiler ... 29

 Results from application case studies for CIM-P ... 30

7.4.1. Synthetic application case ... 30

7.4.2. Basic implementation of guided filter application ... 30

7.4.3. Software pipelining of guided filter application ... 32

 Conclusion .. 34

8 Reflection and outlook beyond the project.. 35

MNEMOSENE D4.7 – Refined CIM microarchitecture

4

Preface

In WP 1, promising applications for a CIM architecture were investigated. These applications
are widely used in many platforms and require processing large amounts of data. The potential
improvement in terms of energy and performance were highlighted in the same work package.
WP2 and WP3 focused on the (automatic) extraction of kernels suitable for execution on a
CIM accelerator and the definition of a system-on-chip encompassing modern-day state-of-
the-art compute units and integrating them with the CIM accelerator, respectively. While WP4
mainly focused on the memristor technologies to implement application relevant operations
(identified in WP1), there was still a gap between the works in WP2, WP3, and WP4. In
Deliverable D4.6, we proposed a simulator to fill this gap and we presented the initial CIM tile
architecture, the CIM simulator, as well as an initial investigation into potential performance
and energy results of this initial CIM tile architecture. In this deliverable (D4.7), we further
refined the CIM tile architecture, adapted the CIM simulator accordingly and present more
detailed performance and energy results and demonstrate how the design-space exploration
(between different memristor technologies) can be performed using our CIM simulator.

 Introduction

Emerging applications such as neural networks, databases, and image processing are widely
used in different platforms including real-time embedded systems, back-end data centers, etc.
These applications require processing large amounts of data that is usually located far away
from the processing units. Consequently, performance and power consumption of the systems
which fulfill these processing needs have become crucial and draw increasingly more
attention. Currently, traditional von-Neumann architectures have been stretched to attain
adequate performance at reasonable energy levels but are clearly showing limitations for
further improvements. The main limitation is the conceptual separation of the processing unit
and its memory, which makes the data movement between memory and processing unit the
main performance and energy bottleneck. The solution to overcome this is to employ the
Computation-in-Memory (CIM) approach that proposes the utilization of (new) technologies
that allows for both storage and computing within the same (storage) structure. This is
achieved by exploiting special characteristics of emerging non-volatile memories called
memristors such as resistive RAM (ReRAM), phase change memory (PCM), and spin-transfer
torque magnetic RAM (STT-RAM). No matter which technology is used for fabrication,
memristor technology has great scalability, high density, near-zero standby power, and non-
volatility. Accordingly, memristor technology with the aforementioned characteristics opens up
new horizons toward new ways of computing and computer architectures.

Until now, the main focus of researchers was to enhance the characteristics of memristor
devices such as latency and endurance [1] [2] [3] [4] [5]. Researchers have already proposed
different innovative circuit designs based on memristor devices to exploit their capabilities of
co-locating computation and storage together [6] [7] [8] [9] [10] [11] [12] [13]. Moreover, within
a single memory array as well as at inter-array level huge parallelism can be flexibly achieved
as each memory tile becomes a powerful computation core. It was demonstrated that due to
these two main features of memristor-based designs, significant energy and performance
improvement can be gained [14]. It is widely accepted that the dot-product (and, in turn, the
matrix-matrix multiplication) operation is the most suited for the memristor-based designs.
Consequently, convolutional and deep neural network are the potential applications that have
been widely studied by the researchers to exploit memristive crossbar structures [15] [16] [17]
[18] [19] [20]. However, researchers have also proposed other types of operations, e.g.,
Boolean operations [21] [22] [23] or arithmetic operations like additions [24]. More information

MNEMOSENE D4.7 – Refined CIM microarchitecture

5

on available research regarding device characteristics and potential applications for in-
memory computing can be found in [25] [26].

Having said this, there is no work in the research community that allows for easy
comparison of these supported operations at the application-kernel level between
different technologies nor is it possible to emulate complex operations, e.g., matrix-
matrix multiply, when the underlying technology does not allow for direct implementation.
Furthermore, the interactions between the analog memory array and its supporting
digital periphery is largely overlooked. Efficient organization of peripheries is crucial.
Otherwise, it alleviates the energy gain achieved by the memory crossbar. As an example,
computation over integer numbers is required by most applications. However, since limited
levels can be stored in one memristor cell, a number should be distributed over cells, which
requires some extra processing outside the crossbar to get a meaningful result. This clearly
shows the importance of organization for periphery circuits. In our prior work, presented in
Deliverable 4.6, a new instruction set architecture (ISA) is introduced with the objectives of (1)
orchestrating digital and analog components of memristor tiles and (2) bridging the gap
between high-level programming languages and the CIM architecture. Our compiler written in
C++ generates low-level instructions based on high-level kernels, which are supposed to
execute on the CIM tile. The compiler is aware of the architecture configuration, the technology
constraints, and the datatype size requested by the application. In addition, in order to
accomplish design space exploration targeting performance and energy, we designed a
modular simulator written in SystemC.

In this report, we describe:
1. an extension of our CIM-tile architecture to allow operations in the digital periphery

and the analog array operate in parallel through pipelining. The pipelined stages are

unbalanced due to the analog components which can have widely varying latencies.
2. our proposed addition unit, explained in D4.5, and evaluate it using our in-memory

simulator. This addition structure was tailored for crossbar array to aid an in-memory

crossbar to perform additions targeting integer matrix-matrix multiplication (MMM).

The proposed design utilizes minimum-sized adders and is customizable in order to

support varying numbers of ADCs.

3. how our in-memory simulator produces energy numbers for our tile components

including crossbar. In order to have a more accurate number for the crossbar, the

simulator enhanced to produce a data-dependent energy number.

4. the special features and optimizations of the STT-MRAM crossbar for binary logic

and MMM operations.

MNEMOSENE D4.7 – Refined CIM microarchitecture

6

 Background on Initial CIM-tile architecture

In this section, we provide a short summary of what was presented in D4.6. We briefly explain

the CIM-tile architecture and its analog as well as digital components. In addition, the nano-

instructions defined to organize the interactions between these components will be reviewed.

 Overall Tile architecture

CPU

Cache levels

DRAM

External Memory

CIM tiles

Figure 1: Potential high-level computer architecture using CIM tiles

A CIM tile can be either employed as a standalone accelerator or integrated to the
conventional computer architecture. In the latter case, there are different ways to employ CIM
tiles. Figure 1 depicts one potential way in which a CIM tile can be seen as an off-/on-chip
accelerator from the CPU. As mentioned earlier, we focus on the CIM-P 1T1R structure in
which the (computational) results of the (memory) array operations are captured in the (digital)
periphery. Figure 2 presents the architecture of the CIM tile that includes the required
components and signals which can control digital or analog data. The operations that can be
executed on the crossbar are divided into two categories: 1) write and, 2) read and
computational operations. The computational operations include addition, multiplication, and
logical operations.

MNEMOSENE D4.7 – Refined CIM microarchitecture

7

WD Register

Write DIM

So
u

rc
e/

G
at

e
 D

IM

R
S

R
eg

is
te

r

MUX

ADC /
SA

ADC/
SA

ADC/
SA

S&H

Addition units

C
o

n
tr

o
lle

r

Instruction
RS

DoA
FS

DoA

DoR

Tile Architecture

To host or
next tile

FS

DoS

Digital data

Control signal

Analog data

Column Select

WDS Register Mask Unit

Crossbar

FS

done

done

done

From host or other tiles

Addition

Figure 2: The overall CIM-tile architecture

1) Write operation:

In order to program the crossbar, we need to pass the data and the location where it has to
be written into the crossbar. The data itself has to be stored into the Write Data (WD) register
whose length depends on the width of the crossbar as well as the number of levels supported
by the memristor cells. The information regarding the location of data will be written into the
Row Select (RS) and Write Data Select (WDS) registers. The RS register is employed to
activate the row and the WDS register indicates the columns in which data has to be written.
According to the data stored in these registers, three types of Digital Input Modular (DIM)
required to translate digital voltage to the crossbar operating voltage. These drivers are
connected to the source and gate of each crossbar access transistor and the third one is
connected to the bit-lines of the crossbar.

2) Read/computational operation:

In this category, the operations generate an output and it has to be read by the periphery
circuits in the architecture. The generated output can be the outcome of either a normal
memory read or computational operation. In contrast to the write operation, there is no need
to fill the WD and WDS registers. The RS register again is used for row activation. However,
among computation operations, matrix-matrix multiplication (MMM) is a little different than
others in the sense that the RS not only has to indicate the active rows, but also can be
considered as the data for one of the matrices. When the operation is performed inside the
crossbar, the generated analog output has to be captured by the Sample & Hold (S&H) unit.
Subsequently, the results are converted to the digital domain using ADCs which are shared
among multiple columns.

MNEMOSENE D4.7 – Refined CIM microarchitecture

8

 Nano-instruction set architecture (nano-ISA)

Table 1: List of nano-instructions

Nano-instruction Opcode Immediate Application

Row Select RS Data to fill RS register Write/Computation

Write Data WD Data to fill WD register Write

Write Data Select WDS Data to fill WDS register Write

Function Select FS Function mode Write/Computation

Do Array DoA - Write/Computation

Do Sample DoS - Computation

Columns Select CS Data to fill CS register Computation

Do Read DoR - Computation

As discussed in Deliverable D4.6, a complex sequence of steps need to be performed in the
CIM tile that can be different depending on the (higher-level) CIM tile operation, e.g.,
read/write, dot-matrix multiplication, Boolean operations, and integer matrix-matrix
multiplication. Similar to the concept of microcode, we introduce an instruction-set architecture
for our CIM tile that would allow for different schedules for different CIM tile operations. The
“Controller" in Figure 2 is responsible for translating these instructions to the actual control
signals (highlighted in green). The list of instructions is presented in Table 1. Detail information
and description of nan-instruction can be found in Deliverable D4.6.

To translate high-level operations intended for the CIM tile into a sequence of nano-
instructions which have to be executed within the CIM tile, we wrote a new compiler, called
low-level compiler according to Figure 3. The high-level operations (e.g., MMM) are provided
by the high-level compiler which is responsible to search for the operations within the
application program that can be performed using the memristor crossbar. The high-level
compiler was presented in WP2 and is out of the scope of this report. Based on the
requirements or constraints that come from either the tile architecture or technology side, our
low-level compiler translates high-level operations to nano-instructions. As depicted in Figure
3, this information is written to the configuration file and passed to the compiler. It is important
to note that the sequence of instructions generated by the compiler changes whenever the tile
configuration changes. Therefore, by putting this complexity into the compiler, we try to keep
the controller as simple as possible. More information about the low-level compiler was
presented in Deliverable D4.6. In addition, the content of configuration file and the parameters
were defined there, will be explained in the following sections.

High-level
compiler

Low-level
compiler

Configuration
file

Simulator

Instruction
file

Performance
number

Application
Energy number

Debugging (Waveforms,
Computational result,

crossbar content)

Figure 3: The overall system flow

MNEMOSENE D4.7 – Refined CIM microarchitecture

9

 CIM-tile pipelining

The operations in the digital periphery and the analog array can be divided into the following
stages: (indicated by different colors in Figure 4)

1. Set up stage (digital): all the control registers (and write data register) are initialized
2. Execution stage (analog): perform the actual operation in the analog array
3. Read out stage (digital): convert the analog results into digital values
4. Addition stage (digital): perform the necessary operations for the integer matrix-matrix

multiplication
These stages sequentially follow each other while performing higher level operations
translated to a sequence of instructions in our ISA. It should be clear that the pipelining
described here is different from the traditional instruction pipelining. In the latter, the latency
of each stage should be matched with each other in order to have a balanced pipeline. In the
CIM tile, the latency of the operation performed in the analog array is expected to be much
longer than the latency of a single clock cycle in the digital periphery. Therefore, it is important
that the right signaling is performed between the stages in order to enable pipelining. The
introduced execution model to pipeline the operations within the CIM tile, will allow for trade-
off investigations between different NVM technologies and the (speed of the) digital periphery.

Crossbar

WD

Write DIM

So
u

rc
e

D
IM

G
at

e

D
IM

MUX

ADC/SA

S&H

DoA

DoA

DoA done

done

DoR
done

DoS

MaskWDS

RS

ADC/SA

Addition units

Setup Stage

Execute stage

Read stage

Addition stage

- RS
- WD

- WDS
- FS

- DoA
- DoS

- DoS
- CS

- DoR

- Instructions
related to

Addition stage

...

...

Figure 4: pipelining of the CIM- tile

In contrast to traditional processors where the execution of instructions is split into different
stages to enable pipelining, our tile architecture associates different instructions to each tile
stage. In the first stage, registers should be filled with new data and the drivers have to be
configured. In the second stage, to activate the crossbar using DoA instruction, the operation
latency for the previous activation must elapse. The latency of the crossbar, which depends
on its technology as well as the operation supposed to be executed, can be captured by either
a counter or done signal generated by the circuit itself. Based on the operation which can be

MNEMOSENE D4.7 – Refined CIM microarchitecture

10

write and read/computational, done signals issued by the crossbar and S&H unit should be
used to synchronize the first two stages, respectively. In the third stage, the latency of the
Read stage depends not only on the latency of ADCs, but on the number of columns that have
to be read as well. Accordingly, groups of columns are read by ADCs sequentially and this
stage would be available for the next S&H activation after the last columns already translated
to the digital domain.

 Background on the addition unit

In this section, we briefly review the proposed addition unit (see Figure 4) presented in
Deliverable 4.5.

Matrix-matrix multiplication (MMM) is a prevalent operation in many applications that needs
processing over numbers representing in a form of one existing datatypes. The presented
scheme is supporting integer as a fundamental datatype. To do MMM, the multiplicand has to
be mapped to the crossbar. However, (i) since there is a limitation over the number of bits that
can be stored in one memristor cell, the elements of multiplicand have to be distributed over
several cells. In addition, (ii) due to the constraint on the number of levels that can be
supported for the crossbar inputs, in a similar way, each element of multiplier has to be given
to the crossbar in several steps. Finally, (iii) in the case that ADCs do not have enough
resolution to be able to activate all the required crossbar rows at the same time, we also need
to perform it in several steps. According to the aforementioned limitations, in each step, an
intermediate result for the MMM is produced. However, in order to get the final result, extra
digital processing has to be considered, which is happening inside the addition unit.

The proposed addition unit comprises a maximum of three stages:

1- By giving one bit (or more depends on technology) of the multiplier to the crossbar
input, the addition between the outcome of each column (already performed by the
crossbar) is done in a way that minimum size of adder and register is required. In
the case that the ADC cannot support enough precision, a pre-phase is employed
for this stage to first get the final result for each column.

2- Getting the intermediate result for one bit of multiplier in the first step, when the
next bit is given to the crossbar, the outcome should be summed up with the
intermediate result obtained from previous bit-positions. Similar to the first stage,
the addition in this stage is done in a way that minimum size adder and register are
employed.

3- Finally, considering the mapping of integer number to the crossbar, if part of a
number (just some of the columns representing an entire number) shared with an
ADC, the third stage is essential to do the addition between the final outcome of all
the previous steps already taken per ADC (addition per ADC).

For detailed information about the addition unit, please read the deliverable 4.5. In this report,
we evaluate the proposed structure using our tile simulator in terms of energy and
performance.

MNEMOSENE D4.7 – Refined CIM microarchitecture

11

 CIM-tile micro-simulator and compiler enhancement

The proposed CIM architecture is generalized making it capable of targeting different

technologies with different configurations of the peripheral circuit. The simulator, written in

SystemC, models the architecture presented in Section 0 and generates performance and

energy numbers by executing applications. The simulator takes as input the program

generated by the compiler (presented in Section 2.2 and Deliverable D4.6) which is currently

stored as simple (human-readable) text. Besides the program, to simplify design space

exploration, the configuration of architecture has to be sent to the simulator via a configuration

file in which the user is able to specify many parameters. The simulator produces as output

the following: (1) energy and performance numbers, (2) content of the crossbar (over time),

(3) waveforms of all control signals, and (4) the computational results. All outputs are written

into text files to be used for further evaluation.

The simulator has been written in a modular way, which helps us to easily modify or replace

the components shown in the tile architecture with new designs/circuits. In our cycle accurate

fully parameterized simulator, each components has its own characteristics like energy,

latency, and precision written into the configuration file. Table 2 shows all the parameters that

can be set in the file to be used for the early stage design space exploration. Furthermore, the

first of its kind feature of our simulator is the ability to calculate energy number according to

the data provided by the application. Existing simulators estimate average energy number

regardless of data. Our simulator takes into account the data stored in the array to estimate

the energy consumption in the crossbar and its drivers. This is achieved by taking into account

the data stored in the crossbar cell resistance level, the number of activated rows, and the

equivalent resistance of the crossbar. The power consumption of the crossbar and read drivers

regarding read/compute operations is given in Equation 4 where 𝑅𝑟𝑐 is the resistance level of

the memristor cell located in row “r” and column “c”, 𝑃𝐷𝐼𝑀𝑟𝑒𝑎𝑑 is the read drivers power, and

𝑉(𝑟𝑒𝑎𝑑) is the read voltages. In general, 𝑅𝑟𝑐 and 𝑉(𝑟𝑒𝑎𝑑) are members of two sets contain

possible resistance and voltage levels, respectively. Furthermore, activation is a binary value

that indicates whether row “r” is activated and contributes to the power of the crossbar or not.

Considering read and compute operations, the summation is performed for the selected rows

and all the columns. In addition, for simplicity, the resistance of access transistors, as well as

bit-lines, are ignored. The power consumption of write operations is shown in Equation 5

where 𝑃𝐷𝐼𝑀𝑤𝑟𝑖𝑡𝑒 is the write drivers power. 𝑉(𝑤𝑟𝑖𝑡𝑒) and 𝐼(𝑤𝑟𝑖𝑡𝑒) are the write voltage and

programming current, respectively. In general, 𝑉(𝑤𝑟𝑖𝑡𝑒) is a member of a set including

different write voltage levels. Finally, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑐 determines whether the column “c” is

activated and would contribute to the crossbar energy or not. The summation is performed

over the selected columns in just one activated row. The energy consumption of

read/computational as well write operations are shown in Equations 6 and 7, respectively, in

which 𝑇𝑋𝑏𝑎𝑟(𝑤𝑟𝑖𝑡𝑒) as well as 𝑇𝑋𝑏𝑎𝑟(𝑟𝑒𝑎𝑑) are the latency of the crossbar for write and

read/computational operations. The latency of the crossbar for read/computational operations

depends on the peripheral circuits used to capture or read the analog values generated by the

crossbar. Using S&H unit to capture the result, its capacitance is charged with different

gradient according to the equivalent resistance of the crossbar. Therefore, the result should

be captured at the right time when there is a maximum voltage difference on the capacitance

of S&H unit for different crossbar equivalent resistances, which helps to be distinguished by

the ADC easily. It is worth to mention that the equations are data-dependent and provide the

worst-case energy numbers for the crossbar and its drivers.

MNEMOSENE D4.7 – Refined CIM microarchitecture

12

Table 2 List of parameters used in the configuration file

 crossbar and drivers analog peripheries digital peripheries

Structure - Number of rows/columns
- Cell levels

- Number of ADCs
- precision of ADCs

- Clock frequency
- datatype size

Energy - cell write energy
- cell read energy
- write driver energy
- read driver energy

- ADC energy per conversion
- SH energy per sample

- energy per adder in
addition unit

time - write latency
- read latency

- ADC latency
- SH latency

- RS filling cycle
- WD filling cycle
- WDS filling cycle
- CS filling cycle

𝑃(𝑟𝑒𝑎𝑑,𝑐𝑜𝑚𝑝𝑢𝑡𝑒) = ∑ 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑟 ∗ (∑
𝑉2(𝑟𝑒𝑎𝑑)

𝑅𝑟𝑐
+ 𝑃𝐷𝐼𝑀𝑟𝑒𝑎𝑑

#𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑐=1

)

#𝑟𝑜𝑤𝑠

𝑟=1

𝑅𝑟𝑐 ∈ {𝐿1, 𝐿2, … , 𝐿𝑛} − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑟 ∈ {0,1} − 𝑉(𝑟𝑒𝑎𝑑) ∈ {𝑉(𝑟1), 𝑉(𝑟2), … , 𝑉(𝑟𝑛)}

(4)

𝑃(𝑤𝑟𝑢𝑡𝑒)𝑟
= ∑ (𝑉(𝑤𝑟𝑖𝑡𝑒) ∗ 𝐼(𝑤𝑟𝑖𝑡𝑒) + 𝑃𝐷𝐼𝑀𝑤𝑟𝑖𝑡𝑒

) ∗ 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑐

#𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑐=1

𝑉(𝑤𝑟𝑖𝑡𝑒) ∈ {𝑉(𝑤1), 𝑉(𝑤2), … , 𝑉(𝑤𝑛)}
(5)

𝐸(𝑟𝑒𝑎𝑑,𝑐𝑜𝑚𝑝𝑢𝑡𝑒) = 𝑃(𝑟𝑒𝑎𝑑,𝑐𝑜𝑚𝑝𝑢𝑡𝑒) ∗ 𝑇𝑋𝑏𝑎𝑟(𝑟𝑒𝑎𝑑,𝑐𝑜𝑚𝑝𝑢𝑡𝑒)

(6)

𝐸(𝑤𝑟𝑖𝑡𝑒) = 𝑃(𝑤𝑟𝑖𝑡𝑒) ∗ 𝑇𝑋𝑏𝑎𝑟(𝑤𝑟𝑖𝑡𝑒)

(7)

Due to the execution model and flexibility of our instructions, the simulator is able to add the
energy of ADCs which are active during the program execution to the total energy of the tile.
Besides the hardware implementation of our digital controller, which can provide an accurate
number for this unit, a more advanced model for the energy and performance of the crossbar
are our main focus for future work. In addition, thanks to our low-level compiler, the simulator
can perform computation with different integer datatype sizes at the same time using the
structure proposed in Section 0.

MNEMOSENE D4.7 – Refined CIM microarchitecture

13

 Evaluation
The defined CIM tile architecture, ISA, compiler, and simulator allows for various design space
explorations. In this section, we will present several of these explorations that are currently
possible with our tools. In addition, we evaluate our proposed addition scheme in terms of
performance and energy number and compare it with the reference design.

 Simulation setup
Energy and performance model

The values used in our experiments regarding the (technology) parameters are summarized

in Table 3. The needed values related to the digital periphery were obtained by using Cadence

Genus targeting the standard cell 90nm UMC library. The values related to the three targeted

technologies (ReRAM, PCM, and STT-MRAM) were taken from [27] [28] [29] [30] [31] [32].

For all the experiments, we assume the size of the crossbar is 256 by 256 and its input

precision. is one bit. The latency of the crossbar is defined from the moment the input voltage

is applied and crossbar rows get accessed until the capacitance of S&H is charged. This time

also depends on the sensing mechanism and ADC circuitry. In addition, the cycles required to

fill the tile registers are computed based on the crossbar size and we assumed the data-buses

to be 32 bits wide. The energy and latency values for the ADCs were taken from [33].

Table 3: Value of parameters used for the experiments

Component Parameters Spec

Memristive
devices

 ReRAM PCM STT-MRAM

Cell levels 2 2 2

LRS 5K 20K 5K

HRS 1M 10M 10k

Read voltage 0.2V 0.2V 0.9V

Write voltage 2V 1V 1.5V

Write current 100 uA 300 uA 200 uA

Read time 10 ns 10 ns 10 ns

Write time 100 ns 100 ns 60 ns

Crossbar

Structure 1T1R

Num. columns 256

Num. rows 256

DIM

 Read DIM Write DIM

number 256 256

power 1 mW 1mW

ADC

power 2.6 mW

Precision 8 bits

Latency 1.2 GSps

Carry-look ahead
Adder

Energy

(per computation)
Latency

8 bits 0.01 pJ 1 ns

16 bits 0.03 pJ 2.2 ns

24 bit 0.08 pJ 3.2 ns

40 bits 0.25 pJ 5.6 ns

72 bits 0.78 pJ 9.8 ns

MNEMOSENE D4.7 – Refined CIM microarchitecture

14

Benchmark

As a benchmark, the linear-algebra kernel “GEMM” from the Polybench/C benchmark suite

was chosen. In this kernel, first, the multiplicands are written into the crossbar (write operation)

and then the actual multiplication (compute operation) is performed. This benchmark was

chosen as it intensively utilizes the memory array given that we want to perform DSE targeting

different technologies for the memory array.

 Simulation result

In this section, we will present several design-space explorations that are currently possible
using our simulator. The insights obtained from these analyses will lead designers to take
better decisions for the actual implementation.
In Figure 5, we plotted the (normalized) execution time of running the GEMM benchmark
targeting three different technologies for the crossbar array, namely PCM, ReRAM, and STT-
MRAM. The simulations were performed assuming a 1 GHz clock frequency for the digital
periphery and an 8-bit ADC resolution. We can clearly observe that the number of ADCs
greatly impacts the execution time. By adding more ADCs, the total execution time can be
reduced as the cycles needed to read out the data from the crossbar array can be reduced.
Although STT-MRAM has faster write time, due to the less number of write operations to
program the crossbar compared to the computational operations, the improvement on the
execution time is negligible. An interesting observation is that the performance does not
improve much when moving from 32 to 64 ADCs. This can be explained by the fact that at
some point, the latency of the read stage is no longer dominant and further reducing the
readout time has little impact on the total execution time. Finally, regardless of the number of
ADCs, the energy consumption is almost constant (small fluctuation due to the data
randomness) since the number of conversions is always fixed.

Figure 5: The impact of number of ADCs on execution
time of GEMM benchmark

0

20

40

60

80

0

0,3

0,6

0,9

1,2

643216842

To
ta

l e
n

er
gy

 (
u

j)

Ex
ec

u
ti

o
n

 t
im

e
 (m

s)

Number of ADCs

Execution time PCM/ReRAM Execution time STT-RAM
Energy (PCM) Energy (ReRAM)
Energy (STT-RAM)

MNEMOSENE D4.7 – Refined CIM microarchitecture

15

Figure 6: Performance improvement due to the unbalanced pipelining of tile used ReRAM/PCM device for
GEMM benchmark

The latency of the operations in the (analog) crossbar array is a constant number. Therefore,
it is interesting to determine how fast the digital periphery should be clocked in order to ‘match’
this latency in order to make the pipeline more balanced. In the following investigation, we
have fixed the number of ADCs to 16 and ran the GEMM benchmark at different frequencies.
Figure 6 clearly shows that performance improvements can be gained by raising the frequency
of the digital periphery. However, increasing the clock frequency beyond 1 GHz does not result
in much better execution times as the analog circuits (relatively) are becoming the bottleneck.
This DSE allows a designer to make the different stages of the tile more balanced. A positive
side-effect is that pipelining more balanced stages will usually lead to better performance
improvements over an non-pipelined design.

Figure 7: Contribution of different components to the energy consumption for GEMM benchmark

Figure 7 depicts the relative energy spent in the different modules when running the GEMM
benchmark for 16 ADCs and using an 8-bit datatype. We can clearly observe that the largest
energy consumer is still the crossbar and its drivers. In the PCM case, the relative energy
consumption of the ADCs and crossbar are close to each other (compared to other
technologies). The reason for this is that the power consumption of PCM is relatively lower

20%

30%

40%

50%

60%

70%

80%

0,01

0,1

1

10

100

400020001000100101

P
er

fo
rm

an
ce

 im
p

ro
ve

m
en

t

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Clock frequency (MHz)

pipelined non-pipelined improvement

0%

20%

40%

60%

80%

100%

crossbar and
drivers

ADCs S&Hs Addition unit

C
o

n
tr

ib
u

ti
o

n
 to

 t
h

e
 t

ile
 e

n
e

rg
y

Tile components

PCM ReRAM STT-RAM

MNEMOSENE D4.7 – Refined CIM microarchitecture

16

compared to the ReRAM technology due to the higher cell resistance (see Table 3). This in
turn increases the relative energy consumption of the ADCs.

Figure 8: Contribution of each pipeline stage on the latency of the tile considering different clock frequencies

Figure 8 depicts the relative time that the GEMM application spends in each of the 4 stages
plotted against the frequency of the digital periphery. We can clearly observe that with a low
frequency, the read and setup stage are completely dominant in the total latency. By
increasing the clock frequency to 10MHz, the latency of the setup and read stages reduces.
Still, their relative contribution remains unchanged. As the clock frequency is increased more,
the latency of the analog components starts to rise (relatively). In addition, the relative
contribution of the read stage to the total latency is almost fixed. Since many columns share
an ADC, the read stage, which is composed of analog (latency of ADC) and digital (decoding
latency) latency, inherently imposes much latency regardless of clock frequency. This
information can be used to determine the number of pipeline stages for the actual
implementation.

Figure 9: Effect of number of ADCs on the latency of pipeline stages in 100 MHz clock frequency

Figure 9 depicts the relative time that the GEMM application spends in each of the 4 stages
plotted against the number of utilized ADCs. It should be clear that increasing number of
ADCs, the number cycles spend in the read out stage is greatly reduced. Consequently, we

0%

20%

40%

60%

80%

400020001000100101

C
o

n
tr

ib
u

ti
o

n
 to

 th
e

la
te

n
cy

Clock frequency (MHz)

setup stage execute stage

read stage addition stage

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64

C
o

n
tr

ib
u

ti
o

n
 to

 t
h

e
la

te
n

cy

Number of ADCs

setup stage execute stage

read stage addition stage

MNEMOSENE D4.7 – Refined CIM microarchitecture

17

can observe that the relative contribution of the setup stage to the total latency grows
accordingly. The contribution of the other stages to the total latency is almost negligible.

Proposed addition scheme

In the following, we will evaluate our proposed addition scheme compared to the reference
design. In the reference design, we assume that a single adder to perform accumulation
between shared columns and different bit positions of the multiplier are connected to each
ADC. The size of the adder is fixed and must be chosen based on the largest possible value
resulting from the MMM - it is specified in Equation 8. This means that the value produced by
the ADC is merely an intermediate result that must be summed up into the accumulator –
remember that only a single bit of the multiplier is multiplied with the multiplicand and each
ADC read-out correspond only to a single bit-position of the multiplicand. Due to the previously
stated manner of summation, the intermediate results must be shifted by the correct number
of positions (based on the bit-positions of the multiplier and the multiplicand) before entering
the adder.

𝐴𝑑𝑑𝑒𝑟 𝑠𝑖𝑧𝑒 =
 𝑖𝑛𝑡 𝑠𝑖𝑧𝑒(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟) + 𝑖𝑛𝑡 𝑠𝑖𝑧𝑒(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑛𝑑) + 𝑙𝑜𝑔2(𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑟 ℎ𝑒𝑖𝑔ℎ𝑡)

(8)

Figure 10: Execution time for different integer datatype sizes

Figure 11: Energy consumption of addition unit for different datatype sizes

0

1

2

3

0

1

2

3

4

8 16 32 im
p

ro
ve

m
en

t
(t

im
es

)

ex
ec

u
ti

o
n

 t
im

e
 (

m
s)

datatype size

proposed reference improvement

0

20

40

60

0

1000

2000

3000

4000

8 16 32 im
p

ro
ve

m
en

t
(t

im
es

)

en
er

gy
 (

n
j)

datatype size

proposed reference improvement

MNEMOSENE D4.7 – Refined CIM microarchitecture

18

Reading data from the crossbar’s columns (read out phase) is inherently slow mainly because
of the shared ADC between multiple columns and can be considered as the bottleneck of the
architecture. However, as the size of adder grows, its latency can be dominant over the latency
imposed by ADC. Considering the proposed design in our experiment, since the crossbar has
256 rows, the maximum size of the first two adders is always 8-bit regardless of datatype size.
Therefore, there is no extra overhead on the latency of read out phase. Rather, in the reference
design and according to the Equation 6, the required size of adder is much larger. Accordingly,
considering a 1 ns latency for the ADC, as the size of adder increased more than 8-bit, it
becomes the bottleneck of the system and makes the read out phase more costly.

Figure 10 depicts the execution time of the kernel (including writing to the crossbar). In this
experiment, we assume that the size of the integer numbers matches the number of columns
shared by one ADC. According to the figure, the size of the first two adders for the proposed
design are always constant (here 8-bit). Rather, as the datatype size increases, a larger adder
has to be employed for the reference design. Considering an 8-bit datatype size in Figure 10,
a 24-bit adder has to be used for the reference design, which imposes a 3 times bigger latency
than an ADC. However, due to the abundance of ADCs, the entire readout phase is not the
bottleneck of the system (see Table 3: Value of parameters used for the experiments for the crossbar

latency). Therefore, there is no performance improvement at this point. Figure 11 shows the
energy improvement achieved by the proposed design. Although the number of computations
is always the same, they are performed with smaller adders, which has a quite good impact
on the energy consumption of the addition unit. Finally, the impact of the number of ADCs on
the execution time and energy of the addition unit using 32-bit datatype size are presented in
Figure 12. As the number of ADCs increases, the performance is improved. In addition,
although more adders are employed, their size is decreased, which leads to less energy
consumption.

Figure 12: Energy consumption of addition unit and execution time of the benchmark for different number of ADCs

0

500

1000

1500

2000

2500

3000

3500

0

1

2

3

4

8 16 32

en
er

gy
 (

n
j)

ex
ec

u
ti

o
n

 t
im

e
 (

m
s)

Number of ADCs

execution (proposed) execution (reference)

energy (proposed) energy (reference)

MNEMOSENE D4.7 – Refined CIM microarchitecture

19

 IMEC nano-simulator for CIM-A/P tiles

 IMEC nano-simulator for CIM-A/P instantiated for STT-
MRAM technology

Making an accurate hardware aware simulator for CIM block is an important goal of

MNEMOSENE. Hardware aware simulator provides valuable insight for architectural

exploration in different abstraction levels. In imec, our focus is close to technology operations.

Therefore, we worked on a nano-simulator which abstracts the functionality of STT-MRAM

memory cells along with its peripherals. Figure 13 illustrates the different hierarchical levels in

the MNEMOSENE architecture template as defined in WP3. It also shows the position of the

imec nano simulator in the global simulation platform. In particular, it directly interfaces with

the micro-architecture simulator which is developed in WP3. The latter abstracts the

functionality up to number of clock cycles required for read and write, total area, total energy

for reads and writes for different memory dimensions. The IMEC nano-simulator provides

these numbers in a parametrized way.

Figure 13: A complete overview of MNEMOSENE simulator platform and position of the imec nano-simulator

The Imec nano simulator mainly wraps the behaviour of the memory cells, sense amplifiers,

address decoder, and row/column driver lines. To illustrate the functionality with a real memory

technology and to provide quantitative numbers for delay, energy and area we have

instantiated it for the realistic STT-MRAM macro which has been developed at IMEC for scaled

technology nodes [refs]. All the important components are parametrized and the delay, energy

and area have been calibrated based on measurement of fabricated test structures.

Our Imec nano-simulator is accurate and at the same time faster than low-level circuit

simulations. Additionally, to be able to provide it to all the other partners, the simulator should

be packed like a black-box to not reveal protected confidential information about the IMEC

MNEMOSENE D4.7 – Refined CIM microarchitecture

20

memory technology. This new simulator is written in python and converted to a secure

executable file to run independently without any third-party tools.

Using this simulator, it is possible to simulate the STT-MRAM cells plus the peripherals to

explore metrics like energy consumption and latency for any application. It is possible to add

other relevant metrics if it is required.

For simulations of the STT-MRAM cells and the sense amplifiers, we extract the data and

equations from the analog simulations which were previously reported in D4.5. Currently,

those data are limited to read/write instructions. We can add energy/latency data for CIM-A

instructions (like in-memory binary operations) when the CIM-A simulation results are

available.

In addition to STT-MRAM cells and sense amplifiers, the imec nano-sim includes a model for

memory peripherals like address decoder and drivers. Specifically, we have modelled a

version of our Address Calculation Accelerator (ACA). This unit performs address processing

inside memory which will be explained in detail in the following sections.

Figure 14 shows the input/output files of the black-box nano-simulator. Table 4 explains the

input/out files.

Table 4: input/outputs files of nano-simulator

Instruction file Input Contains the instruction list (with/without ACA
extension) to the memory

Configuration file Input Contains the configurations of the STT-MRAM
memory, the path to the memory image file, instruction
file, and result file

Memory image file In/Out Stores the content of the memory before, after, and
during the simulation.

Results file Output Contains the detailed results of the simulation,
including energy/power/time consumption of each
element in the simulation

MNEMOSENE D4.7 – Refined CIM microarchitecture

21

Figure 14 Input/Output files of the black-box nano-simulator

Figure 15 shows an example of the configuration file. Here the user should define the

configurations of the STT-MRAM core as well as the locations to load/store other interfacing

files. The initial state of memory affects the switching power/latency. Therefore, it is possible

to always start from a zero state by activating the init_boolian in the configuration file.

Figure 15 An example of the configuration file

Figure 16 template of the instruction file

Figure 16 shows the template of the instruction files with currently supported instructions.

Every instruction comes with a set of operands. For Read instruction, it is only the address.

For write instruction, it is the address and the write data. Nano-sim also supports ACA

instructions for burst read (ACAR) and write (ACAW). We will discuss its operands later in this

document.

We have used some constants parameters in the nano-sim which is defined by the

STT_MRAM technology. Below are those parameters:

#Memory configurations constants (fit for imec STT_MRAM)

G= 16 #bit slice multiplexer factor

MNEMOSENE D4.7 – Refined CIM microarchitecture

22

N= 2 #number of sub-arrays

if(D>64): N=4 #number of sub-arrays

P= 0.75 #duty cycle (pulse high time)

T= 26.71 #clock period in [ns]

#Global constants

Fr = 37.443834e6; #reference clock frequency

Pr = 0.75; #reference clock duty cycle

The energy and access time consumed by each operation should be embedded inside the

simulator by using the provided equations. The following subsections discuss the main

supported operations in nano-sim.

7.1.1. Memory read

Read energy is mostly dominated by the sense amplifiers. Static power consumption during

reading is calculated with Equation 1:

Equation 1

𝑃𝑟𝑠𝑡𝑐 =
𝑃0 × (𝑊 + 𝑊0) × (𝐷 + 𝐷0 × 𝑁) × 𝐹0

(𝐹0 + 𝐹𝑟)

Dynamic read energy consumption per each word is calculated with Equation 2:

Equation 2

𝐸𝑟𝑑𝑦𝑛 =
𝑃0 × (𝑊 + 𝑊0) × (𝐷 + 𝐷0 × 𝑁)

(𝐹0 + 𝐹𝑟)

Read access time is calculated with Equation 3:

Equation 3

𝑇𝑟 = 𝑇𝑎 + 𝑇𝑏 × (𝑊𝑎𝑎)

Where the parameters which are used in these equations are as follow:

Ta = 2.93e-9

Tb = 0.06e-9

aa = 0.83

P0 = 0.526e-6

W0 = 17.00

D0 = 9.741

F0 = 5.78e6

7.1.2. Memory Write

STT_MRAM cells consume energy to change their internal state. Therefore write energy is

expected to be more than read-energy. However, when the writing of data does not include a

change of state (for example writing ‘1’ into a memory cell which is already ‘1’), the power

consumption will be limited to drive the bit-lines.

MNEMOSENE D4.7 – Refined CIM microarchitecture

23

In conclusion, write energy should be calculated differently in these 4 scenarios:

1- Writing ‘1’ in a cell which is already ‘1’ (non-flipping 11)

2- Writing ‘1’ in a cell which is already ‘0’ (flipping 10)

3- Writing ‘0’ in a cell which is already ‘1’ (flipping 01)

4- Writing ‘0’ in a cell which is already ‘0’ (non-flipping 00)

 Static write power in nano-sim is calculated with Equation 4

Equation 4

𝑃𝑤𝑠𝑡𝑐 =
(𝑛01 + 𝑛11) × 𝑃01 × (𝑊 + 𝑊01) × (𝐷 + 𝐷01 × 𝑁) × 𝐹01

(𝐹01 + 𝐹𝑟)

+
(𝑛10 + 𝑛00) × 𝑃00 × (𝑊 + 𝑊01) × (𝐷 + 𝐷01 × 𝑁) × 𝐹01

(𝐹01 + 𝐹𝑟)

Static power is the same for flipping or non-flipping writes. However, static power is only

consumed when the clock signal is high. As the clock duty cycle is a parameter of the memory,

we adjust the static power as shown in Equation 5

Equation 5

𝑃𝑤𝑠𝑡𝑐 ← 𝑃𝑤𝑠𝑡𝑐 ∗ 𝑃/𝑃𝑟

Dynamic energy consumption is calculated with Equation 6:

Equation 6

𝐸𝑤_𝑑𝑦𝑛 =
(𝑛01 + 𝑁𝐹𝐹 × 𝑛11) × 𝑃01 × (𝑊 + 𝑊01) × (𝐷 + 𝐷01 × 𝑁)

(𝐹01 + 𝐹𝑟)

+
(𝑛10 + 𝑁𝐹𝐹 × 𝑛00) × 𝑃01 × (𝑊 + 𝑊01) × (𝐷 + 𝐷01 × 𝑁)

(𝐹01 + 𝐹𝑟)

The write time changes based on the value which is written in the cell.

Equation 7

𝑇𝑤1 = (𝑇𝑎1 + 𝑇𝑏1 × (𝑊𝑎𝑎1))

Equation 8

𝑇𝑤0 = (𝑇𝑎0 + 𝑇𝑏0 × (𝑊𝑎𝑎1))

Equation 7 calculates the write time when writing ‘1’ into the cell while Equation 8 calculates

the write time for writing ‘0’. As the write instruction is a word-level instruction, the word write

time is defined by the maximum write time of all the cells.

Followings are the parameters used in these equations:

#For anti-parallel to parallel switch (1 -> 0)

Ta_0 = 3.76e-9

Tb_0 = 0.0016e-9

aa_0 = 1.76

P0_0 = 1.259e-6

W0_0 = 66.44

D0_0 = 1.729

MNEMOSENE D4.7 – Refined CIM microarchitecture

24

F0_0 = 197e6
#For parallel to anti-parallel switch (0 -> 1)

Ta_1 = 5.59e-9

Tb_1 = 4.08e-9

aa_1 = 0.0

P0_1 = 1.628e-6

W0_1 = 45.94

D0_1 = 2.001

F0_1 = 99e6
#General parameters

NFF = 0.5 #non-flipping factor
n_00=0.0 #number of bit writes from 0 to 0
n_01=0.0 #number of bit writes from 0 to 1
n_10=0.0 #number of bit writes from 1 to 0
n_11=0.0 #number of bit writes from 1 to 1

Total energy consumption is calculated by the summation of dynamic energy with static energy

(static power multiply by run time).

Whenever a memory write happens, nano-sim updates the memory image file. Therefore we

keep track of all the changes during simulation. Memory image file is a CSV file where every

line of it contains the data for every row of the physical memory.

7.1.3. BUS energy

Even though energy consumption over the memory bus is not part of the nano-sim scope as

shown in Error! Reference source not found., we have added the option to include the BUS

energy in the results. This is because we wanted to show how much our address calculation

accelerator improves energy efficiency. Using the experimental results in [34], we concluded

that in 65nm technology with 150MHz clock frequency, every bit-transfer in the TCDM BUS

consumes around 0.18pJ. This number is used in our simulations.

7.1.4. CIM-P Address Calculation Accelerator

ACA is an additional unit that can be used instead of a conventional address decoder. The

idea is rather than calculating the access word address in the processor and sending a series

of addresses to the memory, this process happens inside the memory. In section 7.2 we

explained ACA in more detail.

ACA is a fully digital circuit and mainly made of a control unit (state machine) and two shift

registers, one with the size of the number of rows (R) and another one with the size of the

number of columns (C), as illustrated in Figure 17. To include the ACA in our nano-sim, we

measured the power consumption of the logic block with digital circuit simulations.

MNEMOSENE D4.7 – Refined CIM microarchitecture

25

Figure 17 ACA circuit block diagram and position in the full memory macro

As the dominant source of power consumption is the shift registers, we used Error! Reference

source not found., Equation 10, and Equation 11 to calculate the static power, energy to load

the registers, and energy to shift the registers.

Equation 9 Static power

𝑃𝑠𝑡𝑐 = 2.0 × 10−9 × (𝑅 + 𝐶)

Equation 10 Load Energy

𝐸𝑙𝑑 = 2.0 × 10−15 × ((𝑅 × 𝐿𝑑_𝑅) + (𝐶 × 𝐿𝑑_𝐶))

Equation 11 Shift energy

𝐸𝑠ℎ𝑡 = 3.0 × 10−15 × ((𝑅 × 𝑆ℎ_𝑅) + (𝐶 × 𝑆ℎ_𝐶))

Where Ld_R and Ld_C are active for every register load instruction and Sh_R and Sh_C are

active for every register shift instruction. It worth mentioning that only the 𝐸𝑠ℎ𝑡 is dedicated for

ACA while 𝑃𝑠𝑡𝑐 and 𝐸𝑙𝑑 is also consumed when a normal address decoder is in place.

Figure 18 shows an example of the output file from the nano-sim. It includes relevant

information like the energy and access time of each component.

Figure 18 An example of the result file (down)

MNEMOSENE D4.7 – Refined CIM microarchitecture

26

7.1.5. CIM-A Accelerators

It is possible to include the information about the CIM-A operations into the nano-sim. In that

case, the read and write of the data has to be replaced by a modified read and write where

also logic or arithmetic operations are incorporated. For our nano-simulator, this simply means

including a wider set of memory operations in the list, and to add the corresponding delay,

area and energy results on top of already available read and write operations.

Due to time limitations, we have not yet performed this integration in the MNEMOSENE scope

so we cannot show quantitative results at this stage.

 Optimized CIMP-tile for address calculation

One of the main goals in Mnemosyne is to reduce the data transfer between the memory and

the processor cores. An important part of transferred information is the memory word address

which the processor wants to access. Normally each packet of data that moves between a

processor and a memory in a general processor SoC (Figure 19) contains 3 important parts:

Instruction Target word address Operands

For example, in a conventional system to write in a line of memory, we provide the target word

address to be written. Then instruction is the “write instruction” and the operand is the “write

data”. When performing an in-memory process, it is possible to give higher-level instructions

to the memory block. For example, an instruction can include a binary AND between the

Operand and the content of the target word address.

Figure 19 A general processing SoC

The overhead of the “target address word” in every transaction can be considerable (especially

for low word resolutions which is a new fashion in edge applications). Address bits scale up

with the number of words in the memory and adds considerable overhead to each memory

transaction. For example, to access an 8-bit word in a relatively small 1MB memory, it is

required to transmit an address with 20 bits.

For the important domain of streaming applications, it is always required to access regular or

semi-regular repetitive accesses to one- or more-dimensional arrays and other composite data

types. This will be translated at the memory hardware-level into a stream of consecutive

addresses in the memory (which is called burst access for the full regular situation). In this

case, it is much more efficient to just send the first address and the number of accesses in the

burst and to calculate the explicit address locally in the memory. This optimization can easily

make the processor-memory communication in terms of address and control commands

negligible, with savings up to a factor 100 (as we will show in the results). But it requires a

disruptive hardware modification in the periphery of the memory macro. The basic hardware

concepts have been reported in the earlier deliverable D4.4.

MNEMOSENE D4.7 – Refined CIM microarchitecture

27

To generalize this concept, an application may require a semi-regular access pattern to the

memory which is not necessarily consecutive burst access. For example, as it is illustrated in

Figure 20, applying a 3x3 kernel on a 2D image which is mapped linearly in the memory

requires reading 3 separated sections of the memory. This is not fully regular any longer

because especially at the image boundaries the repetition is disturbed. Moreover, in many

streaming applications, the neighbourhood to be extracted from the full image (or array in

general) is not fully dense and holes are present in the pattern. We also want to support such

semi-regular but still repetitive patterns.

As described in detail in previous deliverables (D4.4 and D4.6), we have come up with an

optimized circuit scheme (an imec IP) to reduce the number of transactions required for

address transfer by the implementation of a hardware-accelerated logic block to generate a

complex pattern of addresses locally inside the memory. Besides, we have started with the

implementation of a modelling and simulation framework to support such CIM-P modifications

at the nano-simulation level.

Figure 20 Access memory pattern for a 2D convolution. Apply a 2D kernel in a 2D image (Left). Equivalent
access pattern for 1D mapping in the memory (right)

Our Address Calculation Accelerator (ACA) contains two shift registers (row and column

registers) and control logic as it is shown in Figure 21. The control logic block (FSM)

understands the packed ACA instructions and unpacks them. ACA can generate sequences

both in rows and columns when multiple words are stored in one row. Additionally, it is possible

to select only part of a word (like masking) when required as shown in Figure 22.

MNEMOSENE D4.7 – Refined CIM microarchitecture

28

Figure 21 Address Calculation Accelerator block

To use ACA, the processor should pack several memory access patterns in a form of an ACA

instruction. We assume this is happening offline during compile time. In this case, the compiler

is aware of ACA instructions. Therefore there is no run-time process required to pack the

memory accesses.

When using ACA, many small transactions can be packed in the following format:

Instruction ACA Operands Operands

ACA operands are used by the ACA unit to unpack the sequence of addresses. This means

the instructions compiled in the processor should be packed using an ACA aware compiler.

The following table lists the operands that are used for ACA:

row_start(s) The start position(s) of the row

row_inc The amount of increment on the row in every step

row_cycles The number of shift cycles for the row shift-register

col_start(s) The start position(s) of the column

col_inc The amount of increment on the column in every step

col_cycles The number of shift cycles for the column shift-register

ins_repeat The number of reaping this instruction

4 3 2 1

Figure 22 Partial selection of a row/colunm in ACA

MNEMOSENE D4.7 – Refined CIM microarchitecture

29

In the current implementation, we have a single start position for row and column. When

selecting several row/columns, it is required to have several row_start / col_start operands. It

is also important that the memory core can accept such a configuration. For example, to

perform in-memory binary operations between two rows of the memory, we should have two

row_start active bits.

We are aware that a single cycle shift registers can be expensive to implement for a larger

scale. Therefore, it is possible to restrict the row_inc/col_inc numbers to simplify the hardware.

Additionally, As the speed of digital peripheral normally is faster than the memory access time,

it is possible to perform the shift operation in several digital clock cycles. For example, if the

digital clock frequency is 1GHz and memory access time is 10ns, shifting the active bit in the

shift register can take 10 clock cycles before the memory is ready for the next access.

 CIM-P ACA compiler

When using memory with in-memory process capability (for example in a platform same as

Figure 13), the processor can outsource some part of the computation to the CIM block. In

this case, the CIM block accepts higher-level instructions. To perform this kind of computation

and processor-CIM communication, the program compiler of the processor needs to be aware

of the CIM features.

As we introduced the ACA logic block in the CIM, we also needed to compile the application

with an ACA aware compiler. Rather than modifying the existing compilers, we have made a

separate ACA compiler that operates after a conventional compiler. The responsibility of the

ACA compiler is to detect the access patterns to the memory and packed them by using the

ACA instructions. The current version of the ACA compiler is performing a simple search.

Therefore, it may be slow for big applications and it may miss some of the more complex

patterns. Further optimization of this compiler should be done in future work.

Figure 23 The flow of using ACA compiler and black-box nano-simulator

MNEMOSENE D4.7 – Refined CIM microarchitecture

30

Figure 24 A simple example of input and outputs of the ACA compiler

Figure 23 shows the flow of using the ACA compiler and the nano-sim. ACA compiler

compresses the instructions which require memory access with a specific pattern. Figure 24

shows an example of the input and output of the ACA compiler. In this example, we only use

read/write instructions but ACA is not limited to these instructions. ACA compiler only searches

for memory access patterns and does not interfere with the instruction which is supposed to

be executed inside the memory.

 Results from application case studies for CIM-P

In this section, we show some of the results of our experiments by using our IMEC black-box

nano-simulator instantiated for the ACA compiler.

7.4.1. Synthetic application case

As the first experiment, we tried to integrate this nano simulator with the TUe micro-simulator

for a very small synthetic application. Following is the result.

7.4.2. Basic implementation of guided filter application

To obtain a realistic and representative case study from the streaming data and signal

processing domain, we have collaborated with the IPI group of Prof. Wilfried Philips and Prof.

Integration with TUe simulator:

STT_MRAM

• Total energy = 181 nJ
• Total time = 45 µS

ACA

• ACA energy = 1.01 nJ
• Instructions compression ratio over the BUS = 518X

MNEMOSENE D4.7 – Refined CIM microarchitecture

31

Bart Goossens at UGent & IMEC, Belgium. They work on advanced image processing

algorithms and together we have chosen a representative image processing technique called

“guided image filtering” [35]. This application uses two images as input and guide and performs

repetitive operations on the input image using the guided filter as shown in Figure 25. In our

case, the sizes of the input image, guided filter, and output are the same.

Figure 25 Guided image filtering application [36]

This application follows the pipeline shown in Figure 26 to process an input image.

Figure 26 The pipeline of the guided image filtering application. JBF stands for “Joint Box Filter”

As mentioned before, ACA can reduce the number of individual transactions over the BUS by

packing/unpacking the addresses. In these experiments, we measured the number of

individual transactions before and after using ACA compression. Please note that we only

compress the address/instruction fields and operands are required to be transferred in the

packet without any compression. Additionally, we run the experiments for different input sizes,

as it affects the compression ratio.

Table 5 shows the results of using the nano-simulator with ACA compression for different

image sizes in the guided filter application. Also, note that the simulation results also depend

on the initial memory state (for example input image in this case) as the energy/time

consumption is different when switching from ‘1’ to ‘0’ and from ‘0’ to ‘1’ in an STT-MRAM

memory cell.

MNEMOSENE D4.7 – Refined CIM microarchitecture

32

Table 5 Results of implementation of guided image filtering in nano-sim

Image size: 𝟑𝟐 × 𝟑𝟐

Kernel
The normal
number of

access

Compresses
number of access

(ACA)

Compression
Ratio

STT-
MRAM
Energy

(nJ)

ACA
Energy

(nJ)

Total
time
(µs)

Input 33793 5953 18% 496 12 109

Guide 36865 5954 16% 289 13 118

Tmp0
(Hor0)

147457 5954
4.0%

2456 176 551

Tmp1
(Ver0)

73729 5954
8.0%

1228 46 275

Tmp2
(Hor1)

73729 5954
8.0%

1224 46 275

Output
(Ver1)

3073 1
0.03%

118 1 30

Total 368646 29770 8% 5811 294 1358

Image size: 𝟐𝟓𝟔 × 𝟐𝟓𝟔

Kernel
The normal
number of

access

Compresses
number of access

(ACA)

Compression
Ratio

STT-
MRAM
Energy

(nJ)

ACA
Energy

(nJ)

Total
time
(µs)

Input 2162689 219649 10% 31738 5615 6910

Guide 2359297 219650 10% 18482 6069 7539

Tmp0
(Hor0)

9437185 219650
2.3%

157170 88838 35248

Tmp1
(Ver0)

4818593 219650
4.5%

78584 22762 17624

Tmp2
(Hor1)

4718593 219650
4.6%

78586 22751 17724

Output
(Ver1)

196609 1
0%

7553 456 1901

Total 23692966 1098250 4.6% 372113 146491 86946

When we scale up the memory sizes, the compression ratio increases. However, as can be

seen, the ACA energy also increases. It is because we have implemented a fully flexible single

cycle shift-registers. Therefore, the hardware complexity increases when we increase the size

of the shift registers due to the intensive amount of wiring (any D-FF should connect to all the

others). As it is mentioned before, it is possible to limit the shift amount in hardware or use

multiple cycles to shift. This way the ACA circuit will be more scalable.

7.4.3. Software pipelining of guided filter application

In the previous execution method, we process each kernel sequentially. However, as it is clear

from Figure 26, it is possible to execute them in parallel by exploiting a software pipelining

MNEMOSENE D4.7 – Refined CIM microarchitecture

33

concept. As all the kernels execute similarly with the unique access pattern to the memory, in

the parallel execution, we can use a longer word line in the memory to feed all the processes

in parallel. The outcome is shown in Figure 27.

Figure 27 Parallel read/write from a wide memory in guided image filtering

In the software-pipelining format, one long word of the memory is read, processed, and write

back to the memory. In this way, we save even more in address transactions. Processing one

long word can take one or several cycles, dependent on the target compute architecture. In

this case, ACA only needs to generate one address per line which results in a reduced cycle

count and hence a higher performance and also energy efficiency for the address generation

and the address and data communication network. However, the energy consumption for the

memory access itself and the arithmetic instructions on the processor cores mainly remains

the same. So the biggest gains are expected on the overall throughput and latency combined

with a medium gain on the total energy consumption.

Table 6 results of guided image filtering when using software pipelining

Image size The normal number
of access

Compresses number of
access (ACA)

Compression
Ratio

32x32 368646 5958 1.6%

256x256 23692966 219654 0.92%

A more conventional computing architecture like a GPU can easily exploit software pipelining

due to a high level of parallelism with SIMD (Single Instruction Multiple Data) structures.

However, irregular memory access (same as most advanced image and video processing

kernels), will cause inefficiency in SIMD processing and reduces the processor utilization. This

problem can be solved by using an ACA like address decoding scheme.

Table 6 shows the compression ratio when using ACA. We will focus on the 256x256 image

size to analyse this in more detail. Our parallel software pipelining based mapping can

increase address instruction count by a factor of 5 when compared to the mapping from the

more conventional loop kernel CUDA code which was discussed in Table 2 in subsection 4.2.

MNEMOSENE D4.7 – Refined CIM microarchitecture

34

Note though that this heavily optimized software pipeline version is not feasible for GPU

architectures as they are proposed today. Our colleagues from UGent have confirmed this.

On top of this, even the compression of 22x for the CUDA code mapping in Table 2, is not

directly reachable with any commercial GPU mapping, even for the most parallel GPU engines

of today. Hence, we expect that compared to state-of-the-art GPUs, the guided filtering

application can have at least 10x less address instructions. This compression will hence

increase performance significantly. It also saves address instruction execution and address

bus communication energy but we do not have a detailed model yet of the entire

microarchitecture to allow us to accurately calculate that energy saving.

 Conclusion

In conclusion, Nano-sim will make it feasible to run fast experiments with imec STT_MRAM

technology. Even though the current release only supports memory read/write and ACA

instructions, we can flexibly add further instructions to the CIM-A or CIM-P tile in the future.

This platform can be useful for both internal use in imec and its partners, and for external use

at the MNEMOSENE partners.

Evolving the new architectures by using compute in memory is a breakthrough in computer

architecture. As most of the energy in STOA computer systems is consumed by data

movement, compute in memory reduces total energy for a given performance target. It allows

us to bring compute and memory close to each other and perform highly parallel computing.

Besides, using NVM memory technologies reduces the power leakage of the system,

especially when the SoC is memory dominant.

The main challenge in the CIM-A type compute-in-memory is the application level gain which

is not yet sufficient compare to conventional technologies. One problem with using NVM is

high energy consumption during write operations. This feature makes the technology

infeasible for the write dominant applications. Many of the CIM-A instructions and architectures

are built around NVM technologies. Therefore, for write-dominant applications, the in-memory

process may not bring reasonable performance gain. However, processing in peripherals or

near memory processing can be applied also to such memory technologies and then the

context changes.

Another problem of CIM-A is the nature of analog signals. As the operations are done in the

analog domain, it is prone to noise and variations. In this case, the application should be robust

against these variations and it will be difficult to acquire standards for use in critical

applications like health-care. This problem is more intense when using multi-level cells.

In future work, we should focus on the detailed micro-architecture level of CIMA and CIMP

with realistic T/E models as well as the more application demonstrators. In this way, in imec,

we are going to explore different microarchitecture-circuit-technology choices (STCO),

including promising emerging memory options (especially MRAM and IGZO-DRAM) and

global design PPAC trade-off exploration space.

MNEMOSENE D4.7 – Refined CIM microarchitecture

35

8 Reflection and outlook beyond the project

In this report, our CIM tile architecture as well as the nano-instructions were presented. It

should be noted that their definition is strongly influenced by the need to develop a simulator

that allows for quick design space exploration between different memristor technologies

investigated in the MNEMOSENE project. Furthermore, a simulator is more suited to be

integrated with other simulators used/adapted/developed in other work packages. Our

research performed and outlined in this deliverable is merely the starting point of more

research and development in order to bring memristors to the market. Already at this moment,

we are looking for future project (beyond MNEMOSENE) that will further improve and extend

our work in MNEMOSENE. There are already several potential research directions and

development tracks that we have identified and will pursue with the MNEMOSENE partners

even after the end of this project. Examples are: multi-tile communications and prototyping of

spiking neural networks using memristors.

MNEMOSENE D4.7 – Refined CIM microarchitecture

36

References

[1] S. Yu and C. Pai-Yu, “Emerging memory technologies: Recent trends and prospects,”

IEEE Solid-State Circuits Magazine, pp. 43-56, 2016.

[2] H. Jiang, C. Li, P. Lin, S. Pi, J. J. Yang and Q. Xia, “Scalable 3D Ta: SiOx Memristive

Devices,” Advanced Electronic Materials, p. 1800958, 2019.

[3] A. Hardtdegen, C. La Torre, F. C{\"u}ppers, S. Menzel, R. Waser and S. Hoffmann-

Eifert, “Improved switching stability and the effect of an internal series resistor in HfO

2/TiO x Bilayer ReRAM cells,” IEEE Transactions on Electron Devices, vol. 65, pp.

3229--3236, 2018.

[4] G. W. Burr, M. J. Brightsky, A. Sebastian, H.-Y. Cheng, J.-Y. Wu, S. Kim, N. E. Sosa,

N. Papandreou, H.-L. Lung, H. Pozidis and others, “Recent progress in phase-change

memory technology,” IEEE Journal on Emerging and Selected Topics in Circuits and

Systems, vol. 6, pp. 146--162, 2016.

[5] S. Rashidi, M. Jalili and H. Sarbazi-Azad, “A survey on pcm lifetime enhancement

schemes,” ACM Computing Surveys (CSUR), vol. 52, pp. 1--38, 2019.

[6] G. Snider, “Computing with hysteretic resistor crossbars,” Applied Physics A, vol. 80,

pp. 1165--1172, 2005.

[7] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart and R. S. Williams,

“‘Memristive’switches enable ‘stateful’logic operations via material implication,” Nature,

vol. 464, pp. 873--876, 2010.

[8] H. Mahmoudi, T. Windbacher, V. Sverdlov and S. Selberherr, “Implication logic gates

using spin-transfer-torque-operated magnetic tunnel junctions for intrinsic logic-in-

memory,” Solid-State Electronics, vol. 84, pp. 191--197, 2013.

[9] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny

and U. C. Weiser, “MAGIC—Memristor-aided logic,” IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 61, pp. 895--899, 2014.

[10] L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui and K. Bertels, “Fast boolean logic

mapped on memristor crossbar,” in 2015 33rd IEEE International Conference on

Computer Design (ICCD), IEEE, 2015, pp. 335--342.

[11] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu and Y. Xie, “Pinatubo: A processing-in-memory

architecture for bulk bitwise operations in emerging non-volatile memories,” in

Proceedings of the 53rd Annual Design Automation Conference, 2016.

[12] M. Imani, Y. Kim and T. Rosing, “Mpim: Multi-purpose in-memory processing using

configurable resistive memory,” in 2017 22nd Asia and South Pacific Design

Automation Conference (ASP-DAC), 2017.

MNEMOSENE D4.7 – Refined CIM microarchitecture

37

[13] C. Liu, B. Yan, C. Yang, L. Song, Z. Li, B. Liu, Y. Chen, H. Li, Q. Wu and H. Jiang, “A

spiking neuromorphic design with resistive crossbar,” in 2015 52nd ACM/EDAC/IEEE

Design Automation Conference (DAC), 2015.

[14] S. Hamdioui, L. Xie, H. A. Du Nguyen, M. Taouil, K. Bertels, H. Corporaal, H. Jiao, F.

Catthoor, D. Wouters, L. Eike and others, “Memristor based computation-in-memory

architecture for data-intensive applications,” in 2015 Design, Automation \& Test in

Europe Conference \& Exhibition (DATE), 2015.

[15] T. Tang, L. Xia, B. Li, Y. Wang and H. Yang, “Binary convolutional neural network on

RRAM,” in 2017 22nd Asia and South Pacific Design Automation Conference (ASP-

DAC), 2017.

[16] P. Yao, H. Wu, B. Gao, S. B. Eryilmaz, X. Huang, W. Zhang, Q. Zhang, N. Deng, L.

Shi, H.-S. P. Wong and others, “Face classification using electronic synapses,” Nature

communications, vol. 8, pp. 1--8, 2017.

[17] Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya, Y. Li, M. Rao, P. Yan, S. Asapu, Y.

Zhuo and others, “Fully memristive neural networks for pattern classification with

unsupervised learning,” Nature Electronics, vol. 1, pp. 137--145, 2018.

[18] Z. Wang, C. Li, P. Lin, M. Rao, Y. Nie, W. Song, Q. Qiu, Y. Li, P. Yan, J. P. Strachan

and others, “In situ training of feed-forward and recurrent convolutional memristor

networks,” Nature Machine Intelligence, vol. 1, pp. 434--442, 2019.

[19] F. a. C. J. M. Cai, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn and W. D. Lu, “A

fully integrated reprogrammable memristor--CMOS system for efficient multiply--

accumulate operations,” Nature Electronics, vol. 2, pp. 290--299, 2019.

[20] A. Siemon, S. Ferch, A. Heittmann, R. Waser, D. Wouters and S. Menzel, “Analyses of

a 1-layer neuromorphic network using memristive devices with non-continuous

resistance levels,” APL Materials, vol. 7, p. 091110, 2019.

[21] L. Xie, H. A. Du Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. AlFailakawi and S.

Hamdioui, “Scouting logic: A novel memristor-based logic design for resistive

computing,” in 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),

2017.

[22] A. a. D. R. Siemon, M. Schultis, X. a. L. E. Hu, A. Heittmann, R. Waser, D. Querlioz, S.

Menzel and J. Friedman, “Stateful Three-Input Logic with Memristive Switches,”

Scientific reports, vol. 9, pp. 1--13, 2019.

[23] A. Siemon, D. Wouters, S. Hamdioui and S. Menzel, “Memristive Device Modeling and

Circuit Design Exploration for Computation-in-Memory,” in 2019 IEEE International

Symposium on Circuits and Systems (ISCAS), 2019.

[24] A. Siemon, S. Menzel, D. Bhattacharjee, R. Waser, A. Chattopadhyay and E. Linn,

“Sklansky tree adder realization in 1S1R resistive switching memory architecture,” The

European Physical Journal Special Topics, vol. 228, pp. 2269--2285, 2019.

MNEMOSENE D4.7 – Refined CIM microarchitecture

38

[25] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh and E. Eleftheriou, “Memory devices

and applications for in-memory computing,” Nature Nanotechnology, pp. 1--16, 2020.

[26] H. A. D. Nguyen, J. Yu, M. A. Lebdeh, M. Taouil, S. Hamdioui and F. Catthoor, “A

classification of memory-centric computing,” ACM Journal on Emerging Technologies

in Computing Systems (JETC), vol. 16, pp. 1--26, 2020.

[27] K. a. A. N. a. H.-E. S. Fleck, V. Longo, F. Roozeboom, W. Kessels, U. B{\"o}ttger, R.

Waser and S. Menzel, “The influence of non-stoichiometry on the switching kinetics of

strontium-titanate ReRAM devices,” Journal of Applied Physics, vol. 244502, p. 120,

2016.

[28] K. Fleck, U. B{\"o}ttger, R. Waser, N. Aslam, S. Hoffmann-Eifert and S. Menzel,

“Energy dissipation during pulsed switching of strontium-titanate based resistive

switching memory devices,” in 2016 46th European Solid-State Device Research

Conference (ESSDERC), 2016.

[29] M. Le Gallo, A. Sebastian, G. Cherubini, H. Giefers and E. Eleftheriou, “Compressed

sensing with approximate message passing using in-memory computing,” IEEE

Transactions on Electron Devices, vol. 65, pp. 4304--4312, 2018.

[30] S. Nandakumar, M. L. Gallo, C. Piveteau, V. Joshi, G. Mariani, I. Boybat, G.

Karunaratne, R. Khaddam-Aljameh, U. Egger, A. Petropoulos and others, “Mixed-

precision deep learning based on computational memory,” arXiv preprint

arXiv:2001.11773, 2020.

[31] W. Gallagher, E. Chien, T.-W. Chiang, J.-C. Huang, M.-C. Shih, C. Wang, C.-H. Weng,

S. Chen, C. Bair, G. Lee and others, “22nm STT-MRAM for Reflow and Automotive

Uses with High Yield, Reliability, and Magnetic Immunity and with Performance and

Shielding Options,” in 2019 IEEE International Electron Devices Meeting (IEDM), 2019.

[32] L. Wu, S. Rao, G. C. Medeiros, M. Taouil, E. J. Marinissen, F. Yasin, S. Couet, S.

Hamdioui and G. S. Kar, “Pinhole defect characterization and fault modeling for STT-

MRAM testing,” in 2019 IEEE European Test Symposium (ETS), 2019.

[33] L. Kull, T. Toifl, M. Schmatz, P. A. a. M. C. Francese, M. Braendli, M. Kossel, T. Morf,

T. M. Andersen and Y. Leblebici, “A 3.1 mW 8b 1.2 GS/s single-channel asynchronous

SAR ADC with alternate comparators for enhanced speed in 32 nm digital SOI CMOS,”

IEEE Journal of Solid-State Circuits, vol. 48, pp. 3049--3058, 2013.

[34] I. L. M. R. K. a. L. B. A. Rahimi, “A fully-synthesizable single-cycle interconnection

network for Shared-L1 processor clusters,” in Design, Automation & Test in Europe,

2011.

[35] C. L. P. L. S. P. J. J. Y. a. Q. X. H. Jiang, “Scalable 3D Ta: SiOx Memristive Devices,”

Advanced Electronic Materials, 2019.

[36] J. S. a. X. T. K. He, “Guided Image Filtering,” IEEE Transactions on Pattern Analysis &

Machine Intelligence, 2013.

MNEMOSENE D4.7 – Refined CIM microarchitecture

39

[37] I. L. M. R. K. a. L. B. A. Rahimi, “A fully-synthesizable single-cycle interconnection

network for shared-L1 processor clusters,” in Design, Automation and Test in Europe,

2011.

