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• Objective 1: Develop new algorithmic solutions for targeted applications for CIM architecture. 

• Objective 2: Develop and design new mapping methods integrated in a framework for efficient 
compilation of the new algorithms into CIM macro-level operations; each of these is mapped 
to a group of CIM tiles. 

• Objective 3: Develop a macro-architecture based on the integration of group of CIM tiles, 
including the overall scheduling of the macro-level operation, data accesses, inter-tile 
communication, the partitioning of the crossbar, etc. 

• Objective 4: Develop and demonstrate the micro-architecture level of CIM tiles and their 
models, including primitive logic and arithmetic operators, the mapping of such operators on 
the crossbar, different circuit choices and the associated design trade-offs, etc. 

• Objective 5: Design a simulator (based on calibrated models of memristor devices & building 
blocks) and FPGA emulator for the new architecture (CIM device combined with conventional 
CPU) in order demonstrate its superiority. Demonstrate the concept of CIM by performing 
measurements on fabricated crossbar mounted on a PCB board. 

A demonstrator will be produced and tested to show that the storage and processing can be integrated 
in the same physical location to improve energy efficiency and also to show that the proposed 
accelerator is able to achieve the following measurable targets (as compared with a general purpose 
multi-core platform) for the considered applications: 

• Improve the energy-delay product by factor of 100X to 1000X 

• Improve the computational efficiency (#operations / total-energy) by factor of 10X to 100X 

• Improve the performance density (# operations per area) by factor of 10X to 100X 
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1. Introduction  

Emerging computation-in-memory (CIM) architectures using memristor-based technologies are 

promising as they can enhance the computation efficiency, solve the data transfer bottleneck and at 

the same time deliver high energy efficiency using the normally-off/instant-on properties of their 

devices. In a CIM architecture, computational tasks are performed within the memory itself by 

exploiting arrays of devices to perform multiply-and-accumulate (MAC) operations on a physical 

level, which provide a computational platform for many outstanding applications such as pattern 

matching, voice recognition, classification, image processing, etc. Besides MAC operations, the CIM 

architecture also allows for logic computations, e.g. using the Scouting Logic principle. 

The storage unit in a CIM architecture is a highly compact crossbar structure built using non-volatile, 

scalable, and CMOS-compatible memristor devices, such as Resistive Random-Access Memories 

(RRAM), Phase-Change Memory (PCM) or Magnetoresistive Random Access Memory (MRAM). 

Data in these memristive devices is stored as resistance states, which places the data access in the 

analog domain, whereas the surrounding data communication remains digital. 

Hence, the overall computing efficiency of CIM systems depends not only on proficiency in analog 

computation but also on the performance of the conversions between analog and digital data 

streams. Where conventional architectures suffer from the memory to processor bottleneck, CIM 

using memristive devices has to deal with a conversion bottleneck. Analog/digital converters (ADC’s 

and DAC’S) have been identified as an essential block in the CIM computing system that governs 

and thereby limits the speed, power/energy, and accuracy of the CIM operations. Further, on the 

CIM tile level, additional peripheral circuits and control logic has to be considered. 

This deliverable has different sections dealing with these different CIM aspects: 

Section 2 investigates, on the lowest hardware level, the impact of the memristor array architecture 

and ADC design choices on the performance of MAC operations for ReRAM based memsristor 

devices. As for the array architecture, standard 1T1R, vertical 1T1R and pseudo-crossbar 1T1R 

designs are compared, and the influence of array parasitics (R,C) investigated. 2 different ADC 

designs (delay-based and ring-oscillator based) are proposed. 

Section 3 reports on the optimization of a CIM tile, based on an STT-RAM memristor array, for 

performing binary logic operations. Results are presented here on the level of the CIM core, 

consisting of STT-MRAM crossbar array and Periphery: control logic, row/column decoders and 

drivers, sense amplifiers (SA), registers, flip-flops etc.  

Section 4 reports on the optimization of a CIM tile, based on an STT-RAM memristor array, for 

performing Matrix-Matrix Multiplication (MMM), or Vector Matrix Multiplication (VMM) operations. 

While Section 2 reports on the basic MAC operation, for MMM operations, besides the array and 

ADC, additional periphery is required as row-decoder DACs, post-processing circuits, and a control 

block 

Finally, where both Section 2 and 4 use binary weights stored in binary memristors, Section 5 

describes an approach to store multiple bits of an integer number into the memristor array and 

perform the additional steps necessary for an integer MMM operation. The addition operations will 

be partially performed in the analog array and partially in the digital periphery.The proposed design 

utilizes minimum-sized adders and is customizable to support varying numbers of ADCs. 



MNEMOSENE      D4.5 Refined memristor crossbar based logic and memory design and models 

5 
 

2. Simulation of performance metrics (Energy & Speed) for MAC 
operation in ReRAM based arrays (white box model) 

2.1 Read-out structure 

To perform a MAC operation with two operands (matrices), the first matrix is applied to the crossbar 

as voltage signals via Digital-to-Analog (DAC) interfaces, and the second matrix is stored in the 

crossbar as the resistance or conductance of the resistive memories. Based on Ohm’s Law, the 

current passing through each resistive memory is the multiplication of the input voltage and the 

conductance of the resistive memory, and based on the Kirchhoff’s Current Law, the current passing 

through the Bitline is the summation of these multiplications.   

The current passing through the Bitline is an analog signal and contains the information of the 

multiplication and accumulation. To enter the digital domain, it needs to be converted by an ADC. 

This ADC is one of the major bottlenecks of this method for the acceleration of Matrix-Matrix-

Multiplications (MMM) acceleration [1] which are build up from many MAC operations. There are two 

general ideas for the ADC: 

1. Using a fast, high resolution, high power consumption and large ADC: Although such an ADC 

can produce the complete output for one column in each activation cycle, it must be shared 

between multiple bit-lines [2, 3, 4], this time-multiplexing scheme results in an increased 

latency. It is worth mentioning here, that the number of Bitlines, which an ADC shares also 

depends on the area and power constraints of the whole system. Also, by leveraging “analog 

buffers”, the number of the ADCs can be decreased [1, 2].  

2. Using a slow, low resolution, low power consumption and small ADC: With such an ADC, 

having one ADC per bit-line is possible, [5] and [6] are using this approach consisting of a 

“Sense Amplifier” and “Integrate and Fire” circuit. Both interfaces can produce 1 bit per 

activation cycle, i.e. for generating n-bit output, they need 2n comparison cycles, which still 

results in a long latency.  

At TU Delft, we developed two compact and power-efficient ADC designs that have the 

possibility of being integrated per Bitline.  

In this work, 2 different ADC’s designs are proposed and studied 

2.1.1 Delay-based ADC 

In the initial phase, we propose a delay-based ADC. Figure 1. shows the schematic of the ADC.  

 

Figure 1. The schematic of the proposed delay-based ADC. 

The ADC must differentiate different equivalent resistances (Req) resulting from different 

combinations of Low Resistive States (LRS) and High Resistive States (HRS) which are selected in 

a column of the 1T1R crossbar. The underlining idea is the time it takes to charge the capacitor C 

depends on Req (it is equal to Req * C). By supplying a row voltage (Vread) to the crossbar, a column 

current starts to charge C from 0 V to Vread. The voltage over C is passed through a buffer (four NOT 

gates in this case) to get a square waveform. The duration that the signal takes to arrive at node “B” 
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as logic “0” represents the delay which is a function of the resistances in the crossbar and encodes 

an element of the result matrix. This delay can be digitized by ORing it with a clock pulse, the number 

of pulses can then be counted by a counter and the output of the counter will be the digital value of 

the corresponding element of the result matrix. For an initial investigation of the circuit performance, 

it was simulated using the parameters in Table I. The delay of the signal at node B for the resistance 

combination {3*LRS & 0*HRS } was 116 ps and for the resistances {2*LRS & 1*HRS} was 169ps. 

To distinguish these two states from each other, a clck pulse with a period of at least 53 ps (>18 

GHz) needs to be ORed with the output of the buffer. If more devices are read out at the same time 

the required frequency of the clock increases. Having such an ultra-high frequency on the chip 

makes counting pulses challenging. 

 
Table I: Simulation parameters for the first investigation of the ADC. 

   Parameters Specifications 

RRAM devices                   HfOx 

                    Roff/Ron           30 kΩ / 3 kΩ = 10 

                  Simulator         Synopsys HSPICE 

          CMOS technology             TSMC 90 nm 

             Read Voltage       1.3 V 

             CMOS Specs      TT 27C 

          Counter Voltage         1V 

C 180 fF 

 

2.1.2 Ring-oscillator based ADC 

To convert the analog output signal of the crossbar to a digital signal, we decided to use a VCO-

based ADC which is a time-based ADC, therefore, it can provide the advantages of the time-based 

signals with a relatively easy design procedure. To transfer an analog current into the digital signal 

with the help of VCO-based ADC, three stages are required: at the first stage, the analog bit-line 

current needs to be transformed into an analog voltage, after this stage, obtained analog voltage is 

transformed into pulses with the help of the VCO and finally generated pulse are counted with a 

counter and mapped to the corresponding digital signal, output of this stage is the equivalent digital 

signal and can be processed by the digital host. The schematic of the whole system including 

crossbar that produces an analog current and the VCO-based ADC is shown in Figure 2. 

 

 
Figure 2. Detailed schematic of VCO-based ADC 
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The functionality of the ADC is as follows:  the resistive crossbar modulates the ring oscillators 

frequency. This frequency modulation is observed in the changed number of pulses that are 

generated. The pulse period is defined as the 50 % rise fall time at the node VCO outpout. 

Different resistance configurations (LRS/HRS)  in the array result in different VCO supply voltages 

(Vy) and so a different oscillation frequency= 1/(pulse period) 

 
In Figure 3, voltage value at node Y (VY) and number of pulses generated by the ring-oscillator are 

presented with increase in number of LRS devices in a column. Different “current-to-voltage 

converters” are shown i.e. 1) No converter used 2) G-D shorten NMOS having diode configuration 

3) fixed resistors of value 5k and 4) 10k Ohms. Diode-based current-to-voltage converter provides 

better input-output characteristcs as it has the most dynamic range. Therefore, diode-based 

converter is used for further analysis. 

 

 
Figure 3. (a) Voltage developed at node Y in Fig.2 and (b) Resolution of the VCO-based ADC with different method 

("None": no extra device, “Diode”: diode-connected structure and “5k”, “10k”: two different values of constant 
resistances). 

 
 

2.2 Array simulations 

The CIM tile consists of the Memristive Crossbar as well as analog and digital peripheral circuits. 

Here, our focus will be on the memristive crossbar as well as on the readout circuitry. The ADC’s 

described in the previous chapter are used as a readout circuit to perform Vector Matrix Multiplication 

in a realistic 1T1R crossbar structure. The considered array structures were 1T1R array, Vertical 

1T1R array, and Pseudo-Crossbar array. One column per array structure is shown in Figure 4. On 

our level of investigation, the difference between these structures lies mainly in the way how they 

are utilized to do computation. For convention, the metal lines connecting the transistor gates are 

denoted as Word lines (WL), the lines connecting the Crossbar to the readout circuitry are called Bit 

lines (BL) and the lines connecting to the remaining transistor contacts are called Source lines (SL). 

The general way to perform computation has been described in Deliverable 4.4. Therefore, it will 

just be briefly repeated. In the 1T1R array, the common Source line is set to the read voltage (ADC1 

0.7 V; ADC2 1 V), while the input signals are applied to the Word lines 1 to 8 either as logical ‘1‘ 

(ADC1 1.3 V; ADC2 1.5 V) or ‘0‘ (0 V in both cases). In the vertical 1T1R array, the common Word 

line is set to 1 (1.3 V or 1.5 V) while the input signals are applied to the Source lines 1 to 8 either as 

logical ‘1‘ (0.7 V or 1 V) or as logical ‘0‘ (high ohmic). In the pseudo crossbar, both modes of operation 

are possible. 
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Figure 4: Schematics of one column of the different memristive crossbar configurations showing the connection to the 

readout circuitry. 

2.2.1 Array simulations using Delay-based ADC output structure 

Simulation parameters 

For the array level simulations, we used the JART VCM v1b deterministic model, which was 

calibrated with 100 nm x 100 nm HfOx devices. The LRS was chosen as 50 kΩ and the HRS as 2.5 

MΩ. The ADC1 from the previous chapter was redesigned in a 40 nm CMOS node by TSMC. It can 

detect 9 levels (8 rows + zero). The transistors in the crossbar were chosen as low Vth with dimension 

L = Lmin = W/10. The WLs, SLs, and BLs have parasitic resistances of 1 Ω/segment and capacities 

of 210 aF. Those values are based on FEM simulations of a 45 nm DRAM crossbar structure. 

Simulation Results  

Through the simulations, different results could be generated. Some results concern the properties 

of the devices and the crossbar organization while others concern the ADC. First, the device/ 

crossbar level results will be shown and at the end, the ADC results will be shown. The effective 

resolution of the ADC denotes the number of devices that can be read out in parallel at the same 

time with one ADC. From Figure 5 it can be seen that it is a function of the Roff /Ron ratio. The 

simulations were performed for a fixed Ron of 50 kΩ while the Roff was varied to realize the different 

resistance ratios. It can be observed that increasing the Roff /Ron ratio generally improves the ADC 

resolution. However, increasing it over a certain limit (Roff  = 2 MΩ) leads to no additional benefit.  
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Figure 5: The ADC resolution as a function of the Roff/Ron ratio. 

The purpose of the ADC is to differentiate the stored data in the array and to provide a unique result 

for different data. For an ADC that can differentiate a maximum of 8 rows at a time, this means that 

it has to provide different outputs for 8 HRS/0 LRS, 7 HRS/ 1 LRS up to 0 HRS/ 8 LRS devices. 

These cases represent the different resistance configurations of the part of the crossbar that is read 

out. They can be characterized as having different equivalent resistances where the equivalent 

resistance is determined by the parallel connection of the memristive devices in the LRS or HRS 

state. Figure 6 shows the Req of the crossbar for all resistance configurations using 8 devices and 

for different Roff/Ron ratios. It can be observed that a higher Roff/Ron ratio leads to a stronger 

nonlinearity approaching a 1/#LRS behavior while a lower Roff/Ron ratio leads to a linearization of the 

Req characteristic. For larger numbers of LRS devices, the Req are more or less independent of the 

Roff/Ron ratio since they only depend on the LRS values. The difference between neighbouring 

resistance configurations decreases for an increase in the number of LRS devices and it becomes 

smaller for smaller Roff/Ron ratios. This points towards a problem when using a conventional ADC 

since they usually have a linear input to output relationship.   

The results of this crossbar ADC simulation concerning latency and energy are now as follows. For 

a constant cycle time, one evaluation of 8 devices in one column takes 40 ns to perform. The energy 

can be split up into three components, namely the energy for the WL drivers, the energy for the SL 

drivers, and the energy consumption of the ADC itself. Between those parts, the WL drivers show 

negligible energy consumption in the range of a few attojoules, the SL drivers show an energy 

consumption of around 80 fJ while the ADC shows the highest energy consumption of up to 700 fJ 

if all the devices are in the LRS. The total data-dependent energy consumption and latency are 

shown in Figure 7. It can be seen that it is data-dependent with higher energy consumption for a 

higher number of LRS devices that are being readout.  
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Figure 6: Equivalent resistance of the crossbar for different numbers of devices in the LRS. 

 

Figure 7: Energy and latency numbers of the proposed ADC and crossbar for 8 Vector Matrix Multiplications. 

An alternative approach to operate the ADC is to utilize the data-dependent latency since the ADC 

will finish its computation faster for a higher number of LRS devices. The results for this operation 

mode can be seen in Figure 8. This operation mode reduces the average latency from 40 ns to 16 

ns and also leads to a strong reduction of the used energy. One interesting feature of this operation 

mode is that for a larger number of LRS devices, the energy consumption can actually be reduced 

even though the crossbar becomes less resistive. The resulting higher current should lead to a higher 

power consumption. The reason for this is that the reduction in evaluation time of the ADC for more 

LRS devices overcompensates the increase of energy due to the lower ohmic crossbar. 

Discussion 

From our simulation results we can conclude that the ADC plays the most critical role for the system 

performance concerning energy and latency, while the crossbar plays a less critical role. Since the 

energy consumption depends on the data and thereby on the LRS and the HRS values, we can 

conclude that higher LRS as well as HRS states will be favorable from an energy point of view. 
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Figure 8: Energy and latency numbers of the proposed ADC and crossbar for 8 Vector Matrix Multiplications when using 

the data dependency of the ADC latency. 

 

2.2.2 Array simulations using Ring-Oscillator based ADC output structure 

Simulation Parameters 

From the results on the VCO-type ADC (Figure 9) it can be seen that the levels/(time*energy) is 

better if a smaller resolution is chosen: 

@ 12 levels~ 12 levels/(2ns*1pJ) =6 levels/ns*pJ 

@ 32 levels ~ 32 levels/(10ns*5pJ)=0.64 levels/ns*pJ 

Since we dont want 2.5 bit ADC, we choose the 3 bit = 8 quantization levels 

Note that it is possible to count for a longer time to increase the difference between the levels: if 7 

LRS produce 40 pulses in 1 ns and 8 LRS produce 41 pulses in 1 ns the difference is 1 but if we 

count for 2 ns the difference becomes 2. 

 

Figure 9 : Energy and Quantization levels vs. Evaluation Time for VCO type ADC. 

As the VCO based ADC is designed using 28nm TSMC technology (while we used 40nm TSCM in 

2.2.1), array simulations had to be adapted as well. As a 28nm TSMC technology PDK was not 

available at RWTH, we use a predictive 32nm technology for the ADC and the crossbar instead. 
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Since we used a different CMOS technology, we needed to fit the ADC parameters to distinguish 8 

levels, see Table III. 

The crossbar and device parameters used are listed in Table IV. 

Table III ADC parameters 

 

 

Table IV: Crossbar and device parameters 

 

 

As the ADC is used as a 3 bit ADC and connected to a column of the crossbar, it makes sense to 

consider crossbars with 8 rows and a large number of columns compared to an equal number of 

rows and columns.This is also more reasonable for applications like databases where there are more 

entries than characteristics per entry 

One important question is now how large the array can be if we use a single driver per input. This 

depends among others on the driving requirements for the input drivers. 

 

Design considerations and simulation results 1T1R array 

During the readout the column Sourceline (SL) is activated and the inputs are applied to the different 

Wordlines (WL). This means we need one driver per Wordline 
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Increasing the number of columns increases the load that has to be driven by the WL drivers: per 

additional column we have one transistor gate per driver. Also the delay will vary in different columns, 

so this is a challenge for our parallel ADC approach.The SL drivers have a limited load, i.e. 8 1T1R 

cells in parallel. So the driver load varies column to column through the wordlines. 

Figure 10(b) shows the number of pulses/ns as function of the number of LRS devices in the column. 

The number of pulses increases with the number of LRS but the distance between the pulses 

decreases.  

 

Figure 10: Results for 1T1R array: (a) 1T1R architecture, (b) number of ADC pulses (per ns) a.f.o. number of LRS states 

in a column, (c) Energy for reading out 1 column in parallel, (d) Energy for reading out 5 columns in parallel. The red 

horizontal lines in (c) and (d) depict the average energy. 

Figure 10(c) shows the energy (= I*V*t = I*1 V*1 ns) for reading out 1 column in parallel. For the 

initial ADC1 design we had energy values between 200 fJ for 0 LRS (new ADC2: factor 10 

improvement) and 800 fJ for 8 LRS, so the new ADC2 shows an improvement of a factor 10 resp. 3. 

Also here, ADC energy is dominant (energy for WL charging  < 2 % of ADC energy). It should be 

mentioned here, that the LRS is much smaller for the second ADC therefore further improvement 

could be made by redesigning the ADC to operate on higher LRS values.  

In order to evaluate how that energy scales for parallel readout, we examined the case of a crossbar 

with 41 columns and 5 readout circuits, i.e. 1 ADC per ~8 columns. As can be deduced from Fig. 

8(d), the total energy scales linearly with the number of parallel reads. 

 

Design considerations and simulation results Vertical 1T1R array 
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During the readout, the column Wordline (WL) is activated and the inputs are applied to the different 

Sourcelines (SL), this means we need one driver per Sourceline.  

Increasing the number of columns increases the load that has to be driven by the SL drivers: per 

additional column one transistor drain per driver. The SL drivers have a constant load of 8 1T1R 

cells in parallel. 

As shown in Figure 11, we get very similar results for the 41 column array as for the 1T1R 

architecture, i.e. energy consumption is the same in these cases.  

Note that depending on the size of the parasitic elements, we need to consider a different setup time 

for the ring oscillator. During this time period the frequency is changing. Only after some time it 

reaches a constant frequency. For 41 columns, Cpar=1fF and Rpar=10 Ohm, this setup time is around 

~500 ps. 

Another way to handle the different frequency at the beginning would be to count for a longer time. 

Since the initial deviation would have a smaller influence then.  

 

Figure 11: Results for Vertical 1T1R array: (a) Vertical 1T1R architecture, (b) number of ADC pulses (per ns) a.f.o. 

number of LRS states in a column, for different column numbers. 

 

Design considerations and simulation results Pseudo Crossbar Array 

During the readout the inputs can be applied via either the Word- or Sourcelines while the other is 

just set to a high voltage. Therefore, we can use the pseudo crossbar in different ways: 

1) like the 1T1R array (inputs applied to WL and SL just active)  

2) like a vertical1T1R array (inputs applied to the SL and WL activated)  

3) apply the inputs to WL and SL 

A comparison between variants 1, 2 and 3 was done using a simulationof an array with 26 columns 

(with readout at columns 1, 11, 21, 26), and using array parasitics of  Cpar = 10 fF, Rpar = 10 Ohm. 

The results are shown in Figure 12. 

We see a larger variation for the different columns for applying inputs to SL (Figure 12 (c)) and 

even worse for applying inputs to both WL and SL (Figure 12 (d)). Applying the inputs via the WL 

(Figure12(b)) gives the best results for the pseudo crossbar array case 
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Fig.12: Results for Pseudo-Crossbar 1T1R array. (a) Pseudo Crossbar 1T1R architecture, (b-d): number of ADC pulses 

(per ns) a.f.o. number of LRS states in a column, for different column numbers and for applying inputs (b)  to WL (similar 

to 1T1R array), (c) to SL (similar to vertical 1T1R array), and (d) to both WL and SL: 

General results 

From  the comparison of the arrays we can see that it makes the crossbar more tolerant towards 

parasitics if we apply the inputs via the WL (transistor gates).The capacitances can be 

compensated if we handle the setup time. 

Compared with the initial ADC design we are better by a factor of 3 to 10  for the energy values 

even though the LRS was considerably lower. Another big advantage is that the improved design 

offers the possibility to work on larger array sizes implying a larger parasitics tolerance through the 

use of the setup time.    

Again most of the energy is consumed by the ADC. The energy for one 8 bit VMM = eight one bit 

operations. Energy/(bit op) is between 2 fJ and 30 fJ. 
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3. Optimized CIM-tile with STT-MRAM macro for binary logic 

 

In this Section, CIM-based binary logic design using scouting logic or read assist technique is 

presented. The main idea is to execute logic operations using STT-MRAM-based memristor device 

technology and investigate its potential applications. The primitive logic operations performed are 

OR and AND, and operations such as NAND, NOR, NOT etc. can be performed by simply inverting 

these primitive logic designs. 

Scouting logic design falls under CIM-P hybrid class, based on the classifications described in [1]. 

This implies that the discussed logic operations are performed in the crossbar array, but the result 

is generated in the periphery (P) and it requires some level of modification in the crossbar array 

(hybrid). Using scouting logic technique, a logic operation can be performed by reading/accessing 

two rows at the same time. 

3.1 Preliminaries 

CIM Core 

Figure 13 shows the STT-MRAM-based CIM core. The core consists of 1) STT-MRAM crossbar 

array: storage and processing unit with 1T1R bit-cell, and 2) Periphery: control logic, row/column 

decoders and drivers, sense amplifiers (SA), registers, flip-flops etc. 

The crossbar consists of 3-terminal 1T1R bit-cell, with terminals word line (WL), bit-line (BL) and 

select line (SL). Enabling WL selects a particular device for reading, writing or computing, implying 

that NMOS devices (1T have gate voltage WL) acts as a selector device. Enabling BL performs the 

required function on the selected device, which is connected to read/write drivers during their 

respective operating cycles. SL is generally grounded for write operations and connected to SA/ADC 

for read/compute operations. STT-MRAM device (1R) is a MgO-based spintronic device that is 

capable of storing 1-bit information, with 0 and 1 represented as low (anti-parallel magnetization) 

and high (parallel magnetization) conductance states. 

 

Figure 13: CIM Core: 1) A 32x512M16 STT-MRAM-based crossbar 2) Periphery: Control logic, row decoder, SA, BL/SL drivers. 
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The crossbar size (ARRAY in Figure 13) used is 32x512M16, and an Input/Output (I/O) unit is shared 

with 16 columns, implying 32 I/Os in total. A dummy column (REF in Figure 13) is used to produce 

reference voltage for read/compute operations, and the corresponding circuit and reference voltage 

values generated are described in Figure 14. Some of the important signals include CLK (external 

CLK), ADDR (external address), R/W to determine read or write operation, SAE (SA enable), BLPRE 

(bit-line pre-charge before each operation), MUX (to select one of the 16 columns for operation). 

 

 
 

Figure 24: Reference circuit to generate reference voltages for read/logic operations. 
 

The working of the SA is similar to that of SRAM-based SA. However, instead of sensing the 
difference in BL and NBL voltage of a 6T SRAM bit-cell to determine the state of the bit-cell, we use 
BL and dBL as two inputs of the SA. Here, BL voltage is developed by getting discharged through 
ON or OFF state of the STT-MRAM device, and the reference voltage is developed by the enabling 
the circuit (as shown in Figure 14) to generate a voltage that can differentiate the two states. Figure 
14 shows the reference generator circuit that differentiates the ON (1) and the OFF (0) state of the 
STT-MRAM device during read, differentiates OFF|OFF and OFF|ON during OR, and differentiates 
OFF|ON and ON|ON during AND. Below Figure 15 shows the generated reference voltages along 
with BL voltages developed when the selected device is in State 0 or 1. Noteworthily, the SA to 
perform scouting logic operations needs modification as compared to a SRAM-based SA. This is 
because the voltage difference in BL/dBL corresponding to OR/AND operations are more stringent 
as compared to read operation in SRAMs (also seen in Figure 15b, the difference with respect to 
reference voltage is smaller in logic operations as compared to read operation). 

 
 

                                                             
 

Figure 35: a) Normalized reference voltages with temperature variations during read operation. The SA is robust against 
temperature range of 0-85 degrees. b) Normalized reference voltages while reading and logic operations. The reference generated 

clearly differentiates the ON and OFF states of the STT-MRAM device. 

 

Simulation Setup 

Our intention is to perform post-layout simulations, using industry-standard 28nm CMOS device 

technology and accurate STT-MRAM experimental model. CIM core structure is based on fabricated 

chip, implying that all circuit components are experimentally verified. Table V describes parametric 
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values used for the simulations. Noteworthily, a high value of 0.9V is used as BL voltage to perform 

CIM-based logic operations. Using such a high voltage is power-inefficient and STT-MRAM device 

can suffer from read disturb. Based on our simulations, we can go up to 0.3V and still perform logic 

operations that can save significant crossbar power. It is, however, more prone to noise and reduces 

the dynamic range of currents used by the SA. As mentioned above, the SA spec is already more 

stringent than for a standard memory access, so this is not enabled yet with our current SA circuit 

design. As future work, a more robust design of SA is required to work with 0.3V and we will not yet 

report the data for this case in Table V and VI. 

Table V: a) Parameters used for a) CMOS-based periphery and b) STT-MRAM devices to run the database query application related 

to health care. 

                         

3.2 Results 

Targeted Application 

Potential application that uses logic operations is database query, described in Figure 16.  

 

Figure 46: With reference to joint publication from TUD and IBM [34], a) Describes the cascaded logic design that can compute a 

series of logic operations b) The database query and its design implementation c) Waveforms related to the database query using 

PCM devices. 

We investigated the promise of CIM-based logic designs while running a health care application that 

computes a large database to find potential patients, given their sex, age, cholesterol level, heart 

rate and other health parameters. Such tasks require a series of various bit-wise logic operations to 

solve a single query, and to determine whether a person is say, a target heart patient or not. The 

key challenge here to accumulate the intermediate results of logic operations into the final result. 

Figure 16 shows the circuit implementation of the cascaded logic design that perform a, series of 

logic operations. 



MNEMOSENE      D4.5 Refined memristor crossbar based logic and memory design and models 

19 
 

Simulation Results 

Simulation results are summarized below in Table VI. Promising results are obtained using STT-

MRAM device technology, with 37.9 TOPS/W and 16.7 GOPS, where one operation corresponds to 

one logical operation defined in the query. In other words, 26 fJ per bit-wise logical operation. 

Table VI: Results for STT-MRAM to run the database query application related to health care. 

 

Figure 17 shows the power shares of periphery circuit (SA, row drivers, row/column decoders, 

MUX, CLK generators etc.), STT-MRAM-based memristor crossbar array and the cascaded logic 

design to compute the heath care database query.  

 

Figure 17: Power share of periphery, crossbar and cascaded logic design as we increase the size of the database (with fixed number 

of rows of 32) from 32x32 to 32x512 STT-MRAM-based implementation. 
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4. Optimized CIM-tile with STT-MRAM macro for matrix-matrix 
multiplication 

 

In this Section, the main idea is to execute CIM-based matrix-matrix multiplication (MMM). Primitive 

computational unit classified as CIM-P hybrid is extensively explored to perform matrix-matrix 

multiplication (MMM) with limited (up to 8 bit) operand sizes for neuromorphic and edge-AI 

applications. Potentially, this is also usable for other multiply-accumulate type operations in other 

signal and data processing applications. 

4.1 Preliminaries for CIM-based MMM computations 

Figure 18 describes the fundamentals of using CIM-based MMM unit. The matrices or the 

operands are mapped to voltage (V) and conductance (G) values. 

 

Figure 18: a) Memristor-based crossbar array and, b) CIM Core for MMM computations. 

Crossbar array 

In Figure 18a, a subset of MMM is shown vector-matrix multiplication (VMM) performing several 

multiply-accumulate (MAC) operations that encompasses the most fundamental computational unit 

in different domains such as complex neural networks. 

VMM is performed by applying a voltage vector V=Vj (where, j  {1, m}) to memristor-crossbar matrix 

of conductance values G=Gij (where, i  {1, n}, j  {1, m}). At any instance, each column performs a 

vector-vector multiplication (VVM) or a MAC operation, with the output current vector I, in which each 

element is Ii= Vj • Gij. Note that all n MAC operations are performed with O(1) time complexity. 

Periphery Circuit 

A CIM core can be inherited from standard well-established memory units such as SRAMs and 

DRAMs, but with some major modifications to accommodate analog-based computing, as shown in 

Figure 8b. Firstly, the CMOS-based bitcell comprising the memory unit is replaced by memristor-

based bitcell configured in a compact crossbar array, as described previously. The circuit blocks 

comprising the periphery that supports the bitcell array are significantly modified depending on the 

operations CIM should accommodate. For MMM operations, the following is needed: 1) Row-

decoder becomes complex as CIM involves enabling several rows in a single computation cycle. 

Also, 1-bit row or word-line drivers are now replaced by digital-to-analog converters (DACs) that 

convert multi-bit VMM operands into an array of analog voltages. 2) Column periphery circuits 

performing read operations i.e. 1-bit sense-amplifiers are now replaced by analog-to-digital 
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converters (ADCs) to quantify currents as digital bit-streams. Post-processing circuits such as shift-

and-add are required for MMM 3) Control block needs to deal with complex instructions such as 

handling intricacies of multi-operand VMM operations as opposed a simple read or write instruction 

in SRAMs. 

MMM Computing 

Figure 19 shows the MMM performed between V (voltage) matrix and G (conductance) matrices, 

each of 128 elements and having 8-bit information/element. 

 

Figure 19: Matrix-matrix multiplication of V (8x128) and G (128x8) matrices with I (8x8) as the output matrix. 

The above MMM is performed in 8 cycles as shown in Figure 20. In each cycle, the voltage vector 

of size 1x128 is transposed and applied to the crossbar as row voltages. The current vector is 

received by the series of ADCs to convert it into 8-bit digital outputs. 

 

 

Figure 20: Eight cycles to perform MMM operation as the row voltages are applied in time-complexity manner. 

4.2 Simulation Results 

Simulation setup and parameters used are same as described in Table V in the previous section. 

In Table VII, we summarize the results while performing 8-bit MMM operations with each matrix of 

element size of 128. We have used proprietary information from IMEC’s AIMC design to arrive at 

these global energy consumption figures, and the details are confidential, so they are not disclosed 

in this public report. 

In each cycle, 128 (=rows) times 8 G8 operands = 1024 8-bit multiplications and additions are 

performed using 8 8-bit ADCs, which consumes 4800 fJ of energy [7, 8]. This implies that each 

ADC is performing 128 multiplications and additions (256 fundamental arithmetic operations) while 
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consuming roughly 600 fJ and therefore each operation consumes 2.34 fJ/Operation or 426.4 

TOPS/W. Based on our simulations, ADC consume nearly 20% power and therefore, the overall 

energy-performance efficiency metrics are 11.7 fJ/Operation or 85.3 TOPS/W. 

Table VII: Results for STT-MRAM to run a general-purpose MMM of matrices sizes 8x128 and 128x8. 

 

Promising results are obtained using STT-MRAM device technology, with 85.3 TOPS/W and 102.4 

GOPS, where an arithmetic operation corresponds to one 8-bit multiplication or addition. In other 

words, 11.7 fJ per 8-bit arithmetic operation. 
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5. Integer Matrix-Matrix multiplication 

In WP1, it was identified that the matrix-matrix multiplication (MMM) is a common operation in the 

targeted applications. A commonly used data type is either the floating-point or the integer datatype. 

In WP4, it was established that the memristor array can efficiently perform the bit-wise dot product 

or a dot-product with memristor cells storing a limited number of bits. This resulted in investigations 

to adapt an application to utilize such dot product operations and to have the host merge the results 

from the CIM array into integer MMM results - the integer data type is usually easier to implement 

than floating-point datatypes. Consequently, in the following, we will propose an approach to store 

multiple bits of an integer number into the memristor array and perform the additional steps 

necessary to perform an integer MMM operation. The addition operations will be partially performed 

in the analog array and partially in the digital periphery. Furthermore, the activation of multiple rows 

of the crossbar can be limited by technology or the resolution of the ADC. Therefore, additional 

circuitry is necessary to combine the partial sums from the analog array.  

In the following sections, an addition unit (in the digital periphery) with a structure tailored for the 

crossbar array is proposed to aid a crossbar in performing additions targeting integer MMM. The 

proposed design utilizes minimum-sized adders and is customizable to support varying numbers of 

ADCs. In the following, first, the mapping of data to the crossbar is discussed. Subsequently, the 

digital processing which has to be performed on the output of the crossbar to prepare the final result 

of MMM is presented. This processing has to be done in several steps, which depend on the number 

and precision of the ADCs used in the CIM tile. We will elaborate on different scenarios to see what 

changes are required for different scenarios. 

 

5.1 Integer data mapping 

 
In the following, we will utilize a simplified MMM example to highlight the mapping of the multiplicands 
in the crossbar. We assume that the calculation of a single element 𝑧1 (in the result matrix) is as 
follows: 𝑎 ∗ 𝑗 +  𝑏 ∗ 𝑚 +  𝑐 ∗ 𝑝. All values are assumed to be 3 bits in this example. The values a, b, 
and c are the multipliers and j, m, and p are the multiplicands. Furthermore, we assume that the 
multiplicands are needed again in other MMM operations and this is the reason to map them into the 
crossbar since it avoids multiple writes to the crossbar. Figure 21 depicts the multiplication (for z1) 
written out in full and the mapping of the multiplicands to the crossbar assuming that each cell can 
only store a single bit. It should be clear from the figure that we first multiply the zero-th bit of the 
multipliers with the multiplicands and sum them up as they pertain the same weight (20) in the final 
result. The same multiplicands (indicated in yellow) are needed again when multiplying them with 
higher-order multiplier bits. In case the crossbar has more columns, the multiplicands k and l can 
also be mapped. Otherwise, different tiles are needed to map those multiplicands. 
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 +  𝑏 ∗ 𝑚 𝑚 𝑚 +   𝑏 ∗ 𝑚 𝑚 𝑚 +   𝑏 ∗ 𝑚 𝑚 𝑚 

+  𝑐 ∗ 𝑝  𝑝  𝑝   +  
 𝑐  ∗ 𝑝  𝑝  𝑝   +  

 𝑐  ∗ 𝑝  𝑝  𝑝 

𝑗 𝑗 𝑗 

𝑚 𝑚 𝑚 

𝑝 𝑝 𝑝 

 

Figure 21: Mapping of integer number into the crossbar 

 

5.2 Proposed organization for addition units 

Our proposed adder design clearly distinguishes three adder stages to perform the MMM 
operation. The intricacies and design considerations of each stage are described in the following. 
 
Stage 1) Adding one column 

In this stage, the addition within a single column is performed - indicated by the orange/brown 
arrow(s) in Figure 22. Essentially, the addition in this stage is performed in an analog manner - using 
Kirchhoff’s Law - if and only if (1) the analog-to-digital converter (ADC) is capable of distinguishing 
between all the possible current levels and (2) all the necessary rows (related to the multiplier) can 
be activated at the same time - this is dictated by the utilized technology. If either (or both) of the 
mentioned conditions is not met, the addition needs to be broken down to only adding those numbers 
of rows that can be supported by the ADC accuracy or technology. This means that the analog 
addition is only performed among a smaller number of rows and the resulting intermediate results 
need to be summed up together in the digital domain. The latter is depicted in Figure 23. It should 
be noted that the size of the digital adder here is determined by the largest possible results after all 
rows have been added - worst case: log (𝑟𝑜𝑤𝑠). The result of this stage is the summation of all the 
terms related to one bit-position of the multiplier and one bit-position of the multiplicand. 
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𝑧1  
     𝑎 ∗ 𝑗   𝑗   𝑗    +   

 𝑎 ∗ 𝑗  𝑗  𝑗     +  
 𝑎 ∗ 𝑗  𝑗  𝑗 

𝑗 𝑗 𝑗 

𝑚 𝑚 𝑚 

𝑎 

𝑏 

𝑐 
𝑝 𝑝 𝑝 

∑ ∑ ∑
time

t1

t2

t3

Columns’ register

 

Figure 22: Analog addition inside the crossbar 

 

𝑗 𝑗 𝑗 

𝑚 𝑚 𝑚 

𝑎 

𝑏 

𝑐 
𝑝 𝑝 𝑝 

time

t1

t2

t3

R2 R1 R0

ADC

(a) (b)
 

Figure 23: Analog addition with limitation on the number of rows to be activated 

 

 

Stage 2) Adding multiple columns 

As the result of the first stage relates to the summation of only a single bit-position of the multiplicand, 

the second stage adds up all the terms (i.e., all bit positions) related to the multiplicand (multiplied 

with only one bit-position of the multiplier) - see the blue box in Figure 2. In this stage, we are 

assuming that the multiple columns are sharing one ADC and that (for now) the integer word size (of 
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multiplicands) does not exceed this number. The first assumption is not a restriction as all operations 

described in this stage remain the same if it does not hold. The second assumption is a restriction 

as loosening it would require additional logic to combine the (intermediate) results. Since this would 

severely complicate the introduction of our approach at this stage, we defer it to a later section in 

this paper. The results of each column (see Figure 24) relate to different weights of the multiplicand. 

Consequently, we can use the same adder (maximum size: log (𝑟𝑜𝑤𝑠)) to perform addition as long 

as each time the addition is performed, the intermediate result is shifted by one position. This means 

that the lowest significant bit, which is shifted out, can be stored in a temporary register (R2temp). The 

higher-order bits are stored in the register (R1temp)– this register must be initialized to zero before the 

MMM operation is started. The aforementioned addition can be performed while the ADC is 

“scanning” the columns. The result of the second stage is a partial result of the MMM operation that 

relates to a single bit-position of the multiplier, e.g., a0, b0, and c0. 

 

𝑗 𝑗 𝑗 

𝑚 𝑚 𝑚 

𝑎 

𝑏 

𝑐 
𝑝 𝑝 𝑝 

+

time

t1

t2

t3 C

+
 1    

      

 1    

R2temp

Columns' register

(a) (b)
 

Figure 24: Summation of columns’ value in digital domain 

Stage 3) Adding higher-order results 

In this stage, the partial sums related to different bit positions of the multiplier need to be summed 

up. This is depicted in Figure 25. The partial sums related to the 0-th bit position of the multiplier 

(gray box) need to added to the partial sum of the first bit position of the multiplier (blue box), and so 

on. Here, we can employ the same adder structure as described in stage 2 - see Figure 24. Only 

now, the adder and needed temporary registers are larger. Figure 25 puts together all the hardware 

discussed before for each processing phase. Following is the generalized size of the registers used 

in the proposed organization. The size of the adders is equal to their corresponding registers. 
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𝑧1  
    𝑎 ∗ 𝑗   𝑗   𝑗     +    

 𝑎 ∗ 𝑗  𝑗  𝑗    +  
 𝑎 ∗ 𝑗  𝑗  𝑗 

      

+       

R4temp

      

(a) (b)
 

Figure 25: Summation of different bit position of multiplier  

Figure 26 puts together all the hardware discussed before for each processing phase. Following is 

the generalized size of the registers used in the proposed organization. The size of the adders is 

equal to their corresponding registers. 

 

 0    1         1𝑡𝑒𝑚𝑝   𝑙𝑜𝑔 (𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑟 ℎ𝑒𝑖𝑔ℎ𝑡)  +  𝑙𝑜𝑔 (𝑐𝑒𝑙𝑙 𝑙𝑒𝑣𝑒𝑙𝑠) 
 

(1) 

  𝑡𝑒𝑚𝑝     𝑡𝑒𝑚𝑝   𝑖𝑛𝑡 𝑠𝑖𝑧𝑒(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑛𝑑)  +  𝑙𝑜𝑔 (𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑟 ℎ𝑒𝑖𝑔ℎ𝑡) 
 

(2) 

  𝑡𝑒𝑚𝑝   𝑖𝑛𝑡 𝑠𝑖𝑧𝑒(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟)  +  𝑖𝑛𝑡 𝑠𝑖𝑧𝑒(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑛𝑑)  +  𝑙𝑜𝑔 (𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑟 ℎ𝑒𝑖𝑔ℎ𝑡) 
 

(3) 

 

ADC1

 1    

R2temp

      

R4temp

𝑗 𝑗 𝑗 

𝑚 𝑚 𝑚 

𝑝 𝑝 𝑝 

R2 R1 R0

 

Figure 26: The overall organization required per ADC 
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ADC2ADC1

…
𝑎1  𝑎1  𝑎1  …

𝑎1  𝑎1  𝑎1  

𝑏1  𝑏1  𝑏1  𝑏1  𝑏1  𝑏1  

…

R4temp1 R4temp2

R6

…
𝑎1  𝑎1  𝑎1 …

𝑎1 𝑎1 𝑎1 

𝑏1  𝑏1  𝑏1 𝑏1 𝑏1 𝑏1 

…

ADC4ADC3

R4temp3 R4temp4

R5temp

 

Figure 27: The possible organization required between ADCs 

The proposed addition unit till now assumed that the integer size (in bits) equals the number of 

columns that the ADC is connected for read-out. However,  two other possible scenarios must be 

considered. First, by increasing the number of ADCs, a number stored in the crossbar might be split 

and distributed over multiple ADCs. An example of storing a 32-bit integer value (covering 32 

columns) that needs to be read-out by 4 ADCs is depicted in Figure 27. Accordingly, to obtain the 

final result, the values stored in all the (R4temp) registers, employed for each ADC, have to be 

summed up. Although more hardware is required as the number of ADCs increases, the length of 

the registers and adders employed for processes per ADC is decreased. Second, the integer length 

is shorter than the number of columns read-out by an ADC. In this scenario, either additional control 

logic must be added to halt the addition at the appropriate moment or the generated nano-

instructions sequence should contain take this into account.  

Finally, in this section, the structure of the proposed addition scheme was presented to see how the 

raw data received from ADC processed to obtain the final result of the integer MMM operation. This 

structure was integrated into our tile level simulator to evaluate this part on the operation/kernel level 

in terms of energy and performance. The design was synthesized using Cadence Genus and the 

power as well as latency numbers were imported to the simulator. The simulation results regarding 

the evaluation of this scheme are presented in Deliverable 4.7.      
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6. Conclusion  

 

The work presented in the different sections of this report resulted not only in selecting hardware 

design choices for optimizing the memristor based CIM blocks, but, most importantly, the different 

simulations also corroborate the potential energy advantages of the memristor-based CIM concepts:  

In Section 2 (investigating the impact of the memristor array architecture and ADC design choices 

on the performance of MAC operations for ReRAM based memristor devices) it was found that, using 

the best ADC design,  the energy for one 8 bit VMM = eight one bit operations, where energy/(bit 

op) is between 2 fJ and 30 fJ. Here, the largest part of the energy consumption is still in the ADC.  

In Section 3 (reporting on the optimization of a CIM tile, based on an STT-RAM memristor array, for 

performing binary logic operations), it was found that an energy of 26 fJ per bit-wise logical 

operation is consumed. 

In Section 4 (reporting on the optimization of a CIM tile, based on an STT-RAM memristor array, for 

performing Matrix-Matrix Multiplication operations),promising results are obtained, with 85.3 

TOPS/W and 102.4 GOPS, where an arithmetic operation corresponds to one 8-bit multiplication or 

addition. In other words, 11.7 fJ per 8-bit arithmetic operation 

With respect the evaluation of the scheme for implementing integer MMM (Section 5), the 

simulation results regarding are presented in Deliverable 4.7. 
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