
The MNEMOSENE project has received funding from the European
Union’s Horizon 2020 Research and Innovation Programme under
grant agreement No 780215

Project:

MNEMOSENE
(Grant Agreement number 780215)

“Computation-in-memory architecture based on resistive devices"

Funding Scheme: Research and Innovation Action

Call: ICT-31-2017 "Development of new approaches to scale functional performance of
information processing and storage substantially beyond the state-of-the-art technologies
with a focus on ultra-low power and high performance"

Date of the latest version of ANNEX I: 11/10/2017

D2.4 – Complete Parallelization,
Orchestration and Compilation Flow

Project Coordinator (PC): Prof. Said Hamdioui
Technische Universiteit Delft - Department of Quantum and
Computer Engineering (TUD)
Tel.: (+31) 15 27 83643
Email: S.Hamdioui@tudelft.nl

Project website address: www.mnemosene.eu

Lead Partner for Deliverable: INRIA

Report Issue Date: 30/07/2020

Document History
 (Revisions – Amendments)

Version and date Changes

1.0 30/07/2020 First version

Dissemination Level

PU Public X

PP Restricted to other program participants (including the EC Services)

RE Restricted to a group specified by the consortium (including the EC Services)

CO Confidential, only for members of the consortium (including the EC)

mailto:S.Hamdioui@tudelft.nl
http://www.mnemosene.eu/

MNEMOSENE
D2.4 – Complete Parallelization, Orchestration and Compilation Flow

The MNEMOSENE project aims at demonstrating a new computation-in-memory (CIM) based on
resistive devices together with its required programming flow and interface. To develop the new
architecture, the following scientific and technical objectives will be targeted:

● Objective 1: Develop new algorithmic solutions for targeted applications for CIM architecture.

● Objective 2: Develop and design new mapping methods integrated in a framework for

efficient compilation of the new algorithms into CIM macro-level operations; each of these is
mapped to a group of CIM tiles.

● Objective 3: Develop a macro-architecture based on the integration of group of CIM tiles,

including the overall scheduling of the macro-level operation, data accesses, inter-tile
communication, the partitioning of the crossbar, etc.

● Objective 4: Develop and demonstrate the micro-architecture level of CIM tiles and their

models, including primitive logic and arithmetic operators, the mapping of such operators on
the crossbar, different circuit choices and the associated design trade-offs, etc.

● Objective 5: Design a simulator (based on calibrated models of memristor devices & building

blocks) and FPGA emulator for the new architecture (CIM device combined with conventional
CPU) in order demonstrate its superiority. Demonstrate the concept of CIM by performing
measurements on fabricated crossbar mounted on a PCB board.

A demonstrator will be produced and tested to show that the storage and processing can be
integrated in the same physical location to improve energy efficiency and also to show that the
proposed accelerator is able to achieve the following measurable targets (as compared with a
general purpose multi-core platform) for the considered applications:

● Improve the energy-delay product by factor of 100X to 1000X

● Improve the computational efficiency (#operations / total-energy) by factor of 10X to 100X

● Improve the performance density (# operations per area) by factor of 10X to 100X

LEGAL NOTICE

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use,
which might be made, of the following information.

The views expressed in this report are those of the authors and do not necessarily reflect those of the European
Commission.

© MNEMOSENE Consortium 2020

2

MNEMOSENE
D2.4 – Complete Parallelization, Orchestration and Compilation Flow

Table of Contents
1 Introduction..4

2 Requirements and Changes over Deliverable 2.3...4

2 MLIR: A Multilevel Intermediate Representation..5

3 Overview of the Revised Compilation Flow..6

4 Illustration of the Compilation flow on the HAR Kernel...8

5 Building and using the Compiler..11

6 Conclusions...13

References...13

3

MNEMOSENE
D2.4 – Complete Parallelization, Orchestration and Compilation Flow

1 Introduction
The objectives of the MNEMOSENE project include the improvement of the energy-delay
product, the computational efficiency and performance density by several orders of
magnitude compared to state-of-the-art architectures. A cornerstone of the proposed
solution is the memristor-based Compute-in-Memory (CIM) architecture, which eliminates
long-distance, high-latency data transfers between memory and computing units required in
conventional Von Neumann-based architectures by carrying out computations for
performance-critical operations directly in memory.

In order for applications to benefit from this architecture, their operations must be divided
into highly parallel, uniform operations eligible for in-memory computation and control logic
that cannot benefit from CIM and that must be carried out by conventional computing
devices. It is crucial for this process that as many eligible operations as possible are
identified and effectively processed in memory, resulting only in as few computations as
possible carried out on the conventional cores.

The programmability of the CIM architecture is a key factor for its overall success. Manual
identification of eligible operations and mapping to hardware resources is tedious, error-
prone and requires detailed knowledge of the target architecture and therefore does not
represent a viable approach to program the CIM architecture. The goal of Task 2.2 is to
provide a compilation flow that unburdens programmers from technical details by allowing
them to express algorithms at a high level of abstraction and that automates parallelization,
orchestration and the mapping of operations to the CIM architecture. Deliverable 2.4
represents the final version of the compilation infrastructure resulting from this task.

This document provides an overview of the solution for Deliverable 2.4.

2 Requirements and Changes over Deliverable 2.3
The requirements for the proposed compilation infrastructure are defined by the results of
Work Package 1, Work Package 3, and Work Package 5, respectively identifying targeted
applications and their requirements, defining the high-level target architecture, and
developing the full-system simulator. These requirements can be summarized as follows:

 Support for an adequate high-level representation for performance-critical operations
of applications identified in Work Package 1, abstracting from technical details of the
target architecture from Work Package 3.

 Fully automatic identification and parallelization of operations that can efficiently be
carried out by the CIM architecture, in particular matrix-matrix operations and matrix-
vector operations as identified in Work Package 1.

 Full end-to-end compilation flow from the high-level representation to code that
executes on the CIM architecture proposed in Work Package 3.

 Integration with the full system simulator provided by Work Package 5.

The proposed solution is an iteration of the solution proposed from Deliverable 2.3 with the
main modifications summarized below:

4

MNEMOSENE
D2.4 – Complete Parallelization, Orchestration and Compilation Flow

• The flow has been simplified and unburdened from transformations inherited from
the Tensor Comprehensions framework [1] (e.g., the additional representation in
the Halide framework [2] used the previous iteration has been dropped entirely).

• The compiler has been rebased on the extensible, multi-level intermediate
representation MLIR [4], which allows for precise modeling of the high-level
operations of interest (matrix-vector products and matrix-matrix products) compared
to the previously used schedule trees [3], leverages existing MLIR infrastructure
and allows for integration with MLIR-based tools.

• The source-to-source approach limited to polyhedral representations due to the use
of the integer set library isl has been replaced with a code generation path from a
high-level MLIR representation to low-level LLVM IR. Code generation has been
aligned to standard tools from the LLVM ecosystem (e.g., llc) for improved
interoperability.

Since the switch to MLIR represents a major change, the next section provides an overview
of MLIR.

2 MLIR: A Multilevel Intermediate Representation
MLIR [4] is a multi-level intermediate representation that recently became part of the LLVM
project repository. Instead of representing operations in a single, monolithic intermediate
representation common in general-purpose compilers, MLIR is designed as an extensible
set of dialects, each defining their own set of operations. Dialects may model operations
from various levels of abstraction and can co-exist within the same module, which allows for
the preservation of high-level information throughout the compilation process. Examples of
MLIR dialects are:

• The linalg dialect, modeling linear algebra operations (e.g. matrix products, element-
wise operations, etc.).

• The scf dialect, modeling static control flow (e.g., for loops with static control).

• The std dialect, providing common, low-level operations, such as integer and floating-
point arithmetic, function calls and memory accesses.

• The llvm dialect, providing an embedding of the well-known LLVM IR into MLIR.

Figure 2 shows an example of two representations of a matrix multiplication in MLIR. The
representation on the left side of the figure uses lower-level operations from the std and scf
dialects, while the representation on the right side is based on the high-level matmul
operation from the linalg dialect.

5

Figure 1: Compilation Flow

MNEMOSENE
D2.4 – Complete Parallelization, Orchestration and Compilation Flow

Rebasing the Deliverable 2.3 compiler to MLIR has two key advantages.

While, the schedule tree-based representation in the Deliverable 2.3 compiler allowed for an
accurate representation of matrix-vector products and matrix-matrix products, the
representation is not guaranteed to be unique and reliable identification thus requires a non-
trivial canonicalization pass prior to CIM-specific transformations. In an MLIR-based
representation, these operations can be represented natively with operations from the linalg
dialect. This significantly simplifies both the matching procedure, which can be reduced to
the identification of sequences of dependent high-level linear algebra operations, and the
transformation, which becomes a simple replacement of MLIR operations using the MLIR
rewriting infrastructure. Also, transformations are no longer limited to the polyhedral
fragment, since the rewriter allows for the replacement of any kind of operation.

Second, the use of MLIR leverages an extensive and extensible ecosystem, including a
complete lowering paths from MLIR to machine code. This shifts the focus from middle-end
and backend transformations to the development of an MLIR code generation scheme in the
frontend and CIM-specific transformations. Finally, MLIR benefits from strong support by
industry-leading companies and the LLVM community.

3 Overview of the Revised Compilation Flow
Figure 1 provides an overview of the updated compilation flow for Deliverable 2.4. As in the
compilation flow from Deliverable 2.3, the source program is specified as a
Tensor Comprehension, a high-level, abstract representation inspired from the Einstein
notation of tensor algebra. The signature of a Tensor Comprehension specifies the element
types, shapes and names of a set of input and output tensors. The body defines the
operations to be performed on the input tensors and is composed of arithmetic expressions,
tensor index expressions and assignments to output tensors. Upon entry in the compilation
flow, the textual representation of a Tensor Comprehension is parsed by the TC parser
extracted from the original Tensor Comprehensions project, which generates an abstract
syntax tree (AST), labeled TC lang.

6

Figure 2: Two possible representations of a matrix multiplication in MLIR (left:
using operations from the scf and std dialect; right: using the matmul operation
from the linalg dialect)

func @mm(%arg0: memref<?x?xf32>,
%arg1: memref<?x?xf32>,
%arg2: memref<?x?xf32>)

{
 %c0 = constant 0 : index

%c1 = constant 1 : index
%0 = dim %arg0, %c0 : memref<?x?xf32>

 %1 = dim %arg0, %c1 : memref<?x?xf32>
 %2 = dim %arg1, %c1 : memref<?x?xf32>

scf.for %arg3 = %c0 to %0 step %c1 {
 scf.for %arg4 = %c0 to %2 step %c1 {
 scf.for %arg5 = %c0 to %1 step %c1 {
 %3 = load %arg1[%arg5, %arg4] : memref<?x?xf32>
 %4 = load %arg0[%arg3, %arg5] : memref<?x?xf32>
 %5 = mulf %4, %3 : f32

%6 = load %arg2[%arg3, %arg4] : memref<?x?xf32>
 %7 = addf %5, %6 : f32

store %7, %arg2[%arg3, %arg4] : memref<?x?xf32>
 }
 }
 }
 return
}

func @mm(%arg0: memref<?x?xf32>,
%arg1: memref<?x?xf32>,
%arg2: memref<?x?xf32>)

{
 linalg.matmul %arg0, %arg1, %arg2 :
 (memref<?x?xf32>, memref<?x?xf32>, memref<?x?xf32>)
 return
}

MNEMOSENE
D2.4 – Complete Parallelization, Orchestration and Compilation Flow

The Teckyl frontend traverses this AST and generates an MLIR module with operations from
different dialects suited to represent the tensor operations. High-level operations, such as
matrix-vector products, matrix-matrix-products, tensor initializations with constant values,
vector additions and row-wise matrix-vector additions are modeled as so-called structured
operations representing specific linear algebra operations and generic tensor operations
from the linalg dialect, respectively. The remaining tensor operations are modeled as loop
nests of for loops from the scf (static control flow) dialect, with operations in the loop bodies
from the std (standard) dialect, modeling element-wise arithmetic and memory accesses.

In a CIM-specific compilation pass, the Teckyl frontend examines the generated linalg
operations and replaces sequences of dependent operations that can directly be mapped to
the CIM accelerator with calls to functions from the CIM run-time. These are operations
corresponding to biased matrix-vector products, modeled as a sequence of:

1. A linalg.fill operation initializing an output vector o with zero values

2. A linalg.matvec operation, multiplying a vector a with a matrix M and adding the
result to the output vector o

3. A linalg.generic operation that adds the values a bias vector b to o

or biased matrix multiplications, modeled as a sequence of:

1. A linalg.fill operation initializing an output matrix C with zero values

2. A linalg.matmul operation, multiplying two matrices A and B and adding the result to
the output matrix C

3. A linalg.generic operation that adds the columns of a bias vector b to the rows of C

The resulting MLIR module is then passed to the standard MLIR tools mlir-opt, lowering
high-level operations from linalg and remaining scf loops first to std and then lowering std
operations to the llvm dialect and mlir-translate, which converts the operations from the llvm
dialect to LLVM IR. This leaves the execution of operations that do not fit the CIM-specific
patterns to the general-purpose CPU of the host.

The result is compiled with the standard LLVM tool llc in order to generate an object file,
which can then be linked with the CIM run-time library and host code into a final binary. For
convenience, the teckyl-genobject compiler driver orchestrates the execution of of the
above-mentioned tools with appropriate parameters with a single invocation.

7

Figure 3: Compilation scheme combining accelerated functions, host code and the
run-time library

MNEMOSENE
D2.4 – Complete Parallelization, Orchestration and Compilation Flow

Figure 3 shows the embedding of teckyl-genobject into the overall compilation scheme
combining accelerated functions specified as Tensor Comprehensions, host code and the
CIM run-time library. Accelerated functions are compiled using teckyl-genobject as outlined
above and may include calls into the CIM run-time. Although teckyl-genobject can generate
object code directly, in cross-compilation scenarios, where the machine compiling the code
and the CIM host have a different architecture, it is often more convenient to generate LLVM
IR that is then passed to llc with appropriate parameters.

For interoperability with the code executing on the general-purpose CPU of the host, Teckyl
is also capable of generating C header files that allow for invocation of the accelerated
functions from the host code. The host code referencing the generated header files is
compiled with an appropriate general-purpose compiler for the target architecture and all
object files are linked with the CIM run-time, resulting in the final binary.

4 Illustration of the Compilation flow on the HAR Kernel
We illustrate the compilation flow on the main computational kernel from the
Work Package 1 HAR application. The Tensor Comprehension at the core of this
application models the three stages of the neural network in the file har-static.tc as follows:

def har_inference(int4(900) input,
 int2(128, 900) W0,
 int2(128, 128) W1,
 int2(12, 128) W2,

 int4(128) B0,
 int4(128) B1,
 int4(12) B2) ->

 (int4(128) hidden_zero,
 int4(128) hidden_one,
 int4 (12) output)
{
 hidden_zero(i) +=! W0(i, j) * input(j) where i in 0:128, j in 0:900
 hidden_zero(i) += B0(i) where i in 0:128

 hidden_one(i) +=! W1(i, j) * hidden_zero(j) where i in 0:128, j in 0:128
 hidden_one(i) += B1(i) where i in 0:128

 output(i) +=! W2(i, j) * hidden_one(j) where i in 0:12, j in 0:128
 output(i) += B2(i) where i in 0:12
}

The signature defines a kernel named har_inference with a vector for a single input of 900
values, three 2-bit weight matrices of size 128×900, 128×128, and 12×128, respectively, as
well as three 4-bit bias vectors of size 128, 128 and 12 for the fully-connected neural
network layers. Intermediate results for the two hidden layers are stored in the output
parameters hidden_zero and hidden_one of size 128. The final result is provided in a 4-bit
vector named output with 12 elements.

Each layer of the neural network is modeled as a matrix-vector product, followed by an
addition of a bias vector. The product is implemented using the +=! operator, which

8

MNEMOSENE
D2.4 – Complete Parallelization, Orchestration and Compilation Flow

accumulates the scalar product on the right-hand side of the expression at the element
specified of the left-hand side, starting with the neutral element zero.

When compiling the comprehension with the Teckyl frontend without the CIM-specific pass,
e.g., using the following command:

 $ teckyl -emit=mlir --specialize-linalg-ops --body-op=linalg.generic \
 har-static.tc

this yields the following representation in MLIR (only the code generated for the first two
statements of the comprehension’s body is shown, as the remaining statements yield similar
code):

#map3 = affine_map<(d0) -> (d0)>

module {
 func @har_inference(

%arg0: memref<?xi4>,
%arg1: memref<?x?xi2>,
%arg2: memref<?x?xi2>,
%arg3: memref<?x?xi2>,
%arg4: memref<?xi4>,
%arg5: memref<?xi4>,
%arg6: memref<?xi4>,
%arg7: memref<?xi4>,
%arg8: memref<?xi4>,
%arg9: memref<?xi4>)

{
 %c0_i4 = constant 0 : i4
 linalg.fill(%arg7, %c0_i4) : memref<?xi4>, i4
 linalg.matvec %arg1, %arg0, %arg7 :

(memref<?x?xi2>, memref<?xi4>, memref<?xi4>)
 linalg.generic {

args_in = 1 : i64, args_out = 1 : i64, indexing_maps = [#map3, #map3],
iterator_types = ["parallel"]

 } %arg4, %arg7 {
 ^bb0(%arg10: i4, %arg11: i4):
 %0 = addi %arg10, %arg11 : i4
 linalg.yield %0 : i4
 }: memref<?xi4>, memref<?xi4>
 ...
 return
 }
}

The representation defines a single module with a single function with the same name as the
source comprehension. The parameters %arg0 through %arg7 correspond to the input and
output tensors of the comprehension. The type of each parameter is a shaped memory
reference with either one or two dimensions of 4-bit and 2-bit integers.

9

MNEMOSENE
D2.4 – Complete Parallelization, Orchestration and Compilation Flow

For the first statement, Teckyl has generated a linalg.fill operation, initializing the output
vector for the first hidden layer with the zero constant c0_i4, and a linalg.matvec operation,
performing a matrix-vector product of the first two arguments and accumulating the result in
the hidden layer. For the second statement, which adds the bias vector to the result of the
first hidden layer, Teckyl has generated a linalg.generic operation, iterating over the output
elements of the hidden layer and the elements of the argument %arg4 (corresponding to the
bias vector B0). The body of this operation is composed of a single basic block ^bb0, adding
two elements with an integer addition operation addi and returning the result with a
linalg.yield operation.

The CIM-specific pass for pattern recognition is invoked by adding the command line
parameter --detect-cim-patterns. This causes the biased matrix-vector products to be
replaced with calls to a run-time function cim_mv_2xi2_1xi4_1xi4_1xi4 (the suffix indicates
the element types of the tensor operands):

module {
 func @har_inference(...) {
 call @cim_mv_2xi2_1xi4_1xi4_1xi4(%arg1, %arg0, %arg4, %arg7) :

(memref<?x?xi2>, memref<?xi4>, memref<?xi4>, memref<?xi4>) -> ()
 call @cim_mv_2xi2_1xi4_1xi4_1xi4(%arg2, %arg7, %arg5, %arg8) :

(memref<?x?xi2>, memref<?xi4>, memref<?xi4>, memref<?xi4>) -> ()
 call @cim_mv_2xi2_1xi4_1xi4_1xi4(%arg3, %arg8, %arg6, %arg9) :

(memref<?x?xi2>, memref<?xi4>, memref<?xi4>, memref<?xi4>) -> ()
 return
 }

 // Declaration of the run-time function
 func @cim_mv_2xi2_1xi4_1xi4_1xi4(

memref<?x?xi2>, memref<?xi4>, memref<?xi4>, memref<?xi4>)
}

This function must be implemented by the CIM run-time and perform the actual offloading to
the device. The separation of the offloading function from code generation by the compiler
allows for dynamic dispatching of operations at execution time if multiple CIM tiles are
available. For example, in a configuration with a tile group of three tiles with data bypassing,
the function could dispatch the work in a round-robin fashion to the different tiles:

#include <stdint.h>
#include <memref.h>
#include "cim.h"

void cim_mv_2xi2_1xi4_1xi4_1xi4(...)
{
 static int cim_group = 0;

 /* Transfer biases and weights */
 store_biases(cim_group, b_allocatedPtr, b_size0);
 store_gemm(cim_group, A_allocatedPtr, A_size1, A_size0, A_size0, 0, 0);

10

MNEMOSENE
D2.4 – Complete Parallelization, Orchestration and Compilation Flow

 /* Ensure that weights and biases have been transferred entirely */
 cim_spinlock(cim_group);

 /* Transfer inputs and indicate that the operation is a matrix-vector
 * product */
 cim_blas_batch(cim_group, x_allocatedPtr, o_allocatedPtr, 1, A_size0,
 A_size1);

 /* Round-robin distribution to the tiles */
 if(++cim_group == 3) {

/* Assignment to the last tile of the group triggers execution.
 * Synchronize only with the last tile; synchronization for
 * intermediate results is handled by the hardware. */

 cim_spinlock(2);
 cim_group = 0;
 }
}

Note that it is the responsibility of the run-time function to ensure the correct order of low-
level operations, including synchronization with the CIM accelerator. Also, mixing code
executing on the host CPU and the CIM accelerator requires careful verification by the
programmer, since the host CPU uses wrapping arithmetic common for general-purpose
cores, while the CIM accelerator uses saturating arithmetic.

The signature of the accelerated function required for invocation from host code can be
generated with the option -emit=header:

 $ teckyl -emit=header har-static.tc

This includes the signature of the MLIR function har_inference with parameters of the MLIR
type memref, as well as a wrapper function named har_inference_wrap that can be called
with ordinary pointers to continuous memory regions.

5 Building and using the Compiler
The Deliverable 2.4 compiler comes as a modified version of the Teckyl project and is
available from the TU/e gitlab server. This version of Teckyl depends itself on a modified
version of the llvm-project repository, also hosted on the TU/e gitlab server. When cloning
the git repository, please make sure to perform a recursive clone, e.g.:

 $ git clone --recursive ssh://git@git.ics.ele.tue.nl/mnemosene/cim-compiler

To build the compiler and associated tools, the sources first need to be configured using the
cmake build system:

 $ cd cim-compiler
 $ mkdir build
 $ cd build
 $ cmake ..
 $ make -j teckyl mlir-opt mlir-translate llc

11

MNEMOSENE
D2.4 – Complete Parallelization, Orchestration and Compilation Flow

When the build process has finished, the build directory contains the teckyl binary in bin and
the mlir-opt, mlir-translate and llc binaries in llvm-project/llvm/bin. In order to use the teckyl-
genobject script, the paths to the binaries above must be made available through the PATH
environment variable, e.g., with:

 $ export PATH=”$PWD/bin:$PWD/llvm-project/llvm/bin:$PATH”

executed from the build directory. Generating a file with LLVM IR named example.ll from a
source file example.tc with a Tensor Comprehension is straightforward:

 $ teckyl-genobject --mode=llvmir –body-op=linalg.generic \
--detect-cim-patterns -o example.ll example.tc

The output can then be processed by llc and an appropriate cross-compiler driver invoking a
cross-assembler with appropriate flags for the target architecture. For example, for the
simulator, the following commands are used:

 $ llc -float-abi=soft -mtriple arm-none-eabi -mcpu=cortex-a9 \
 -o example.S example.ll
 $ arm-none-eabi-gcc -mcpu=cortex-a9 -mfloat-abi=soft -marm \
 -c example.S -o example.o

For a complete, end-to-end example from the source to simulation, a repository referencing
the Deliverable 2.4 compiler, the Work Package 5 simulator and the HAR application from
Work Package 1 has been created. This can be cloned as follows:

 $ git clone --recursive \
 ssh://git@git.ics.ele.tue.nl/mnemosene/cim-compiler-environment

Invoking the make utility with the default target at the root directory of the repository builds
the compiler and the simulator:

 $ cd cim-compiler-environment
 $ make -j

Four versions of the HAR application are included in the repository:

• The default version, simply referred to as har, with 4 bit inputs, 2 bit weights and 4 bit
biases, mapping each of the three layers of the neural network a different tile of a tile
group of three tiles with data bypassing.

• A batched version of the default above, grouping inputs into a matrix and processing
all inputs at once.

• A version executing on a single tile with a precision of 8 bits for inputs, weights and
biases, referred to as har-8bit-single-tile

• A batched version of the single tile application

The applications can be found in the subdirectories applications/har and applications/har-
8bit-single-tile, respectively. Each application comes with a Makefile that allows the user to

12

MNEMOSENE
D2.4 – Complete Parallelization, Orchestration and Compilation Flow

build the application with the Deliverable 2.4 compiler and simulate it with the
Work Package 5 simulator, e.g., with the following commands:

 $ cd applications/har
 $ make
 $./run.sh # simulate the non-batched version
 $./run.sh --batched # simulate the batched version

6 Conclusions
The final version of the parallelizing compiler for the CIM architecture allows for the
compilation of high-level representations of critical operations of applications identified in
Work Package 1 for the CIM architecture with a simplified and extensible compilation flow.

The end-to-end compilation flow and orchestration of accelerated functions with host-code
and the CIM run-time has been verified with multiple implementations of the HAR application
from Work Package 1 (non-batched / batched version with mixed 4-bit / 2-bit precision for a
tile group of size three, non-batched / batched version for an 8-bit single tile configuration)
executed on the Work Package 5 simulator.

The use of the MLIR multi-level intermediate representation allows for a more robust
identification of performance-critical operations for offloading, simplified transformations and
a simplified code generation scheme based on common MLIR and LLVM infrastructure.

References
[1] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary

Devito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen.
2019. The Next 700 Accelerated Layers: From Mathematical Expressions of Network
Computation Graphs to Accelerated GPU Kernels, Automatically. ACM Trans. Archit.
Code Optim. 16, 4, Article 38 (Oct. 2019), 26 pages. https://doi.org/10.1145/3355606

[2] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: A Language and Compiler for
Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’13). ACM, New York, NY, USA, 519–530.
https://doi.org/10.1145/2491956.2462176

[3] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen. 2014.
Schedule trees. In International Workshop on Polyhedral Compilation Techniques,
Date: 2014/01/20-2014/01/20, Location: Vienna, Austria.

[4] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques
Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, Oleksandr Zinenko.
2020. MLIR: A Compiler Infrastructure for the End of Moore's Law. ArXiv preprint.
https://arxiv.org/abs/2002.11054.

13

https://doi.org/10.1145/3355606
https://doi.org/10.1145/2491956.2462176
https://arxiv.org/abs/2002.11054

	1 Introduction
	2 Requirements and Changes over Deliverable 2.3
	2 MLIR: A Multilevel Intermediate Representation
	3 Overview of the Revised Compilation Flow
	4 Illustration of the Compilation flow on the HAR Kernel
	5 Building and using the Compiler
	6 Conclusions
	References

