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MNEMOSENE
D2.4 – Complete Parallelization, Orchestration and Compilation Flow

The MNEMOSENE project aims at demonstrating a new computation-in-memory (CIM) based on
resistive devices together with its required programming flow and interface.  To develop the new
architecture, the following scientific and technical objectives will be targeted:

● Objective 1: Develop new algorithmic solutions for targeted applications for CIM architecture.

● Objective  2:  Develop  and  design  new  mapping  methods  integrated  in  a  framework  for

efficient compilation of the new algorithms into CIM macro-level operations; each of these is
mapped to a group of CIM tiles.

● Objective 3: Develop a macro-architecture based on the integration of group of CIM tiles,

including  the  overall  scheduling  of  the  macro-level  operation,  data  accesses,  inter-tile
communication, the partitioning of the crossbar, etc.

● Objective 4:  Develop and demonstrate the micro-architecture level  of  CIM tiles and their

models, including primitive logic and arithmetic operators, the mapping of such operators on
the crossbar, different circuit choices and the associated design trade-offs, etc.

● Objective 5: Design a simulator (based on calibrated models of memristor devices & building

blocks) and FPGA emulator for the new architecture (CIM device combined with conventional
CPU) in order demonstrate its superiority. Demonstrate the concept of CIM by performing
measurements on fabricated crossbar mounted on a PCB board.

A  demonstrator  will  be  produced  and  tested  to  show  that  the  storage  and  processing  can  be
integrated in the same physical  location to improve energy efficiency and also to show that  the
proposed  accelerator  is  able  to  achieve  the  following  measurable  targets  (as  compared  with  a
general purpose multi-core platform) for the considered applications:

● Improve the energy-delay product by factor of 100X to 1000X

● Improve the computational efficiency (#operations / total-energy) by factor of 10X to 100X

● Improve the performance density (# operations per area) by factor of 10X to 100X

LEGAL NOTICE

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use,
which might be made, of the following information.

The views expressed in this report are those of the authors and do not necessarily reflect those of the European
Commission.

© MNEMOSENE Consortium 2020

2



MNEMOSENE
D2.4 – Complete Parallelization, Orchestration and Compilation Flow

Table of Contents
1 Introduction..........................................................................................................................4

2 Requirements and Changes over Deliverable 2.3...............................................................4

2 MLIR: A Multilevel Intermediate Representation..................................................................5

3 Overview of the Revised Compilation Flow..........................................................................6

4 Illustration of the Compilation flow on the HAR Kernel.........................................................8

5 Building and using the Compiler........................................................................................11

6 Conclusions.......................................................................................................................13

References...........................................................................................................................13

3



MNEMOSENE
D2.4 – Complete Parallelization, Orchestration and Compilation Flow

1 Introduction
The objectives of the MNEMOSENE project include the improvement of the energy-delay
product,   the  computational  efficiency  and  performance  density  by  several  orders  of
magnitude  compared  to  state-of-the-art  architectures.  A  cornerstone  of  the  proposed
solution is the memristor-based Compute-in-Memory (CIM) architecture, which eliminates
long-distance, high-latency data transfers between memory and computing units required in
conventional  Von Neumann-based  architectures  by  carrying  out  computations  for
performance-critical operations directly in memory.

In order for applications to benefit from this architecture, their operations must be divided
into highly parallel, uniform operations eligible for in-memory computation and control logic
that  cannot  benefit  from  CIM  and  that  must  be  carried  out  by  conventional  computing
devices.  It  is  crucial  for  this  process  that  as  many  eligible  operations  as  possible  are
identified and effectively processed in  memory, resulting only  in as few computations as
possible carried out on the conventional cores.

The programmability of the CIM architecture is a key factor for its overall success. Manual
identification of  eligible operations and mapping to hardware resources is tedious,  error-
prone and requires detailed knowledge of the target  architecture and therefore does not
represent a viable approach to program the CIM architecture. The goal of  Task 2.2 is to
provide a compilation flow that unburdens programmers from technical details by allowing
them to express algorithms at a high level of abstraction and that automates parallelization,
orchestration  and  the  mapping  of  operations  to  the  CIM  architecture.  Deliverable 2.4
represents the final version of the compilation infrastructure resulting from this task.

This document provides an overview of the solution for Deliverable 2.4.

2 Requirements and Changes over Deliverable 2.3
The requirements for the proposed compilation infrastructure are defined by the results of
Work Package 1, Work Package 3, and Work Package 5, respectively identifying targeted
applications  and  their  requirements,  defining  the  high-level  target  architecture,  and
developing the full-system simulator. These requirements can be summarized as follows:

 Support for an adequate high-level representation for performance-critical operations
of applications identified in Work Package 1, abstracting from technical details of the
target architecture from Work Package 3.

 Fully automatic identification and parallelization of operations that can efficiently be
carried out by the CIM architecture, in particular matrix-matrix operations and matrix-
vector operations as identified in Work Package 1.

 Full  end-to-end  compilation  flow  from  the  high-level  representation  to  code  that
executes on the CIM architecture proposed in Work Package 3.

 Integration with the full system simulator provided by Work Package 5.

The proposed solution is an iteration of the solution proposed from Deliverable 2.3 with the
main modifications summarized below:
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• The flow has been simplified and unburdened from transformations inherited from
the Tensor  Comprehensions framework [1] (e.g.,  the additional  representation in
the Halide framework [2] used the previous iteration has been dropped entirely).

• The  compiler  has  been  rebased  on  the  extensible,  multi-level  intermediate
representation  MLIR [4],  which  allows  for  precise  modeling  of  the  high-level
operations of interest (matrix-vector products and matrix-matrix products) compared
to the previously  used schedule  trees [3],  leverages existing MLIR infrastructure
and allows for integration with MLIR-based tools.

• The source-to-source approach limited to polyhedral representations due to the use
of the integer set library isl has been replaced with a code generation path from a
high-level MLIR representation to low-level LLVM IR. Code generation has been
aligned  to  standard  tools  from  the  LLVM  ecosystem  (e.g.,  llc)  for  improved
interoperability.

Since the switch to MLIR represents a major change, the next section provides an overview
of MLIR.

2 MLIR: A Multilevel Intermediate Representation
MLIR [4] is a multi-level intermediate representation that recently became part of the LLVM
project  repository.  Instead of  representing operations in a single,  monolithic  intermediate
representation common in general-purpose compilers, MLIR is designed as an extensible
set of  dialects, each defining their own set of  operations. Dialects may model operations
from various levels of abstraction and can co-exist within the same module, which allows for
the preservation of high-level information throughout the compilation process. Examples of
MLIR dialects are:

• The linalg dialect, modeling linear algebra operations (e.g. matrix products, element-
wise operations, etc.).

• The scf dialect, modeling static control flow (e.g., for loops with static control).

• The std dialect, providing common, low-level operations, such as integer and floating-
point arithmetic, function calls and memory accesses.

• The llvm dialect, providing an embedding of the well-known LLVM IR into MLIR.

Figure 2 shows an example of two representations of a matrix multiplication in MLIR. The
representation on the left  side of the figure uses lower-level operations from the std and scf
dialects,  while  the  representation  on  the  right  side  is  based  on  the  high-level  matmul
operation from the linalg dialect.
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Rebasing the Deliverable 2.3 compiler to MLIR has two key advantages. 

While, the schedule tree-based representation in the Deliverable 2.3 compiler allowed for an
accurate  representation  of  matrix-vector  products  and  matrix-matrix  products,  the
representation is not guaranteed to be unique and reliable identification thus requires a non-
trivial  canonicalization  pass  prior  to  CIM-specific  transformations.  In  an  MLIR-based
representation, these operations can be represented natively with operations from the linalg
dialect. This significantly simplifies both the matching procedure, which can be reduced to
the identification of sequences of dependent high-level linear algebra operations, and the
transformation, which becomes a simple replacement of MLIR operations using the MLIR
rewriting  infrastructure.  Also,   transformations  are  no  longer  limited  to  the  polyhedral
fragment, since the rewriter allows for the replacement of any kind of operation.

Second,  the use of  MLIR leverages an extensive and extensible ecosystem, including a
complete lowering paths from MLIR to machine code. This shifts the focus from middle-end
and backend transformations to the development of an MLIR code generation scheme in the
frontend and CIM-specific  transformations.  Finally,  MLIR benefits  from strong support  by
industry-leading companies and the LLVM community.

3 Overview of the Revised Compilation Flow
Figure 1 provides an overview of the updated compilation flow for Deliverable 2.4. As in the
compilation  flow  from  Deliverable 2.3,  the  source  program  is  specified  as  a
Tensor Comprehension,  a  high-level,  abstract  representation  inspired  from  the  Einstein
notation of tensor algebra. The signature of a Tensor Comprehension specifies the element
types,  shapes  and  names  of  a  set  of  input  and  output  tensors.  The  body  defines  the
operations to be performed on the input tensors and is composed of arithmetic expressions,
tensor index expressions and assignments to output tensors. Upon entry in the compilation
flow,  the textual  representation  of  a  Tensor Comprehension  is  parsed by  the  TC parser
extracted from the original  Tensor Comprehensions project,  which generates an abstract
syntax tree (AST), labeled TC lang. 

6

Figure 2: Two possible representations of a matrix multiplication in MLIR (left: 
using operations from the scf and std dialect; right: using the matmul operation 
from the linalg dialect)

func @mm(%arg0: memref<?x?xf32>,
%arg1: memref<?x?xf32>,
%arg2: memref<?x?xf32>)  

{ 
 %c0 = constant 0 : index

%c1 = constant 1 : index
%0 = dim %arg0, %c0 : memref<?x?xf32>  

 %1 = dim %arg0, %c1 : memref<?x?xf32>  
 %2 = dim %arg1, %c1 : memref<?x?xf32>

scf.for %arg3 = %c0 to %0 step %c1 { 
 scf.for %arg4 = %c0 to %2 step %c1 { 
 scf.for %arg5 = %c0 to %1 step %c1 { 
 %3 = load %arg1[%arg5, %arg4] : memref<?x?xf32>  
 %4 = load %arg0[%arg3, %arg5] : memref<?x?xf32>  
 %5 = mulf %4, %3 : f32

%6 = load %arg2[%arg3, %arg4] : memref<?x?xf32>  
 %7 = addf %5, %6 : f32

store %7, %arg2[%arg3, %arg4] : memref<?x?xf32>  
 }  
 }  
 }  
 return
}

func @mm(%arg0: memref<?x?xf32>,
%arg1: memref<?x?xf32>,
%arg2: memref<?x?xf32>)  

{ 
 linalg.matmul %arg0, %arg1, %arg2 : 
 (memref<?x?xf32>, memref<?x?xf32>, memref<?x?xf32>)  
 return
}
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The Teckyl frontend traverses this AST and generates an MLIR module with operations from
different dialects suited to represent the tensor operations. High-level operations, such as
matrix-vector  products,  matrix-matrix-products,  tensor  initializations  with  constant  values,
vector additions and row-wise matrix-vector additions are modeled as so-called  structured
operations  representing  specific  linear  algebra  operations  and generic  tensor  operations
from the linalg dialect, respectively. The remaining tensor operations are modeled as loop
nests of for loops from the scf (static control flow) dialect, with operations in the loop bodies
from the std (standard) dialect, modeling element-wise arithmetic and memory accesses.

In  a  CIM-specific  compilation  pass,  the  Teckyl  frontend  examines  the  generated  linalg
operations and replaces sequences of dependent operations that can directly be mapped to
the CIM accelerator with calls  to functions from the CIM run-time. These are operations
corresponding to biased matrix-vector products, modeled as a sequence of:

1. A linalg.fill operation initializing an output vector o with zero values

2. A  linalg.matvec operation,  multiplying a vector  a with a matrix  M and adding the
result to the output vector o

3. A linalg.generic operation that adds the values a bias vector b to o

or biased matrix multiplications, modeled as a sequence of:

1. A linalg.fill operation initializing an output matrix C with zero values

2. A linalg.matmul operation, multiplying two matrices A and B and adding the result to
the output matrix C

3. A linalg.generic operation that adds the columns of a bias vector b to the rows of C

The resulting MLIR module is then passed to the standard MLIR tools  mlir-opt,  lowering
high-level operations from linalg and remaining scf loops first to  std  and then lowering  std
operations to the llvm dialect and mlir-translate, which converts the operations from the llvm
dialect to LLVM IR. This leaves the execution of operations that do not fit the CIM-specific
patterns to the general-purpose CPU of the host.

The result is compiled with the standard LLVM tool  llc in order to generate an object file,
which can then be linked with the CIM run-time library and host code into a final binary. For
convenience,  the  teckyl-genobject compiler  driver  orchestrates  the  execution  of  of  the
above-mentioned tools with appropriate parameters with a single invocation.
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Figure  3 shows  the  embedding  of  teckyl-genobject into  the  overall  compilation  scheme
combining accelerated functions specified as Tensor Comprehensions, host code and the
CIM run-time library. Accelerated functions are compiled using teckyl-genobject as outlined
above and may include calls into the CIM run-time. Although teckyl-genobject can generate
object code directly, in cross-compilation scenarios, where the machine compiling the code
and the CIM host have a different architecture, it is often more convenient to generate LLVM
IR that is then passed to llc with appropriate parameters.

For interoperability with the code executing on the general-purpose CPU of the host, Teckyl
is also capable of  generating C header files that  allow for  invocation of  the accelerated
functions  from the  host  code.  The  host  code  referencing  the  generated  header  files  is
compiled with an appropriate general-purpose compiler for the target architecture and all
object files are linked with the CIM run-time, resulting in the final binary. 

4 Illustration of the Compilation flow on the HAR Kernel
We  illustrate  the  compilation  flow  on  the  main  computational  kernel  from  the
Work Package 1 HAR  application.  The  Tensor  Comprehension  at  the  core  of  this
application models the three stages of the neural network in the file har-static.tc as follows:

def har_inference(int4(900) input,
                  int2(128, 900) W0,
      int2(128, 128) W1,
        int2(12, 128) W2,

        int4(128) B0,
        int4(128) B1,
        int4(12) B2) ->

   (int4(128) hidden_zero,
    int4(128) hidden_one,
    int4 (12) output)
{
   hidden_zero(i) +=! W0(i, j) * input(j) where i in 0:128, j in 0:900
   hidden_zero(i) += B0(i) where i in 0:128

   hidden_one(i) +=! W1(i, j) * hidden_zero(j) where i in 0:128, j in 0:128
   hidden_one(i) += B1(i) where i in 0:128

   output(i) +=! W2(i, j) * hidden_one(j) where i in 0:12, j in 0:128
   output(i) += B2(i) where i in 0:12
}

The signature defines a kernel named har_inference with a vector for a single input of 900 
values, three 2-bit weight matrices of size 128×900, 128×128, and 12×128, respectively, as 
well as three 4-bit bias vectors of size 128, 128 and 12 for the fully-connected neural 
network layers. Intermediate results for the two hidden layers are stored in the output 
parameters hidden_zero and hidden_one of size 128. The final result is provided in a 4-bit 
vector named output with 12 elements.

Each layer of the neural network is modeled as a matrix-vector product,  followed by an
addition  of  a  bias  vector.  The  product  is  implemented  using  the  +=!  operator,  which
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accumulates the scalar  product  on the right-hand side of  the expression at  the element
specified of the left-hand side, starting with the neutral element zero.

When compiling the comprehension with the Teckyl frontend without the CIM-specific pass,
e.g., using the following command:

  $ teckyl -emit=mlir --specialize-linalg-ops --body-op=linalg.generic \
     har-static.tc

this yields the following representation in MLIR (only the code generated for the first two
statements of the comprehension’s body is shown, as the remaining statements yield similar
code):

#map3 = affine_map<(d0) -> (d0)>

module {
  func @har_inference(

%arg0: memref<?xi4>,
%arg1: memref<?x?xi2>,
%arg2: memref<?x?xi2>,
%arg3: memref<?x?xi2>,
%arg4: memref<?xi4>,
%arg5: memref<?xi4>,
%arg6: memref<?xi4>,
%arg7: memref<?xi4>,
%arg8: memref<?xi4>,
%arg9: memref<?xi4>)

{
    %c0_i4 = constant 0 : i4
    linalg.fill(%arg7, %c0_i4) : memref<?xi4>, i4
    linalg.matvec  %arg1, %arg0, %arg7 : 

(memref<?x?xi2>, memref<?xi4>, memref<?xi4>)
    linalg.generic {

args_in = 1 : i64, args_out = 1 : i64, indexing_maps = [#map3, #map3],
iterator_types = ["parallel"]

    } %arg4, %arg7 {
    ^bb0(%arg10: i4, %arg11: i4):
      %0 = addi %arg10, %arg11 : i4
      linalg.yield %0 : i4
    }: memref<?xi4>, memref<?xi4>
    ...
    return
  }
}

The representation defines a single module with a single function with the same name as the
source comprehension. The parameters %arg0 through %arg7 correspond to the input and
output  tensors of  the comprehension.  The type of  each parameter is a shaped memory
reference with either one or two dimensions of 4-bit and 2-bit integers.
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For the first  statement,  Teckyl  has generated a  linalg.fill operation,  initializing  the output
vector for the first hidden layer with the zero constant c0_i4, and a linalg.matvec operation,
performing a matrix-vector product of the first two arguments and accumulating the result in
the hidden layer. For the second statement, which adds the bias vector to the result of the
first hidden layer, Teckyl has generated a linalg.generic operation, iterating over the output
elements of the hidden layer and the elements of the argument %arg4 (corresponding to the
bias vector B0). The body of this operation is composed of a single basic block ^bb0, adding
two  elements  with  an  integer  addition  operation  addi and  returning  the  result  with  a
linalg.yield operation.

The  CIM-specific  pass  for  pattern  recognition  is  invoked  by  adding  the  command  line
parameter  --detect-cim-patterns.  This  causes  the  biased  matrix-vector  products  to  be
replaced with calls to a run-time function cim_mv_2xi2_1xi4_1xi4_1xi4  (the suffix indicates
the element types of the tensor operands):

module {
  func @har_inference(...) {
    call @cim_mv_2xi2_1xi4_1xi4_1xi4(%arg1, %arg0, %arg4, %arg7) :

(memref<?x?xi2>, memref<?xi4>, memref<?xi4>, memref<?xi4>) -> ()
    call @cim_mv_2xi2_1xi4_1xi4_1xi4(%arg2, %arg7, %arg5, %arg8) : 

(memref<?x?xi2>, memref<?xi4>, memref<?xi4>, memref<?xi4>) -> ()
    call @cim_mv_2xi2_1xi4_1xi4_1xi4(%arg3, %arg8, %arg6, %arg9) :

(memref<?x?xi2>, memref<?xi4>, memref<?xi4>, memref<?xi4>) -> ()
    return
  }

  // Declaration of the run-time function
  func @cim_mv_2xi2_1xi4_1xi4_1xi4(

memref<?x?xi2>, memref<?xi4>, memref<?xi4>, memref<?xi4>)
}

This function must be implemented by the CIM run-time and perform the actual offloading to
the device. The separation of the offloading function from code generation by the compiler
allows  for  dynamic  dispatching  of  operations  at  execution  time if  multiple  CIM tiles  are
available. For example, in a configuration with a tile group of three tiles with data bypassing,
the function could dispatch the work in a round-robin fashion to the different tiles:

#include <stdint.h>
#include <memref.h>
#include "cim.h"

void cim_mv_2xi2_1xi4_1xi4_1xi4(...)
{
  static int cim_group = 0;

  /* Transfer biases and weights */
  store_biases(cim_group, b_allocatedPtr, b_size0);
  store_gemm(cim_group, A_allocatedPtr, A_size1, A_size0, A_size0, 0, 0);
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  /* Ensure that weights and biases have been transferred entirely */
  cim_spinlock(cim_group);

  /* Transfer inputs and indicate that the operation is a matrix-vector 
   * product */
  cim_blas_batch(cim_group, x_allocatedPtr, o_allocatedPtr, 1, A_size0, 
                 A_size1);

  /* Round-robin distribution to the tiles */
  if(++cim_group == 3) {

/* Assignment to the last tile of the group triggers execution. 
 * Synchronize only with the last tile; synchronization for
 * intermediate results is handled by the hardware. */

    cim_spinlock(2);
    cim_group = 0;
  }
}

Note that it is the responsibility of the run-time function to ensure the correct order of low-
level  operations,  including  synchronization  with  the  CIM  accelerator.  Also,  mixing  code
executing  on the host  CPU and the CIM accelerator  requires  careful  verification  by the
programmer,  since the host  CPU uses wrapping arithmetic  common for  general-purpose
cores, while the CIM accelerator uses saturating arithmetic.

The signature of the accelerated function required for invocation from host  code can be
generated with the option -emit=header:

  $ teckyl -emit=header har-static.tc

This includes the signature of the MLIR function har_inference with parameters of the MLIR 
type memref, as well as a wrapper function named har_inference_wrap that can be called 
with ordinary pointers to continuous memory regions.

5 Building and using the Compiler
The  Deliverable 2.4 compiler  comes as a  modified  version of  the  Teckyl project  and is
available from the TU/e gitlab server. This version of  Teckyl depends itself on a modified
version of the llvm-project repository, also hosted on the TU/e gitlab server. When cloning
the git repository, please make sure to perform a recursive clone, e.g.:

  $ git clone --recursive ssh://git@git.ics.ele.tue.nl/mnemosene/cim-compiler

To build the compiler and associated tools, the sources first need to be configured using the
cmake build system:

  $ cd cim-compiler
  $ mkdir build
  $ cd build
  $ cmake ..
  $ make -j teckyl mlir-opt mlir-translate llc
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When the build process has finished, the build directory contains the teckyl binary in bin and
the mlir-opt, mlir-translate and llc binaries in llvm-project/llvm/bin. In order to use the teckyl-
genobject script, the paths to the binaries above must be made available through the PATH
environment variable, e.g., with:

  $ export PATH=”$PWD/bin:$PWD/llvm-project/llvm/bin:$PATH”

executed from the build directory. Generating a file with LLVM IR named example.ll from a
source file example.tc with a Tensor Comprehension is straightforward:

  $ teckyl-genobject --mode=llvmir –body-op=linalg.generic \
--detect-cim-patterns -o example.ll example.tc

The output can then be processed by llc and an appropriate cross-compiler driver invoking a
cross-assembler  with  appropriate  flags  for  the  target  architecture.  For  example,  for  the
simulator, the following commands are used:

  $ llc -float-abi=soft -mtriple arm-none-eabi -mcpu=cortex-a9 \
      -o example.S example.ll
  $ arm-none-eabi-gcc -mcpu=cortex-a9 -mfloat-abi=soft -marm \
      -c example.S -o example.o

For a complete, end-to-end example from the source to simulation, a repository referencing 
the Deliverable 2.4 compiler, the Work Package 5 simulator and the HAR application from 
Work Package 1 has been created. This can be cloned as follows:

  $ git clone --recursive \
      ssh://git@git.ics.ele.tue.nl/mnemosene/cim-compiler-environment

Invoking the make utility with the default target at the root directory of the repository builds 
the compiler and the simulator:

  $ cd cim-compiler-environment
  $ make -j

Four versions of the HAR application are included in the repository:

• The default version, simply referred to as har, with 4 bit inputs, 2 bit weights and 4 bit
biases, mapping each of the three layers of the neural network a different tile of a tile
group of three tiles with data bypassing.

• A batched version of the default above, grouping inputs into a matrix and processing
all inputs at once.

• A version executing on a single tile with a precision of 8 bits for inputs, weights and
biases, referred to as har-8bit-single-tile

• A batched version of the single tile application

The applications can be found in the subdirectories  applications/har and  applications/har-
8bit-single-tile, respectively. Each application comes with a Makefile that allows the user to
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build  the  application  with  the  Deliverable 2.4 compiler  and  simulate  it  with  the
Work Package 5 simulator, e.g., with the following commands:

  $ cd applications/har
  $ make
  $ ./run.sh # simulate the non-batched version
  $ ./run.sh --batched # simulate the batched version

6 Conclusions
The  final  version  of  the  parallelizing  compiler  for  the  CIM  architecture  allows  for  the
compilation of high-level representations of critical  operations of  applications identified in
Work Package 1 for the CIM architecture with a simplified and extensible compilation flow. 

The end-to-end compilation flow and orchestration of accelerated functions with host-code
and the CIM run-time has been verified with multiple implementations of the HAR application
from Work Package 1 (non-batched / batched version with mixed 4-bit / 2-bit precision for a
tile group of size three, non-batched / batched version for an 8-bit single tile configuration)
executed on the Work Package 5 simulator.

The  use  of  the  MLIR  multi-level  intermediate  representation  allows  for  a  more  robust
identification of performance-critical operations for offloading, simplified transformations and
a simplified code generation scheme based on common MLIR and LLVM infrastructure.
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