

The TECHNOLOGY PARTNERS Foundation The Air Force Institute of Technology

Michał Towpik

Strategic and Targeted Support for Europe-Ukraine Collaboration in Aviation Research **AERO.UA Project**

Kharkiv, May 31st, 2018

The TECHNOLOGY PARTNERS Foundation

- Research and Technology Organisation, Advanced Technology Centre
- Specialising in RTD and Innovation Management
- > Focus on performance of large, interdisciplinary projects
- Private, Non-for-Profit
- > Coordinator of the *TECHNOLOGY PARTNERS Consortium*, composed of leading Polish RTOs:
 - Air Force Institute of Technology
 - Institute of Advanced Manufacturing Technology
 - Institute of Non-Ferrous Metals
 - > Institute of Applied Optics
 - Road and Bridge Research Institute
 - > Automotive Industry Institute
- Extensive cooperation with Warsaw University of Technology

The TECHNOLOGY PARTNERS Network

Consortium composed of 7 multidisciplinary RTOs

RTOs

- > Additionally, cooperation with Universities Warsaw University of Technology
- +1500 researchers; EUR +100 million of revenues / year

Cooperation with other entities

Examples of projects

- > EU founded (Aeronautics focus on materials engineering)
 - Cooperation with AIRBUS since 2006 a number of directly funded projects
 - PHOBIC2ICE (H2020) Super-IcePhobic Surfaces to Prevent Ice Formation on Aircraft
 - PLATFORM (H2020) "Open Access Pilot Plants for Sustainable Industrial Scale Nanocomposites
 Manufacturing based on Buckypapers, Doped Veils and Prepregs"
 - CANNAPE (PF7) Canadian Networking Aeronautics Project for Europe
 - SARISTU (FP7) Smart Intelligent Aircraft Structures
 - ELECTRICAL (FP7) Novel Aeronautical Multifunctional Composite Structures with Bulk Electrical
 Conductivity and Self-Sensing Capabilities
 - MAAXIMUS (FP7) More Affordable Aircraft through Extended, Integrated and Mature Numerical Sizing

Others

- Preparation and Demonstration of Multi-KETs Pilot Lines Actions (DG Enterprise)
- Knowledge Management Platform for Polish RTOs
- ELAN Creation of a European and Latin American self-sustainable innovative cooperation Network
- Study Towards a Single and Innovative European Transport System (DG Move)


PLATFORM

Call: H2020-NMP-PILOTS-2014; **Consortium:**12 Partners from 6 EU countries; **Aim:** to develop open access pilot lines for the industrial production of buckypapers, CNT treated prepreg and CNT doped non-woven veils for composite applications in aeronautic and automotive sectors.

E- Platform is a joint venture which provides:

- Nano-enabled advanced composites products with tailorable properties for parts manufacturers, SMEs
- Nano-enabled composites solutions and services

www.tmbk.pl

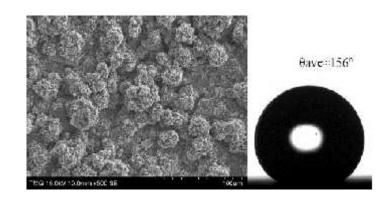
Veils

Veil parameters

Thickness: ~50µm

Amount: ~100 veils per one week

Mealting point: 95-148°C

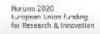


Call: H2020-MG 2015_SingleStage-A;

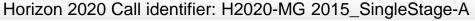
Consortium: 9 Partners- 5 Canadian and 4 European; Coordinated by Technology Partners;

Aim: to DEVELOP MANUFACTURABLE AND ENVIRONMENTALLY FRIENDLY <u>DURABLE</u> ICEPHOBIC COATINGS / SURFACES

- Surface and/or coatings modfication with icephobic and superhydrophobic properties
- Development of new materials for coatings
- Tools to simulate ice accretion
- Eco-friendly, efficient manufacturing processes



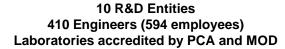
www.phobic2ICE.com



Selected areas of special interest in materials engineering for aerospace

- CNT-doped thermoplastic veils for improving electrical and mechanical performance of composites (H2020 PLATFORM)
 - Suitable for Antistatic or EMI Shielding applications.
 - Produced by the use of melt-blown technology.
 - Inserted into GFRP or CFRP during manufacturing of composites using infusion or pressing methods, as well as an autoclave.
- Development of technologies and predictive simulation tools for avoiding or mitigating accretion of ice (H2020 PHOBIC2ICE)
 - > Collection of fundamental knowledge of phenomena associated with icephobicity issues.
 - Design and fabrication of icephobic surfaces with improved functionalities by applying innovative simulation and modelling.
 - > Development of several types of polymeric, metallic and hybrid coatings using different deposition methods.
 - Preparation of laser treated and anodized surfaces.

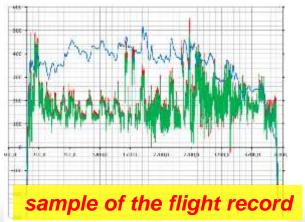
The TECHNOLOGY PARTNERS Foundation



Division

Support of operational use of Air Force technology in the scope of research and development

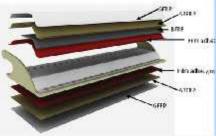
Operational loads monitoring


Airworthiness Division performs loads monitoring, both:

- direct by means of sensors mounted on the aircrafts' structure;
- indirect by means of a proper set of flight parameters;

for many types of aircrafts, e.g.: F-16, MiG-29, Su-22, PZL-130 Orlik.

In the future, we are going to develop usage monitoring system for Mi-14 helicopter.


Advanced composites manufacturing

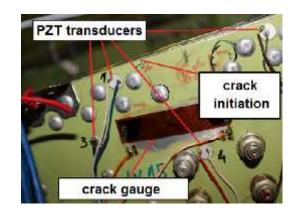
- different technologies of composite structures manufacturing (also autoclave)
- composite patch bonded repairs
 (e.g. C-130 Hercules, PZL-130 Orlik, Su-22, MiG-29)
- honeycomb structures repairs;
- modernization of existing aircraft structures
 (e.g. upper air inlet flaps of MiG-29's engines)
- smart structures manufacturing, e.g. smart patches for repairs monitoring

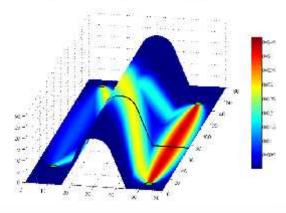
Non-destructive inspections - certified IAW EN-4179:

Certification and equipment for most of NDT methods:

- ultrasonic testing (also phased array);
- eddy current testing;
- penetrant testing;
- magnetic particle testing;
- thermography testing;
- laser shearography testing.

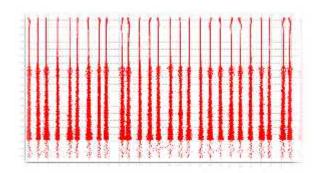
Support in development of NDT and SHM technologies.



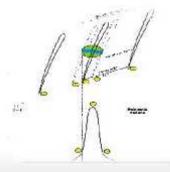

Research and development of Structural Health Monitoring (SHM) systems

The investigated areas are:

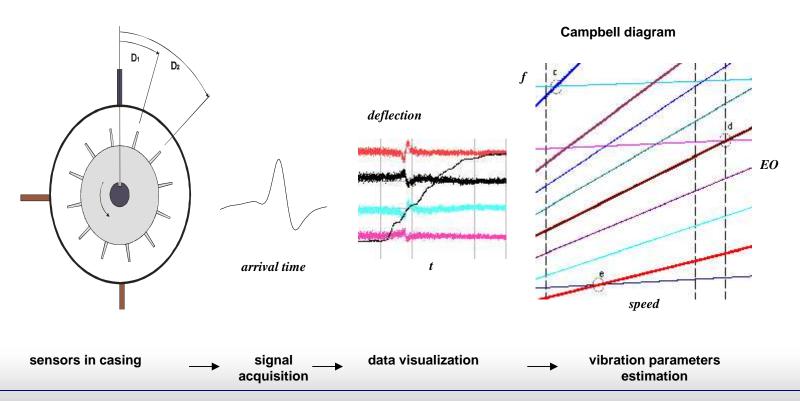
- different applications of PZT transducers (passive, active monitoring: guided waves and E-M impedance method);
- monitoring of different type of materials and damage thereof (metals, GFRP, CFRP laminates, Fiber Metal Laminates – FML);
- developing signal analysis and data classification methods in order to improve performance of the system;
- developing technology of sensors integration with the host structure;
- developing methods for network self-diagnostics;
- increasing technology readiness by improving system stability under varying environmental conditions;
- system validation studies (reliability, PoD);
- developing certification guidelines for system implementation;



DIAGNOSTICS AND MONITORING OF AIRCRAFT PROPULSION SYSTEMS

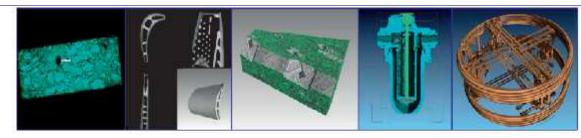

The development of new research techniques

Monitoring and diagnostics of all kinds of aircraft engines types



Blade Tip-Timing

Non contact measurement technique used to estimate blade vibration parameters: amplitude, frequency & stress.


Blade Health Monitoring

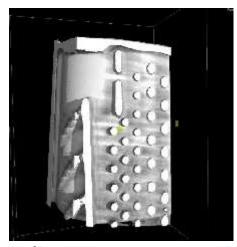
- passive magnetic sensors for adverse conditions
- flying on TS-11 trainer since 1992
 - SNDL-1b/SPL-2b system
- life: 5-10 years, 600-1200 flight hours
- > 300 sensors installed on > 100 aircraft

X-ray Computed Tomography

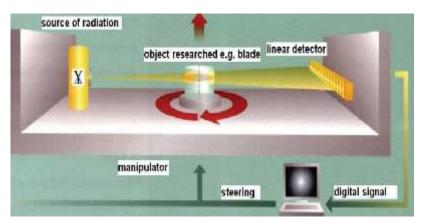
Scientific research and analyses cover the following materials:

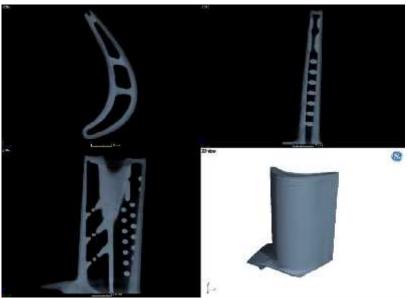
- Titanium alloys
- Steel
- · Composites
- Concrete
- Rubber
- Others

The system offers:

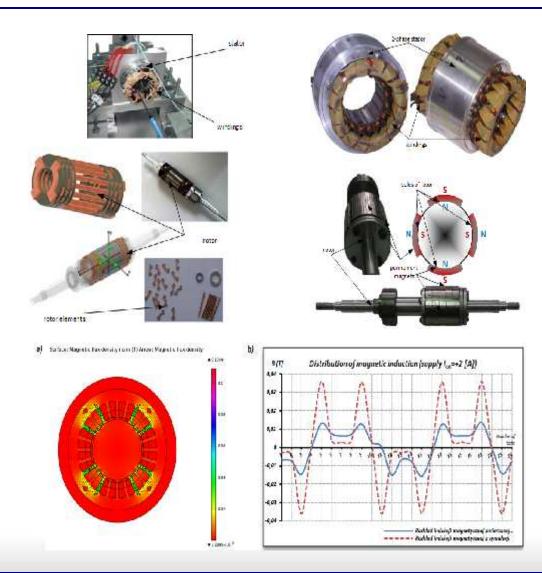

- Detectability of failures of > 0.5 m with the 180 kV X-ray tube
- Testing/evaluation of high-density materials (e.g. aircraft engine turbine blades) with the 300 kV X-ray tube
- Analyses of electronic circuits (integrated circuits (IC) included)
- Diagnosing of explosives/pyrotechnic compositions
- Complex diagnosing of aeronautical (sub-)systems

Weight of objects under examination: 50 kg Approximate dimensions: 50×50×60 cm




X-ray CT Inspection of Turbine Blades

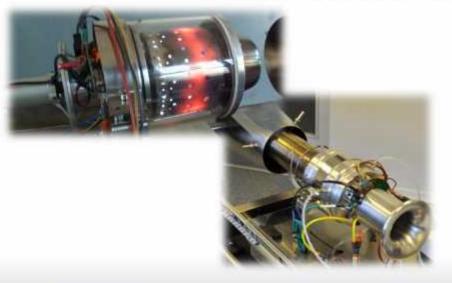
- cooling channels
- manufacturing flaws
- 3d printed components

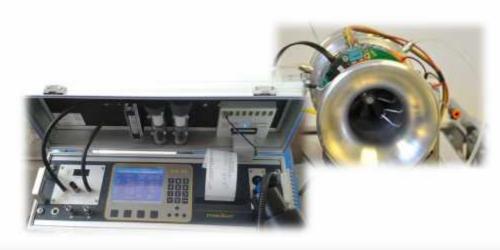


Bearingless electric machines for aviation

- More Electric Aircraft
- Magnetic suspension systems
- Control of bearingless motors

UNMANNED AERIAL VEHICLES





TEST BEDS FOR COMBUSTION PROCESS IN JET ENGINEES

Testing of:

- ✓ new fuel, including ones from renewable sources of energy
 - ✓ innovation material technologies
 - ✓ novel structure solutions
- designed & developed test beds dedicated for individual client's needs.

AIRCRAFT MODERNIZATION

- **√**Digitalization of Avionic Systems (open architecture)
 - ✓ Adaptation to a modern network-centric battlefield
 - ✓ Integrated Communication Systems
 - ✓ Helmet Mounted Display systems

ADAPTATION FOR BATTLEFIELD REQUIREMENTS

Extension of technical life time up to 45 years

• 1

0 Military Aviation Works No 1

&

Air Force Institute of Technology (ITWL)

are specializing in an extension life time of Mil helicopters

Mi-8 up to 45 years Mi-17 up to 42 years Mi-14 up to 36 years Mi-24 up to 45 years

Thank you for your attention